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Abstract

This is an essay on a linear Cosserat model with weakest possible constitutive assump-
tions on the curvature energy still providing for existence, uniqueness and stability. The
assumed curvature energy is the conformally invariant expression µL2

c ‖dev sym∇ axlA‖2,
where axlA is the axial vector of the skewsymmetric microrotation A ∈ so(3), dev is
the orthogonal projection on the Lie-algebra sl(3) of trace free matrices and sym is the
orthogonal projection onto symmetric matrices. It is observed that unphysical singular
stiffening for small samples is avoided in torsion and bending while size effects are still
present. The number of Cosserat parameters is reduced from six to four: in addition
to the (size-independent) classical linear elastic Lamé moduli µ and λ only one Cosserat
coupling constant µc > 0 and one length scale parameter Lc > 0 need to be determined.
We investigate those deformations not leading to moment stresses for different curvature
assumptions and we exhibit a novel invariance principle of linear, isotropic Cauchy elas-
ticity which is extended to the Cosserat and couple-stress (Koiter-Mindlin) model with
conformal curvature.
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1 Introduction

We investigate some of the salient novel features of a linear elastic Cosserat model with con-
formally invariant curvature energy. This work extends and precises previous work of the first
author [22].

General continuum models involving independent rotations have been introduced by
the Cosserat brothers [5] at the beginning of the last century. Their originally nonlinear,
geometrically exact development has been largely forgotten for decades only to be rediscovered
in a restricted linearized setting in the early sixties. Since then, the original Cosserat concept
has been generalized in various directions, notably by Eringen and his coworkers who extended
the Cosserat concept to include also microinertia effects and to rename it subsequently into
micropolar theory. For an overview1 of these so called microcontinuum theories we refer
to [6, 4, 30]. The Cosserat model includes in a natural way size effects, i.e., small samples
behave comparatively stiffer than large samples. In classical, size-independent models this
would lead to an apparent increase of elastic moduli for smaller samples of the same material.

The micropolar theory is perhaps best viewed as a generalized continuum theory in which
microstructure details are averaged out by a ”characteristic internal length scale” Lc [2, 7].
This last parameter can be considered as the size of a representative volume element (RVE)
in heterogeneous media and it is frequently used to model damage and fracture phenomenon
in concrete [31]. A dislocated single crystal [24] is another example of a Cosserat continuum
for which lattice curvature is due to geometrically necessary dislocations [29]. Extensions to
plasticity have been considered in [26, 25, 10, 32].

The mathematical analysis establishing well-posedness for the infinitesimal strain, Cosserat
elastic solid is presented e.g. in [11] and extended in [12] for so called linear microstretch models.
This analysis has always been based on the uniform positivity of the free quadratic energy
of the Cosserat solid. The first author has extended the existence results for both the Cosserat
model and the more general micromorphic models to the geometrically exact, finite-strain case,
see e.g. [27, 23]. More on the mathematical analysis for the nonlinear case can be found in
[20, 34]

The important problem of the determination of Cosserat material parameters for continuous
solids with random microstructure is still a major challenging problem both analytically [3] and
practically. In the linear, isotropic case there are the classical linear elastic Lamé moduli µ and
λ whose determination is simple and the possibility of four additional constants, one coupling
constant µc ≥ 0 with dimension [MPa] and three curvature length scales. One of the major
problems of the micropolar theory is therefore to determine these parameters in an experimental
setting. Lakes [17, 1] proposed an experimental procedure to determine the four supplementary
material moduli (µc, α, β, γ) but the setup is difficult. Usually, a series of experiments with

1See http://www.mathematik.tu-darmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Cosserat.html
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Figure 1: Left: Classical size independent linear elasticity indicated by the fine grid. Right:
Additional interaction through Cosserat curvature energy, indicated by a coarse grid superposed
on the fine grid, with spacing Lc > 0.

specimens of different tiny slenderness is performed in order to determine the additional four
Cosserat parameters [17]. By using the traditional curvature energy complying with pointwise
positive definiteness, one observes, however, an unphysical unbounded singular stiffening
behavior for slender specimens [22] which makes it impossible to arrive at consistent values for
the Cosserat parameters: the values for the parameters will depend strongly on the smallest
investigated specimen size and for very small specimen the experimental values become dubious.
Thus a size-independent determination of the material parameters (which must be the ultimate
goal) is impossible. This inconsistency is in part responsible for the fact that 1. (linear,
isotropic) Cosserat parameters for continuous solids have never gained general acceptance even
in the ”Cosserat community” and 2. that the linear elastic Cosserat model has never been
really accepted by a majority of applied scientists as a useful model to describe size effects in
continuous solids.2

As a possible answer to this problem we propose to use instead a weaker curvature
energy3 of the type

Wcurv(∇ axlA) = µL2
c ‖ dev sym∇ axlA‖2 , (1.1)

which is not pointwise positive. This curvature expression is conformally invariant [8] and
it reduces the number of additional Cosserat parameters to two: one coupling constant µc[MPa]
and one internal length scale Lc[m]. Symmetry methods including the conformal group have
been applied to extended continuum model, see e.g. [18, 19]. That the weak curvature energy
used in (1.1) still gives rise to a well-posed boundary value problem has been recently demon-
strated in [13].

Traditionally, a discussion of the Cosserat model starts with the statement that the material is
made of particles having an extension and which may move and rotate. Then the question arises
invariably whether one can really ”see” these particles rotate and whether this rotation coincides
with the Cosserat rotation. This has never been conclusively achieved albeit it is tempting to
try to identify the rotations of grains in a granular material etc. with these rotations.

For our purposes, let us now shift attention from how the microstructure looks like (rigid
= Cosserat, affine = micromorph etc.) to the additional interaction which the Cosserat model
introduces. In fact, the effect of the curvature energy is to introduce, in addition to the always
present arbitrary fine-scale, size-independent response of linear elasticity a certain additional
”coarse grid”-interaction term with long range structure. The interaction strength of which is
proportional to the internal length scale Lc, see Figure 1.

For the conformal curvature energy we will show that precisely conformal mappings are
”coarse grid”- interaction free, while in the traditionally considered curvature cases, only ho-
mogeneous deformations are ”coarse grid”-interaction free. What are infinitesimal conformal
mappings anyway? Their jacobean consists additively of a dilation and a rotation in each point
thus they are locally doing nothing else than dilating and rotating (see Figure 2). They leave
the shape and angles of infinitesimal figures invariant. As such, they preserve the topologi-
cally structure of the coarse grid exactly. Since on the other extreme, plasticity is triggered by

2Note that Lakes himself arrived at consistent values [1] by sacrificing uniform positive definiteness for which
he was wrongly criticized in the literature.

3In general, using a weaker curvature expression allows to determine larger values of the internal length scale
Lc. A major problem in identifying the internal length scale for continuous solids using strong curvature is
connected to the fact that the identified values for Lc are orders of magnitude smaller than would make sense
from a homogenization point of view in which Lc is related to the size of a representative volume element.
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Figure 2: Infinitesimal conformal mappings which locally leave shapes invariant: a prototype
elastic deformation. Shown is the coarse grid deformation.

changes in shape (von Mises flow rule) the conformal mappings are really the prototype linear
elastic deformations. We remark immediately that conformal mappings are, in that picture, not
entirely energy free: they only induce local linear elastic energy. In other words, the conformal
mapping is moment free but inhomogeneous. Since the conformal mapping is inhomogeneous
but nevertheless represents a certain long range order the constitutive hypothesis of zero ”coarse
grid”- interaction (conformal curvature) is not altogether unreasonable.

In order to exhibit the additional interaction term our method is to consider the limit case
of Lc → ∞ (which corresponds to the presence of only the coarse grid interaction structure)
and to investigate what type of deformations do not induce coarse grid interaction. This is
what we call subsequently the investigation of the curvature nullspace.

This contribution is now organized as follows. First, we present the linear elastic static isotropic
Cosserat model in variational form and recall the necessary conditions for non-negativity of the
energy. Then we present the strong form of the Cosserat balance equations together with
some development of the scaling behaviour of a finite strain Cosserat model. Following is
an investigation of the nullspaces of the curvature energy in the Cosserat model and in the
indeterminate couple stress (Koiter-Mindlin) model together with an in depth analysis of the
infinitesimal conformal transformations, their general form and related topics. Finally, we
exhibit that for zero classical bulk modulus K = 3λ+2µ

3 = 0, linear Cauchy elasticity is formally
invariant under infinitesimal conformal transformations and we show that this feature holds
true as well for the linear Cosserat model and the indeterminate couple stress model provided
the conformal curvature energy is chosen. The conformal approach implies that the Cosserat
moment stresses are symmetric and trace free. In the appendix we collect our notation, some
relations for infinitesimal conformal mappings as well as a glance at finite conformal mappings.

In a companion paper [14] we already treat the FEM-simulation of our new model. It
is our strong believe that the usually assumed pointwise positivity of the Cosserat curvature
energy is responsible for the fact that material parameters for the Cosserat solid have not been
successfully determined. Thus, relaxing the curvature energy might allow for a new chance of
parameter determination, notably of the Cosserat couple modulus µc.

2 The linear elastic isotropic Cosserat model revisited

This section does not contain new results, rather it serves to accommodate the widespread
notations used in Cosserat elasticity with our own use and to introduce the problem; it is not
intended as an introduction to the Cosserat model.

2.1 The linear elastic Cosserat model in variational form

For the displacement u : Ω ⊂ R3 7→ R3 and the skew-symmetric infinitesimal microro-
tation A : Ω ⊂ R3 7→ so(3) we consider the two-field minimization problem

I(u,A) =
∫

Ω

Wmp(ε) +Wcurv(∇ axlA)− 〈f, u〉dx 7→ min . w.r.t. (u,A), (2.1)

4



under the following constitutive requirements and boundary conditions

ε = ∇u−A, first Cosserat stretch tensor

u|Γ = ud , essential displacement boundary conditions

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [sym ε]2 strain energy

φ := axlA ∈ R3, k = ∇φ , ‖ curlφ‖2R3 = 4‖ axl skew∇φ‖2R3 = 2‖ skew∇φ‖2M3×3 ,

Wcurv(∇φ) =
γ + β

2
‖ dev sym∇φ‖2 +

γ − β
2
‖ skew∇φ‖2 +

3α+ (β + γ)
6

tr [∇φ]2 . (2.2)

Here, f are given volume forces while ud are Dirichlet boundary conditions for the displacement
at Γ ⊂ ∂Ω. Surface tractions, volume couples and surface couples could be included in the
standard way. The strain energy Wmp and the curvature energy Wcurv are the most general
isotropic quadratic forms in the infinitesimal non-symmetric first Cosserat strain tensor
ε = ∇u − A and the micropolar curvature tensor k = ∇ axlA = ∇φ (curvature-twist
tensor). The parameters µ, λ[MPa] are the classical size-independent Lamé moduli and α, β, γ
are additional micropolar moduli with dimension [Pa ·m2] = [N] of a force. The additional
parameter µc ≥ 0[MPa] in the strain energy is the Cosserat couple modulus which ideally
should be size-independent as well. For µc = 0 the two fields of displacement and microrotations
decouple and one is left formally with classical linear elasticity for the displacement u.

Remark 2.1 (Boundary conditions for the Cosserat model)
It is always possible to prescribe essential boundary values for the microrotations A but we
abstain from such a prescription because the physical meaning of it is doubtful. Similarly,
surface couples are not prescribed. Note that well-posedness of the Cosserat model is true for
free-Neumann-type conditions on the microrotation anyway. Therefore, any artificial boundary
requirement will heavily influence the solution.

2.2 Non-negativity of the energy

The condition for non-negativity of the energy are well known [22]. It must hold

µ ≥ 0 , µc ≥ 0 , 2µ+ 3λ ≥ 0 ,
γ + β ≥ 0 , γ − β ≥ 0 , 3α+ (β + γ) ≥ 0 . (2.3)

Certain of these inequalities need to be strict in order for the well-posedness of the model.
However, the uniform pointwise positivity (strict inequalities everywhere) is not necessary [13],
although it is assumed most often in treatments of linear Cosserat elasticity [30].

2.3 Bounded stiffness for small samples

For every physical material, it is essential that small samples still show bounded rigidity. How-
ever, this may or may not be true for Cosserat models, depending on the values of Cosserat
parameters. Based on analytic solution formulas for simple three-dimensional Cosserat bound-
ary value problems it has been shown in [22] that for bounded stiffness for arbitrary slender
cylindrical samples we must have

1. in torsion of a slender cylinder: β + γ = 0 or Ψ = β+γ
α+β+γ = 3

2 .

2. in bending of a slender cylinder: (β + γ) (γ − β) = 0.

The conformal curvature energy (1.1) satisfies both requirements through β = γ and Ψ = 3
2 .4

We note that bounded stiffness does not imply that there is no size effect. Rather, it bounds
the size-effect away from unphysical limits.

4The additional conditions in [22] for bounded stiffness have been based on dimensionally reduced models
and must therefore be taken with care.
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2.4 The linear elastic Cosserat balance equations: strong form

The induced balance equations are

Div σ = f , balance of linear momentum

−Divm = 4µc · axl skew ε , balance of angular momentum (2.4)
σ = 2µ · sym ε+ 2µc · skew ε+ λ · tr [ε] · 11 ,
m = γ∇φ+ β∇φT + α tr [∇φ] · 11 , φ = axlA , u|Γ = ud .

Here, m is the (second order) couple stress tensor which is given as a linear function of the
curvature ∇φ = ∇ axlA and σ is the non-symmetric force stress tensor.

2.5 The investigated cases

We run the Cosserat model with basically three different sets of variables for the curvature
energy which in each step relaxes the curvature energy. The cases are

1: pointwise positive case: µL2
c

2 ‖∇φ‖
2. This corresponds to α = 0, β = 0, γ = µL2

c .
Eringen notes [6, p.151]: ”often it is assumed that γ is the leading term and α, β are
estimated to be small, non-negative quantities.” In the linear setting this case can be
arrived at by homogenization of materials with periodic microstructure like grid works
and lattice beams, see again [6].

1.1: deviatoric case: µL2
c

2 ‖ dev∇φ‖2 = µL2
c

2 (‖∇φ‖2 − 1
3 tr [∇φ]2). This corresponds to β =

0 and γ = µL2
c

2 and α = − 1
3µL

2
c . This is the second case of Lakes [17]. Note that

interpreting the coefficient α here as a ”spring-constant” is impossible, since α takes
negative values while the curvature energy is still positive semi-definite. The same remark
applies, with appropriate changes, to case three.

2: symmetric case: µL2
c

2 ‖ sym∇φ‖2. This corresponds to α = 0, β = γ and γ = µL2
c

2 . In
[36, 35] it is proposed to use β = γ based on non-standard curvature invariance principle.
It leads already to a symmetric couple stress tensor m. The same requirement,
based on another motivation has been arrived at in [33].

3: conformal case: µL2
c

2 ‖ dev sym∇φ‖2 = µL2
c

2 (‖ sym∇φ‖2 − 1
3 tr [∇φ]2). This corresponds

to β = γ and γ = µL2
c

2 and α = − 1
3µL

2
c . This is the first case of Lakes and our conformal

curvature. Here, the Cosserat couple stress tensor m is symmetric and trace free. For the
indeterminate couple-stress problem (4.1) the last two cases coincide since the trace term
is cancelled.

The reader should realize that all these cases are well-posed. The well-posedness of the last case
is a new result, proved in [13], making use of a new coercive inequality for formally positive
quadratic forms. The well-posedness in the second case is a consequence of Korn’s second
inequality applied to the curvature energy. The first case is representative of a pointwise
positive curvature energy and therefore deserves no further comment. The first subcase can be
subsumed in the third case.

Remark 2.2
In a plain-strain, two-dimensional setting the axis of rotations is constant and all these curvature
cases coincide. This underlines the fact that the Cosserat model is essentially three-dimensional.

2.6 Scaling and geometry of microstructure

By a simple scaling argument one may see that very small samples of a material can be described
by the Cosserat model with increased Lc. In this sense, Lc → ∞ corresponds to arbitrary
small samples. Let us present the scaling relations appearing in a finite-strain elastic Cosserat
theory. We consider a finite-strain Cosserat model because the scaling relations are much more
transparent then. Our goal is to relate the response of large and small samples of the same
material and to asses the influence of the characteristic length Lc.

6
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Figure 3: Scaling relations and homogeneous boundary conditions.

First, we define the characteristic length LRVE
c as given material parameter, correspond-

ing to the smallest discernible distance to be accounted for in the model. A simple conse-
quence is that actual geometrical dimensions L of the bulk material must be larger than LRVE

c ,
indeed for a continuum theory to apply at all L should be significantly larger than LRVE

c . We
may thus identify LRVE

c with the size of a representative volume element RVE. The classical
size-independent model ensues if L is arbitrary larger than LRVE

c in which we have separation
of scales.

Now let ΩL = [0, L[m]]× [0, L[m]]× [0, L[m]] be the cube with (non-dimensional) edge length
L, representing the bulk material. Consider a deformation ϕL : ξ ∈ ΩL 7→ R3 and microrotation
RL(ξ) : ΩL 7→ SO(3) as solution of the generic (µc = µ) minimization problem∫
ξ∈ΩL

µ(ξ) ‖RTL(ξ)FL(ξ)− 11‖2 + µ̂ (LRVE
c )2 ‖DξRL(ξ)‖2 dξ 7→ min . w.r.t. (ϕL, RL) , (2.5)

subject to homogeneous boundary conditions ξ ∈ ∂ΩL : ϕL(ξ) = (11 + B̂).ξ , B̂ ∈ gl(3) .

This is the finite-strain problem which corresponds to the infinitesimal Cosserat model in vari-
ational form∫
ξ∈ΩL

µ(ξ) ‖ sym∇ξuL(ξ)‖2 + µ(ξ) ‖ skew∇ξuL(ξ)−AL(ξ)‖2

+ µ̂ (LRVE
c )2 ‖DξAL(ξ)‖2 dξ 7→ min . w.r.t. (uL, AL) , (2.6)

subject to homogeneous boundary conditions ξ ∈ ∂ΩL : uL(ξ) = B̂.ξ , B̂ ∈ gl(3) .

The simple scaling transformation ζ : R3 7→ R3, ζ(x) = L · x maps the unit cube Ω1 =
[0, 1[m]] × [0, 1[m]] × [0, 1[m]] into ΩL. Defining the related deformation ϕ : x ∈ Ω1 7→ R3 and
microrotation R(x) : Ω1 7→ SO(3) as

ϕ(x) := ζ−1 (ϕL(ζ(x))) , R(x) := RL(ζ(x)) , (2.7)

shows

∇xϕ(x) =
1
L
∇ξϕL(ζ(x))∇xζ(x) = ∇ξϕL(ξ) ,

DxR(x) = DξRL(ζ(x)) · ∇xζ(x) = DξRL(ξ) · L ,

ϕ(x) =
1
L
ϕL(L · x) = (11 + B̂).x , x ∈ ∂Ω1 . (2.8)

Hence, the minimization problem can be transformed to the unit cube5∫
ξ∈ΩL

µ(ξ) ‖RTL(ξ)∇ξϕL(ξ)− 11‖2 + µ̂ L2
c ‖DξRL(ξ)‖2 dξ

=
∫
x∈Ω1

µ(Lx) ‖RT (x)∇xϕ(x)− 11‖2 det[∇xζ(x)] + µ̂ (LRVE
c )2 ‖ 1

L
DxR(x)‖2 det[∇xζ(x)] dx

5Homogeneous boundary conditions are invariant under the re-scaling, as is any one-homogeneous expression
ϕL(r ξ) = r ϕL(ξ) as e.g., ϕL(ξ) = B.ξ + ξ⊗ξ

‖ξ‖ .b.
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=
∫
x∈Ω1

µ(Lx) ‖RT (x)∇xϕ(x)− 11‖2 L3 + µ̂ (LRVE
c )2 L3−2 ‖DxR(x)‖2 dx , (2.9)

and dividing by L3 we may consider at last the equivalent problem defined on the unit cube
Ω1:∫
x∈Ω1

µ(Lx) ‖RT (x)∇xϕ(x)− 11‖2 + µ̂
(LRVE

c )2

L2
‖DxR(x)‖2 dx 7→ min . w.r.t. (ϕ,R).

still subject to homogeneous boundary conditions x ∈ ∂Ω1 : ϕ(x) = (11 + B̂).x , B̂ ∈ gl(3) .

Thus we are led to define a relative internal length Lc := (LRVE
c )2

L2 , which is in fact that Lc which
we use in this work most of the time. Comparison of different sample sizes is now afforded by
transformation to the unit cube respectively, e.g., we compare two samples of the same material
with bulk sizes L1 > L2. Transformation to the unit cube shows that the response of sample
ΩL2 is stiffer than the response of sample ΩL1 . It is plain to see that for L large compared to
LRVE
c , the influence of the rotations will be small and in the limit LRVE

c

L → 0, classical, size-

independent behaviour results. Otherwise, the larger LRVE
c

L , the more pronounced the Cosserat
effects become and a small sample is relatively stiffer than a large one.

For a very small cube ΩL with side length L� 1 we have Lc = LRVE
c

L � 1. Consider therefore
(hypothetically) the limit Lc → ∞. In a variational context the energy has to remain finite.
In case Lc = ∞ it is understood that Wcurv must vanish. Therefore, the precise form of
the curvature energy determines, which deformation possibilities remain for the substructure
itself. These deformation possibilities are given by the nullspace of the curvature contribution.
The nullspace of the curvature determines therefore the ”coarse grid”-interaction law. The
hypothetical limit Lc →∞ therefore characterizes completely the interaction which is induced
by the presence of a microstructure which induces a ”coarse-grid” setting. Thus we investigate
the null-space now.

3 Nullspace of the curvature energy

Since we are interested in the response of the Cosserat model primarily with respect to different
curvature energies it is next expedient to investigate the nullspaces of the respective expressions.
In the following, constant terms are denoted with a hat by Ŵ , Â ∈ so(3), b̂ ∈ R3, p̂ ∈ R etc.

3.1 The pointwise positive nullspace

The first case 1 is simple. In the following we abbreviate with φ : R3 7→ R3 the axial vector of
the microrotation A ∈ so(3), i.e. φ = axlA. Subsequently, when there is no danger of confusion,
we use A also to denote an arbitrary skew-symmetric matrix.

The condition of zero curvature energy µL2
c ‖∇φ‖2 = 0 is simply ∇φ = 0 and this implies

φ(x1, x2, x3) := b̂ , (3.1)

for some constant translational vector b̂ ∈ R3. This is the three-dimensional space of transla-
tions. It implies strong stiffening behaviour as Lc →∞ which is also observed in our simulations
in the companion paper [14] together with the solution for Lc =∞.

Remark 3.1 (Boundary conditions)
If A = 0 (equivalently φ = 0) at Γ ⊂ ∂Ω for (3.1) then A ≡ 0 (φ ≡ 0) in Ω. In fact, for
smooth fields, it suffices to prescribe φ = 0 at an isolated point only.

3.2 The nullspace for dev alone

The first subcase 1.1 is also simple. The condition of zero curvature energy is dev∇φ = 0 and
this implies ∇φ = p(x) 11 for some scalar field p : Ω ⊂ R3 7→ R. Taking the Curl on both sides
of the last equation yields

0 = Curl[p(x) 11] =

 0 px3 −px2

−px3 0 px1

px2 −px1 0

 ∈ so(3) . (3.2)

8



Thus ∇p(x) = 0 and we have after integration

φ(x1, x2, x3) := p̂ x+ b̂ , (3.3)

for some constant translational vector b̂ ∈ R3 and a constant number p̂ ∈ R. This is a four-
dimensional space. The decisive new feature as compared to (3.1) is that now a linear variation
of microrotations does not necessarily lead to curvature energy or moment stresses. This will
also obtain in the next case.

Remark 3.2 (Boundary conditions)
If A = 0 (φ = 0) at Γ ⊂ ∂Ω for (3.3) then A ≡ 0 (φ ≡ 0) in Ω. In fact, for smooth fields, it
suffices to prescribe φ = 0 on a one-dimensional curve.

3.3 The symmetric nullspace

In the second symmetric curvature situation, case 2, we obtain from the zero curvature require-
ment that sym∇φ = 0 which locally means

∇φ(x1, x2, x3) = A(x1, x2, x2) ∈ so(3) ⇒ 0 = CurlA(x1, x2, x2) ⇒ A(x) = Â = const. , (3.4)

on using formula (3.6)4. This implies that

φ(x1, x2, x3) := Â.x+ b̂ , (3.5)

where Â ∈ so(3) and b̂ ∈ R3 are some constant skew-symmetric matrix and constant translation,
respectively. This is the well known six-dimensional space of infinitesimal rigid movements. Let
us collect some useful formulas for this case (three space dimensions):

−CurlA = [∇ axlA]T − tr
[
∇ axlA

]
11 , tr

[
CurlA

]
= 2 tr

[
∇ axlA

]
,

‖CurlA‖2 = ‖∇ axl(A)‖2 + tr
[
∇ axlA

]2 ≥ ‖∇ axl(A)‖2 ,
− sym CurlA = sym[∇ axlA]− tr

[
∇ axlA

]
11 ,

‖ sym CurlA‖2 = ‖ sym∇ axl(A)‖2 + tr
[
∇ axlA

]2
. (3.6)

The last equality suggest that the parameter values β = γ = α could also be an interesting
constitutive choice. Inequality (3.6)2 admits a (surprising) generalization to exact rotations
[28]. Considering the deviator, we observe, moreover

‖dev sym CurlA‖2 = ‖ sym CurlA‖2 − 1
3

tr
[
CurlA

]2
= ‖ sym∇ axl(A)‖2 + tr

[
∇ axlA

]2 − 1
3

tr
[
CurlA

]2
= ‖ sym∇ axl(A)‖2 + tr

[
∇ axlA

]2 − 4
3

tr
[
∇ axlA

]2
= ‖ sym∇ axl(A)‖2 − 1

3
tr
[
∇ axlA

]2
= ‖ dev sym∇ axlA‖2 . (3.7)

Remark 3.3 (Boundary conditions)
If A = 0 (φ = 0) at Γ ⊂ ∂Ω for (3.5) then A ≡ 0 (φ ≡ 0) in Ω. This result follows as in
linear elasticity for the displacement. Here it is decisive that Γ is a two-dimensional surface,
otherwise the infinitesimal rotations are not fixed.

3.4 The conformal nullspace

In the last case 3 we obtain for vectorfields φ : R3 7→ R3 the condition dev sym∇φ = 0. One
can show that the nullspace in dimension n ≥ 3 has dimension (n + 1) (n + 2)/2.6 To see this

6In dimension n = 2 the kernel is infinite-dimensional. Consider

∇φ(x) =

„
φ1,x1 φ1,x2
φ2,x1 φ2,x2

«
=

„ bp ba
−ba bp

«
⇒ dev2 sym∇φ = 0 . (3.8)

Thus φ1, φ2 satisfy the Cauchy-Riemann equations and all harmonic functions are in the kernel.
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for dimension n = 3, consider that dev sym∇φ = 0 implies ∇φ = p(x) 11 + A(x) for a scalar
field p : Ω 7→ R and a skew-symmetric field A : Ω 7→ so(3). Taking the Curl yields

∇φ = p(x) 11 +A(x) ⇒ 0 = Curl[p(x) 11]︸ ︷︷ ︸
∈so(3), (3.2)

+ CurlA(x) ⇒

0 = sym CurlA(x) ⇒︸︷︷︸
(3.6)4

sym∇ axl(A(x)) = 0 ⇒

∇ axl(A(x)) = W (x) ∈ so(3) ⇒ axl(A(x)) = Ŵ .x+ η̂ ⇒ (3.9)

−CurlA = [∇ axlA]T − tr
[
∇ axlA

]
11 = ŴT − 0 ⇒ Curl[p(x) 11] = ŴT = −Ŵ ⇒

Curl[p(x) 11] =

 0 px3 −px2

−px3 0 px1

px2 −px1 0

 = −Ŵ ⇒ ∇p =

px1

px2

px3

 =

−Ŵ23

Ŵ13

−Ŵ12

 = axl(Ŵ ) .

Integration yields p(x) = 〈axl(Ŵ ), x〉+ p̂, which implies

∇φ = p(x) 11 +A(x) = [〈axl(Ŵ ), x〉+ p̂] 11 + anti(Ŵ .x+ η̂)

= [〈axl(Ŵ ), x〉+ p̂] 11 + anti(Ŵ .x) + Â = anti(Ŵ .x) + 〈axl(Ŵ ), x〉 11 + [p̂ 11 + Â] ⇒

φ =
1
2

(
2〈axl(Ŵ ), x〉x− axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x+ b̂ . (3.10)

We have thus shown that for n = 3 the kernel is ten-dimensional.7 It consists of all infinitesi-
mal conformal transformations (ICT) having the form (abbreviate k̂ = 1

2 axl(Ŵ ))

φC(x1, x2, x3) : =
3∑
i=1

k̂i Qi(x, x) + M̂.x+ b̂ = 2〈k̂, x〉 − k̂ ‖x‖2 + M̂.x+ b̂ , M̂ = p̂ 11 + Â ,

∇φC(x1, x2, x3) = 2 [anti(Ŵ .x) + 〈axl(Ŵ ), x〉 11] + M̂ , (3.11)

D2φC(x).h = 2 [anti(Ŵ .h) + 〈axl(Ŵ ), h〉 11] ∈ R 11⊕ so(3) ,

where p̂, k̂1, k̂2, k̂3 ∈ R and Â ∈ so(3) and b̂ are constant numbers, constant skew-symmetric
matrix and constant translation, respectively. Here, Qi : R3×R3 7→ R3 are three infinitesimal
special conformal transformations (ISCT) (which we have shown to be second order
polynomials):

Q1(x, x) := 2x1

x1

x2

x3

−
‖x‖20

0

 =

x2
1 − (x2

2 + x2
3)

2x1x2

2x1x3

 , ∇Q1(x, x) = 2

x1 −x2 −x3

x2 x1 0
x3 0 x1

 ,

Q2(x, x) := 2x2

x1

x2

x3

−
 0
‖x‖2

0

 =

 2x1 x2

x2
2 − (x2

1 + x2
3)

2x2x3

 , ∇Q2(x, x) = 2

 x2 x1 0
−x1 x2 −x3

0 x3 x2

 ,

Q3(x, x) := 2x3

x1

x2

x3

−
 0

0
‖x‖2

 =

 2x3 x1

2x3 x2

x2
3 − (x2

1 + x2
2)

 , ∇Q3(x, x) = 2

 x3 0 x1

0 x3 x2

−x1 −x2 x3


(3.12)

It is easy to check that ∇Qi = p(x) 11 + A(x) for A(x) ∈ so(3) and p(x) ∈ R. A short form
representation is given by

Qi(x, x) = 2〈x, ei〉x− ‖x‖2 ei . (3.13)

3.5 3D-ICT and boundary conditions

Let us show that infinitesimal conformal transformations (ICT), while offering richer possibili-
ties than rigid movements, are still uniquely determined when set to zero on a two-dimensional
smooth surface Γ. More precisely, we show

7It is plain to see that φC forms a ten-dimensional linear space which can be endowed with the structure of
a Lie-algebra by using as Lie-bracket the usual commutator bracket for vectorfields.
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Lemma 3.4
If A = 0 (φ = 0) at Γ ⊂ ∂Ω for (3.11) then A ≡ 0 (φ ≡ 0) in Ω.

Proof. We choose curves γi : R 7→ Γ ⊂ R3 which lie on the surface Γ. Along these curves it
holds by assumption that

φ(γ(t)) = 0 ⇒ 0 =
d
dt
φ(γ(t)) = ∇φ(γ(t)).γ′(t) . (3.14)

Since we can always choose curves which pass through a given point γ(t0) = x0 ∈ Γ and since Γ
is a smooth two-dimensional surface, there exist always two-linear independent directions τ1, τ2
such that

∇φ(x0).τi = 0 , τi = γi′(t0) , i = 1, 2, γ(t0) = x0 . (3.15)

Therefore, we conclude that if φ = 0 on Γ then the rank of ∇φ is maximally one on Γ. On the
other hand, φ being infinitesimal conformal, we have

∇φ(x0) = anti(Ŵ .x0) + 〈axl(Ŵ ), x0〉 11 + [p̂ 11 + Â]

= anti(Ŵ .x0) + Â+ [〈axl(Ŵ ), x0〉+ p̂] 11 . (3.16)

Let us check the rank of this expression on Γ. Since it has the form ∇φ = so(3) + R · 11 we only
have to show that there exists an x0 ∈ Γ at which not both summands vanish simultaneously.
This suffices since, if either of them is nonzero, then the rank is at least two: if only the skew
symmetric part vanishes then the rank is three, if only the dilation (spherical) part vanishes,
then the rank is two.

Individually, if both vanish, we have

〈axl(Ŵ ), x0〉 = −p̂ , 0 = anti(Ŵ .x0) + Â ⇒ Ŵ .x0 = − axl(Â) . (3.17)

In matrix form (
axl(Ŵ )T

Ŵ

)
x0 =

(
−p̂

− axl(Â)

)
R4

. (3.18)

The first case is Ŵ = 0. Then p̂ and Â are both zero, which implies φ ≡ 0. In the second case
assume now that Ŵ 6= 0. A simple calculation shows that

rank

(
axl(Ŵ )T

Ŵ

)
3×4

= 3 ⇔ Ŵ 6= 0 . (3.19)

Thus the solution of (3.18) is given by

x0 = xinhom + s · xhom , s ∈ R , (3.20)

which parameterizes a straight line, but Γ is two-dimensional; the contradiction. �

3.6 The geometry of the nullspaces: visualization

In order to get a feeling for the transformations which lie in the nullspace we show now how the
two-dimensional first quadrant is mapped by infinitesimal conformal transformations (ICT).
The basis for the visualization is a two-dimensional, projected version of (3.11). The only
relevant components in the (x1, x2)-plane are therefore given by8

Q1(x, x) =
(
x2

1 − x2
2

2x1 x2

)
, Q2(x, x) =

(
2x1 x2

x2
2 − x2

1

)
, M̂ =

(
p̂ â
−â p̂

)
, b̂ =

(
b̂1
b̂2

)
.

We plot subsequently the transformation of the first quadrant [0, 1]× [0, 1] under the mapping

x 7→ x+ φ2D
C (x) = x+ k̂1Q1(x, x) + k̂2Q2(x, x) + M̂.x+ b̂ , (3.21)

8For the visualization we drop the out of plane component in Q3.
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Figure 4: Left: Mappings in the nullspace for dev alone. In this case, apart for the
ubiquitous constant translation vector b̂ ∈ R3, we have p̂ 6= 0 but â = 0, k̂1, k̂2 = 0. The
first quadrant is homogeneously scaled with p̂. Here p̂ = 0.5. Right: Mappings in
the symmetric nullspace. Here, the transformation possibilities are encoded by â 6= 0 but
p̂ = 0, k̂1, k̂2 = 0. The first quadrant is homogeneously rotated with infinitesimal rotation
angle â = 0.5. Note that the infinitesimal rotation also leads to a homogeneous increase in
volume which is an artifact of the linear model. In any of these cases, the deformation is
homogeneous only!

for numbers k̂1, k̂2, p̂, â, b̂1, b̂2. The parameter â is the infinitesimal rotation angle, b̂ is a simple
translation and will therefore be neglected, p̂ is the infinitesimal change in length and k̂1, k̂2

parametrize the two-dimensional inhomogeneous infinitesimal special conformal transformations
(ISCT).

In Figure 4 and Figure 5 we show the encoded deformation possibilities. The mappings in
the nullspace for pointwise positive curvature can only shift the first quadrant by the constant
vector b̂ ∈ R3 and are therefore not visualized. Note that this is not the deformation of the
substructure itself, since the transformation corresponds to the axial vector of the infinitesimal
rotation of the substructure, i.e, A(x) = anti(φ(x)), but we use φ to show the transformation.

4 Nullspaces for the indeterminate couple stress problem

The indeterminate couple stress problem [21, 15] is characterized by the identification 1
2 curlu =

axlA = φ which can be formally obtained from the genuine Cosserat model by setting µc =∞.
Since here the infinitesimal microrotations A cease to be an independent field the model has the
advantage of conceptional simplicity and improved physical transparency.9 We can completely
characterize what type of displacement u does not induce curvature energy for the different
curvature cases. This allows to us to understand what kind of ”torsional spring analogy” may
be implied by the respective curvatures. Let us recall this Koiter-Mindlin model, for simplicity
without external loads.

4.1 The indeterminate couple stress model

For the displacement u : Ω ⊂ R3 7→ R3 we consider the one-field minimization problem

I(u) =
∫

Ω

Wmp(∇u) +Wcurv(∇ curlu) dV 7→ min . w.r.t. u,

under the constitutive requirements and boundary conditions

Wmp(ε) = µ ‖ sym∇u‖2 +
λ

2
tr [sym∇u]2 , u|Γ = ud ,

Wcurv(∇ curlu) =
γ + β

8
‖ sym∇ curlu‖2 +

γ − β
8
‖ skew∇ curlu‖2 . (4.1)

In this limit model, the curvature parameter α, related to the spherical part of the (higher order)
couple stress tensor m remains indeterminate, since tr [∇φ] = Div axlA = Div 1

2 curlu = 0. A
motivation for this model in a finite-strain, multiplicative elasto-plastic context has been given

9At the prize of being a fourth order boundary value problem.
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Figure 5: Mappings in the conformal nullspace. Finally, in the conformal case we can vary
â, p̂, k̂1, k̂2. We plot the transformation of the first quadrant that does not induce curvature
energy. If k̂2

1 + k̂2
2 > 0, then the first quadrant is inhomogeneously transformed. Clock

wise: homogeneous rotation and scaling with p̂ = 0.2, â = 0.5, inhomogeneous mapping â =
0, p̂ = 0.6, k̂1 = 0.2, k̂2 = 0.4 and â = 0, p̂ = 0.6, k̂1 = 0.8, k̂2 = 0.4. The effect of the
curvature energy is to introduce, in addition to the always present arbitrary fine-scale, size-
independent response of linear elasticity a certain additional ”coarse grid”-interaction term
with long range structure. The interaction strength of which is proportional to Lc. For the
conformal curvature energy, the conformal mappings are therefore ”coarse grid” interaction
free, while in the previous cases, only homogeneous deformations are ”coarse grid” interaction
free. Remark that the above mappings are not entirely energy free: they only induce local linear
elastic energy. In other words, the conformal mapping is moment free but inhomogeneous. Since
the conformal mapping is inhomogeneous but nevertheless represents a certain long range order
the constitutive hypothesis of zero ”coarse grid” interaction is not altogether unreasonable.

recently in [9]. Following [15], it is practically always assumed that −1 < η := β
γ < 1 in order

to guarantee uniform positive definiteness [3]. For the conformal case, we use, on the contrary
β
γ = 1, which makes the couple stress tensor symmetric and trace free. The curvature free
displacements u are, by definition, those displacements that ”survive” in the limit of internal
length scale Lc →∞ (i.e. γ + β →∞, γ − β →∞).

4.2 Curvature free displacement for pointwise positive curvature

This is the case where, formally, γ + β, γ − β > 0. Here, from ‖∇ curlu‖ = 0 it must hold for a
given constant vector b̂ ∈ R3, see (3.1)

1
2

curlu = axlA(x) = b̂ ⇒ curlu = 2 b̂ ⇒ u(x) = ∇ζ(x) + anti(̂b).x+ ξ̂︸ ︷︷ ︸
infinitesimal rigid movement

, (4.2)

We find the solution in the form u = uhom + uspec. The homogeneous solution curluhom = 0 is
uhom = ∇ζ + ξ where ζ : R3 7→ R is a scalar potential and ξ̂ ∈ R3 is another constant vector.
One special solution of curlu = 2 b̂ is given by uspec = anti(̂b).x since curlu = 2 axl(skew∇u).
Altogether, the displacement gradient follows as

∇u(x) = D2ζ(x) + anti(̂b) . (4.3)

Hence, in the elastic energy only the symmetric part appears with energy

µ ‖ dev sym∇u(x)‖2 +
K

2
tr [∇u(x)]2 = µ ‖devD2ζ(x)‖2 +

K

2
tr
[
D2ζ(x)

]2
. (4.4)

Thus only the irrotational part contributes to the elastic energy and for Lc →∞ and−1 < η < 1
the limit variational problem reduces to a second order energy on a scalar potential ζ.

4.3 Curvature free displacement for dev-curvature

Here, we consider the first subcase 1.1. Looking at (3.3) and using the identification 1
2 curlu =

axl(A) = φ we obtain for a given constant vector b̂ ∈ R3 and a given constant number p̂

curlu = p̂ x+ b̂ ⇒ u(x) = ∇ζ(x) + anti(̂b).x+ ξ̂ , (4.5)

13



where ζ : R3 7→ R is a scalar potential and ξ̂ ∈ R3 is another constant vector. This case
coincides with the previous one! To see this, consider

curlu = p̂ x+ b̂ ⇒ 0 = Div curlu(x) = Div[p̂ x] = tr [∇[p̂ x]] = tr [p̂ 11] = 3 p̂ . (4.6)

Thus, p̂ must be zero and we are back in the previous case.

4.4 Curvature free displacement for symmetric curvature

Here, for a given constant vector b̂ ∈ R3 and a given constant skew-symmetric matrix A ∈ so(3)
we must have (see (3.5))

curlu = Â.x+ b̂ ⇒ u(x) = ∇ζ(x) + P2(x) + anti(̂b).x+ ξ̂ , (4.7)

where ζ : R3 7→ R is a scalar potential, ξ̂ ∈ R3 is another constant vector and P2 : R3 7→ R3 is
a homogeneous polynomial of second order such that

curlP2(x) = Â.x . (4.8)

A simple calculation confirms the (for us at first surprising) result that for some constant vector
η̂ ∈ R3, depending on the entries of Â ∈ so(3), the polynomial P2 can be chosen as

P2(x) = 2〈η, x〉x− η ‖x‖2 . (4.9)

To see this, we compute the total differential of P2 for h ∈ R3

DP2(x).h = 2 〈η, h〉x+ 2 〈η, x〉h− 2 η 〈x, h〉 = 2 (x⊗ η + 〈η, x〉 11− η ⊗ x) .h
= 2 (2 skew(x⊗ η) + 〈η, x〉 11) .h ⇒

∇P2(x) = 2 (2 skew(x⊗ η) + 〈η, x〉 11)
curlP2(x) := 2 axl(skew∇P2) = 8 axl(skew(x⊗ η)) = 4 η̂ × x = 4 anti(η̂).x , (4.10)

where we have used, in this order of appearance, that curlu = 2 axl(skew∇u) and axl(skew(a⊗
b)) = − 1

2 a× b and axl(A)× x = A.x. Therefore, choosing η̂ = 1
4 axl(Â) shows the claim. The

polynomial P2 is nothing else than the infinitesimal special conformal transformation (ISCT).10

Regarding (4.7) we may always subsume the scalar potential to be given in the form ζ+ bp
2 ‖x‖

2

by misuse of notation for ζ. Thus, the curvature free displacements in the indeterminate couple
stress theory with symmetric curvature (symmetric moment stresses) are of the form

u(x) = ∇ζ(x) +
1
2

(
2〈axl(Ŵ ), x〉x− axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x+ b̂︸ ︷︷ ︸

infinitesimal conformal mapping

, (4.11)

with arbitrary constant terms Ŵ , Â ∈ so(3), b̂ ∈ R3 and p̂ ∈ R. The corresponding displacement
gradient is given by

∇u(x) = D2ζ(x)︸ ︷︷ ︸
∈Sym(3): irrotational

+ [〈axl(Ŵ ), x〉+ p̂] 11 + anti(Ŵ .x) + Â︸ ︷︷ ︸
conformal derivative

. (4.12)

Hence, in the elastic energy of the formal limit problem Lc = ∞ only the symmetric part
appears with energy

µ ‖D2ζ(x) + sym∇P2(x)‖2 +
λ

2
tr
[
D2ζ(x) +∇P2(x)

]2
(4.13)

= µ ‖ dev sym(D2ζ(x) +∇P2(x))‖2 +
2µ+ 3λ

6
tr
[
D2ζ(x) +∇P2(x)

]2
= µ ‖ devD2ζ(x)‖2 +

K

2
tr
[
D2ζ(x) + [〈axl(Ŵ ), x〉+ p̂] 11

]2
.

Assuming the formal limit case of zero bulk-modulus K = 0, the elastic energy consists only of
µ ‖ devD2ζ‖2.

10Thus, the infinitesimal special conformal transformations φ can be equivalently characterized through the
condition curlφ = bA.x for arbitrary bA ∈ so(3)!
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4.5 Curvature free displacement for conformal curvature

Here, we must have curlu = φ, where φ : R3 7→ R3 is just an infinitesimal conformal mapping
(ICT), which is, because of (3.11) given as

φ(x) =
1
2

(
2〈axl(Ŵ ), x〉x− axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x+ b̂ ,

∇φ(x) = [〈axl(Ŵ ), x〉+ p̂] 11 + anti(Ŵ .x) + Â , (4.14)

where Ŵ , Â ∈ so(3) and b̂ ∈ R3 and p̂ are given constants. Consider

0 = Div curlu = Div φ = tr [∇φ] = 3 [〈axl(Ŵ ), x〉+ p̂] ⇒

∀x ∈ R3 : −p̂ = 〈axl(Ŵ ), x〉 . (4.15)

The last equation determines x to lie on a plane with normal axl(Ŵ ) but x ∈ R3 is arbitrary.
Since p̂ and Ŵ are both constant, they must therefore vanish. Hence, curlu = Â.x+b̂. Thus, the
conformal case is indistinguishable from the symmetric case as far as the formal limit Lc =∞
is concerned in the indeterminate couple stress problem.

4.6 Curl-operator and infinitesimal conformal functions

Let us note a remarkable property concerning the curl-operator and infinitesimal conformal
functions (ICT). We have

Lemma 4.1 (Infinitesimal conformal functions are closed under curl)
Let φ ∈ ICT be given. Then curlφ = Â.x+ b̂ ∈ ICT for some constant skew-symmetric matrix

Â ∈ so(3) and some constant vector b̂.

Proof. We have derived a complete characterization of infinitesimal conformal functions ICT
given in (3.11). With constant terms Ŵ , Â ∈ so(3), p̂ ∈ R, b̂ ∈ R3 they have the form

φ(x) =
1
2

(
2〈axl(Ŵ ), x〉x− axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x+ b̂ ,

∇φ(x) = [〈axl(Ŵ ), x〉+ p̂] 11 + anti(Ŵ .x) + Â . (4.16)

Thus, applying the curl-operator, we obtain

curlφ = 2 axl(skew(∇φ)) = 2 axl(anti(Ŵ .x) + Â)) = 2 [Ŵ .x+ axl(Â)] , (4.17)

so that curlφ is in fact an infinitesimal rigid movement since Ŵ ∈ so(3) and axl(Â) ∈ R3. �

5 Conformal invariance for zero bulk modulus

The infinitesimal conformal invariance of the curvature energy does, however, not imply that the
fully Cosserat coupled problem has this invariance in general. However, infinitesimal conformal
invariance is true in one special formal case: the case of zero bulk modulus. Of course, standard
engineering materials have positive bulk modulus K > 0, which is also necessary for the well-
posedness. Here, we set formally K = 0 but we remark that composite man made materials
may have small K or even K = 0 [16].11 Let us consider linear elasticity as a starting point.

5.1 Conformal invariance in Cauchy elasticity

Considering the free energy of linear, isotropic Cauchy elasticity in the form∫
Ω

µ(x) ‖ dev sym∇u‖2 +
K(x)

2
tr [∇u]2 dx , (5.1)

11http://silver.neep.wisc.edu/ lakes/Poisson.html
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we observe that in the formal limit of zero bulk modulus K = 2µ+3λ
3 = 0 the energy is invariant

under the transformation u 7→ u+φ, whenever φ is an infinitesimal conformal mapping, because

dev sym∇(u+ φ) = dev sym∇u+ dev sym∇φ = dev sym∇u . (5.2)

Since the first, deviatoric term measures only change in shape it does not see those trans-
formations, which, infinitesimally, do not change shape - precisely the infinitesimal conformal
mappings φ ∈ ICT . Thus, for zero bulk modulus K = 0, displacements u which are infinitesi-
mal conformal mappings, see Figure 5, do not contribute to the elastic energy at all on the linear
elastic ”macroscopic level”. A similar conclusion has been reached in [19] for incompressible
isotropic linear elasticity with zero pressure.

5.2 Conformal invariance in Cosserat elasticity

We consider the free energy of linear, isotropic Cosserat elasticity for zero bulk modulus K = 0
in the form∫

Ω

µ ‖dev sym∇u‖2 +
µc
2
‖ curlu− 2 axlA‖2 + µL2

c ‖ dev sym∇ axlA‖2 dx . (5.3)

With our preparation we see now immediately, that this energy is invariant under the transfor-
mation of displacement and microrotations through

(u, axlA) 7→ (u+ φ, axlA+
1
2

curlφ) , (5.4)

for all φ ∈ ICT . The invariance of the first term is clear as in linear elasticity. For the third
term use Lemma 4.1 to note that 1

2 curlφ ∈ ICT . For the second coupling term observe that

curl(u+ φ)− 2[axlA+
1
2

curlφ] = curlu− 2 axlA . (5.5)

5.3 Conformal invariance in indeterminate couple stress theory

We consider at last the free energy of the linear, isotropic indeterminate couple stress theory
for zero bulk modulus K = 0 in the form∫

Ω

µ ‖ dev sym∇u‖2 +
µL2

c

4
‖ dev sym∇ curlu‖2 dx . (5.6)

As before this energy is invariant under the transformation

u 7→ u+ φ , (5.7)

exactly as linear elasticity is for zero bulk modulus.
Surprisingly, therefore, conformal invariance for zero bulk modulus can also be obtained for

the indeterminate couple stress model and the genuine Cosserat model provided we choose the
conformal curvature expression. The line of argument is therefore not, why a model should have
conformal invariance, but to realize that linear elasticity has it on the outset for a certain pa-
rameter range, and, therefore, the hypothesis is not altogether unreasonable that the extended
continuum models should have it as well for the same parameter range! We summarize these
findings in the novel

Postulate I: If an isotropic linear elastic solid (whether it
be linear Cauchy elastic or a more general linear extended
continuum model) with positive bulk modulus is (infinites-
imally) conformally deformed then the elastic energy must
consist only of a purely volumetric term.

In the companion paper [14] we use conformal invariance to obtain inhomogeneous analytical
solutions for boundary value problems in Cosserat elasticity.
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5.4 Universal potential solutions for variable bulk modulus

Consider linear, isotropic Cauchy elasticity with constant shear modulus µ and variable bulk
modulus K(x): ∫

Ω

µ ‖dev sym∇u‖2 +
K(x)

2
tr [∇u]2 dx 7→ min . u

u|Γ(x) = ∇ζ(x) , ζ : R3 7→ R , ∆ζ = 0 , (5.8)

where ζ is a given harmonic function. This problem has a unique solution irrespective of the
variation of the bulk modulus K(x) and the solution is u(x) ≡ ∇ζ(x). We see this from

σ = 2µ dev sym∇u+K(x) tr [∇u]11 = 2µ (sym∇u− 1
3

tr [∇u]11) +K(x) tr [∇u]11

= 2µ sym∇u+ (K(x)− 2µ
3

) tr [∇u]11 = µ (∇u+∇uT ) + (K(x)− 2µ
3

) Div u 11 ,

Div σ = µ∆u+ µ∇Div u+ Div(K(x)− 2µ
3

) Div u 11)

= µ∆u+ µ∇Div u+∇(K(x)− 2µ
3

) Div u)

= µ∆u+∇
(

(µ+ (K(x)− 2µ
3

)) Div u
)

= µ∆u+∇
(

(K(x) +
µ

3
) Div u

)
. (5.9)

For u = ∇ζ we have Div u = ∆ζ = 0. Moreover,

∆u =

∆u1

∆u2

∆u3

 =

∆(∇ζ)1

∆(∇ζ)2

∆(∇ζ)3

 =

∆ζx
∆ζy
∆ζz

 =

(∆ζ)x
(∆ζ)y
(∆ζ)z

 =

0
0
0

 . (5.10)

Thus Div σ = 0 and the boundary conditions are trivially satisfied. It is clear that the same
holds true for the general Cosserat and the indeterminate couple stress problem since by the
appearance of curlu in both models, the term ∇ζ will be annihilated.

We turn this result as well into a novel requirement

Postulate II: If an isotropic linear elastic solid (whether it
be linear Cauchy elastic or a more general linear extended
continuum model) is subject to harmonic gradient Dirichlet
boundary conditions u|Γ(x) = ∇ζ(x) , ζ : R3 7→ R , ∆ζ = 0,
then the unique solution must be given by u(x) ≡ ∇ζ(x).

Remark 5.1
It is tempting to assume that Postulates I and II together would exclude any higher order

derivative dependence other than that on ∇ curlu (or on ∇ axlA in the Cosserat model) in a
higher gradient model. But this is open.

6 Conclusion and open problems

The reduction in Cosserat parameters from six to four was first necessitated by the newly
observed physical principle of bounded stiffness for very small samples. Here we related this
reduction to the conformal invariance of linear Cauchy elasticity for vanishing bulk modulus.
We investigated the curvature null-spaces and showed for both Cosserat and indeterminate
couple stress problem what kind of (quite inhomogeneous) mappings do not contribute to the
curvature energy. This led us to require two new Postulates which can be applied to narrow
down the multitude of constitutive choices for extended continuum models.

Certainly the linear elastic models have a restricted range of applications. Thus it is pressing to
come up with a geometrically exact extension of the conformal curvature expression. Formally,

‖dev symR
T

CurlR‖2M3×3 (6.1)
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is linearization equivalent to the conformal expression ‖ dev sym∇ axlA‖2. But there are many
other expressions like (6.1) having the same linearization. Here, a deeper differential geometric
insight is called for, perhaps in combination with the group of special conformal transformations.
Note finally, that a geometrically exact model based on (6.1) would not be coercive when simul-
taneously putting µc = 0. since from (6.1) it is not clear how to obtain R ∈W 1,2(Ω,SO(3)).
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Notation
Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a smooth subset of ∂Ω with non-
vanishing 2-dimensional Hausdorff measure. For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on R3 with
associated vector norm ‖a‖2R3 = 〈a, a〉R3 . We denote by M3×3 the set of real 3× 3 second order tensors, written
with capital letters and Sym denotes symmetric second orders tensors. The standard Euclidean scalar product
on M3×3 is given by 〈X,Y 〉M3×3 = tr

ˆ
XY T

˜
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉M3×3 .

In the following we omit the index R3,M3×3. The identity tensor on M3×3 will be denoted by 11, so that
tr [X] = 〈X, 11〉. We set sym(X) = 1

2
(XT +X) and skew(X) = 1

2
(X −XT ) such that X = sym(X) + skew(X).

For X ∈ M3×3 we set for the deviatoric part devX = X − 1
3

tr [X] 11 ∈ sl(3) where sl(3) is the Lie-algebra of
traceless matrices. The set Sym(n) denotes all symmetric n × n-matrices. The Lie-algebra of SO(3) := {X ∈
GL(3) |XTX = 11, det[X] = 1} is given by the set so(3) := {X ∈ M3×3 |XT = −X} of all skew symmetric
tensors. The canonical identification of so(3) and R3 is denoted by axlA ∈ R3 for A ∈ so(3). The Curl operator
on the three by three matrices acts row-wise, i.e.

Curl

0@X11 X12 X13

X21 X22 X23

X31 X32 X33

1A =

0@curl(X11, X12, X13)T

curl(X21, X22, X23)T

curl(X31, X32, X33)T

1A . (6.1)

Moreover, we have

∀ A ∈ C1(R3, so(3)) : DivA(x) = − curl axl(A(x)) . (6.2)

Note that (axlA)× ξ = A.ξ for all ξ ∈ R3, such that

axl

0@ 0 α β
−α 0 γ
−β −γ 0

1A :=

0@−γβ
−α

1A , Aij =

3X
k=1

−εijk · axlAk ,

‖A‖2M3×3 = 2 ‖ axlA‖2R3 , 〈A,B〉M3×3 = 2〈axlA, axlB〉R3 , (6.3)

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the application of the matrix A
to the vector ξ and a× b is the usual cross-product. Moreover, the inverse of axl is denoted by anti and defined
by 0@ 0 α β

−α 0 γ
−β −γ 0

1A := anti

0@−γβ
−α

1A , axl(skew(a⊗ b)) = −
1

2
a× b , (6.4)

and

2 skew(b⊗ a) = anti(a× b) = anti(anti(a).b) . (6.5)

Moreover,

curlu = 2 axl(skew∇u) . (6.6)

By abuse of notation we denote the differential Dϕ of the deformation ϕ : R3 7→ R3 by ∇ϕ. This implies a
transposition in certain comparisons with other literature since here (∇ϕ)ij = ∂jϕ

i is understood.
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7 Appendix

7.1 Infinitesimal conformal mappings (ICT) at a glance
Here we gather some useful formulas for infinitesimal conformal mappings. (Needs to be checked)

φC(x) =
1

2

“
2〈axl(cW ), x〉x− axl(cW ) ‖x‖2

”
+ [bp 11 + bA].x+bb ,

∇φC(x) = [〈axl(cW ), x〉+ bp] 11 + anti(cW.x) + bA ,
tr [∇φC(x)] = 3

h
〈axl(cW ), x〉+ bpi ,

skew∇φC(x) = anti(cW.x) + bA ,
sym∇φC(x) = [〈axl(cW ), x〉+ bp] 11 ,

dev sym∇φC(x) = 0 ,

Div φC(x) = tr [∇φC ] = 3
h
〈axl(cW ), x〉+ bpi ,

∇Div φC(x) = 3 axl(cW ) , (7.1)

curlφC(x) = 2 [cW.x+ axl( bA)] =
bbA.x+

bbb ,
∇ curlφC(x) = 2cW ,

curl(curlφC(x)) = 2 axl(skew∇ curlφC(x)) = 4 axl(cW ) ,

∆φC(x) = Div∇φC(x) = ∇Div φC(x)− curl curlφC(x) = − axl(cW ) ,

D2φC(x).h = anti(cW.h) + 〈axl(cW,h〉11 ∈ R 11⊕ so(3) .

For infinitesimal special conformal functions (ISCT) we have thus

φISCTC (x) =
1

2

“
2〈axl(cW ), x〉x− axl(cW ) ‖x‖2

”
,

curlφISCTC (x) = 0 ⇒ φISCTC (x) = 0 ,

Div φISCTC (x) = 0 ⇒ φISCTC (x) = 0 . (7.2)

7.2 Conformal transformations
A conformal transformation (CT) is a continuous invertible mapping preserving the form of infinitesimal fig-
ures. Any conformal map on a portion of Euclidean space of dimension greater than 2 can always be composed
from three types of transformation: a homothetic transformation (uniform dilation), an isometry (rigid rotation
and translation), and a special conformal transformation (SCT), where a ”special conformal trans-
formation” is the composition of a reflection and an inversion on a sphere. Thus, the group of
conformal transformations in spaces of dimension greater than 2 are much more restricted than the planar case,
where the Riemann mapping theorem provides a large group of conformal transformations and where indeed all
holomorphic functions are conformal.

The conformal property may be described in terms of the Jacobean derivative matrix of a coordinate
transformation. If the Jacobean matrix of the transformation is everywhere a scalar times a rotation matrix,
then the transformation is conformal. Thus, the deformation gradient of a conformal mapping satisfies ∇ϕ ∈
R+ SO(3). This implies that infinitesimal shapes of bodies (our unit square for example) are preserved. What
is not preserved, is the size of the body. For more on conformal field theory we refer to [8].12

7.3 Finite special conformal transformations (FSCT)

The inversion on a sphere of a point x ∈ R3 with respect to a sphere with center η ∈ R3 and radius k > 0 is
given by

invη(x) : = η +
k2 (x− η)

‖x− η‖2
=

1

‖x− η‖2
`
η ‖x− η‖2 + k2 (x− η)

´
,

D[invη(x)].h = k2 ‖x− η‖−2

„
11− 2

(x− η)⊗ (x− η)

‖x− η‖2

«
h ⇒ (7.3)

∇ invη(x) = k2 ‖x− η‖−2

„
11− 2

(x− η)⊗ (x− η)

‖x− η‖2

«
| {z }

∈O(3) , det[·]=−1

∈ R+ O(3) .

This is an anti-conformal map, i.e., it preserves angles but the orientation is reversed. Therefore, it needs
to be composed with an orientation reversing map like a reflection at a hyperplane to give rise to a conformal
map. The reflection at a plane through the origin with unit-normal ~n is given by

reflect(x) : = x− 2 〈x, ~n〉~n = Q.x ,

Q = 11− 2~n⊗ ~n , QTQ = 11 , det[Q] = −1 . (7.4)

12In two-dimensions, every Mobius transformation is a conformal map. The group of Mobius-
transformations in dimension two has dimension three. For Mobius-Transformations check:
http://www.youtube.com/watch?v=JX3VmDgiFnY.
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Composing the inversion with this reflection yields

bΦ(x) = reflect(invη(x)) = Q.

„
η +

k2 (x− η)

‖x− η‖2

«
= η +

k2 (x− η)

‖x− η‖2
− 2〈η +

k2 (x− η)

‖x− η‖2
, ~n〉~n , (7.5)

∇[bΦ(x)] = k2 ‖x− η‖−2Q

„
11− 2

(x− η)⊗ (x− η)

‖x− η‖2

«
| {z }

∈O(3) , det[·]=−1

∈ R+ SO(3) ,

which shows that this composition is a conformal map.
In order to see the relation between the infinitesimal special conformal functions (3.13) and the finite

conformal functions (7.5) we consider the conformal map in (7.5) with η = 0, k2 = 1, ~n = ei and expand at ei
with respect to δx ∈ R3. This yields

bΦ(e1 + δx) =
ei + δx

‖ei + δx‖2
− 2〈

ei + δx

‖ei + δx‖2
, ei〉 ei

= ei + δx− 2〈δx, ei〉ei − 2〈δx, ei〉δx+ 4〈δx, ei〉2ei − ‖δx‖2ei + . . . (7.6)

− 2〈ei + δx− 2〈δx, ei〉ei − 2〈δx, ei〉δx+ 4〈δx, ei〉2ei − ‖δx‖2ei + . . . , ei〉ei
= ei + δx− 2〈δx, ei〉ei − 2〈δx, ei〉δx+ 4〈δx, ei〉2ei − ‖δx‖2ei + . . .

− 2 (1 + 〈δx, ei〉 − 2〈δx, ei〉 − 2〈δx, ei〉2 + 4〈δx, ei〉2 − ‖δx‖2 + . . .) ei

= −ei + δx− 2〈δx, ei〉δx+ 4〈δx, ei〉2ei − ‖δx‖2ei
+ 4〈δx, ei〉2ei − 8〈δx, ei〉2ei + 2‖δx‖2ei + . . .

= −ei + δx− 2〈δx, ei〉δx+ ‖δx‖2ei + . . . = −ei + δx−Qi(δx, δx) + . . .

bΦ(e1 + δx) = bΦ(e1) +DbΦ(e1).δx+
1

2
D2bΦ(e1).(δx, δx) + . . . ,

where Qi is given in (3.13).
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