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Existence of minimizersfor a geometrically exact Cosserat solid.

Patrizio Neff*
Fachbereich Mathematik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

We study a geometrically exact Cosserat continuum model. The model is investigated in variational form as a two-field
minimization problem for the deformation ¢ and the independent microrotation R. The elastic energy is assumed to depend
quadratically on the micropolar stretch tensor U and super-quadratically on the curvature £ Depending on the values of
constitutive parameters, existence of minimizers in Sobolev-spaces can be shown.
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1 The finite-strain Cosserat model in variational form

Extended continuum models with additional degrees of freedom of rotational type have been introduced in [2]. Modern
accounts of the theory can be found in [3, 4, 1]. Recently, extended continuum models incorporating length scale effects have
gained renewed attention. These models are used e.g to describe the length scale dependence of plastic yielding.

The mathematical analysis of the corresponding infinitesimal formulations is well-established. We are concerned with a
frame-indifferent finite-strain formulation. In [6] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar

model is introduced. The two-field problem has been posed in a variational setting. The task is to find a pair (¢, R) : 2 C
R3 — R3 x SO(3,R) of deformation ¢ and independent microrotation R minimizing the energy functional 7,

(o, R) = / Wonp (R ¥p) + Weary (B DeR) — () — Ty () dV
Q
—/ My (p)dS — [ Tp(R)dS — min. w.rt. (p,R), 1.1
T's Tc

with the Dirichlet boundary condition of place for the deformation ¢ on T': ¢|. = g4 and various possible alternative
boundary conditions for the microrotations R on T,

Ry, the case of rigid prescription,
R = { polar(Vy), the case of consistent coupling, 1.2)
no condition for Ron T, induced Neumann-type relations for RonT .

The constitutive assumptions on the densities are
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Wonp (U) = pllsym(U — )|[* + pe || skew(D)|I* + 5 tr [sym(TU — 1)*, T=R'F, F =Y,
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A=R'DR:= (}_BTV(Rel), RTV(}_Z.eg),}_ZTV(Reg)) , the third order curvature tensor .

The total elastically stored energy W = Wy, + Weury is quadratic in the micropolar stretch tensor U (first Cosserat
deformation tensor) and possibly super-quadratic in the curvature £ The strain energy W, depends on the deformation
gradient F = Vi and the microrotations R € SO(3,R), which do not necessarily coincide with the continuum rotations
R = polar(F). The curvature energy W, depends moreover on the space derivatives D, R through £ describing the self-
interaction of the microstructure. In general, the micropolar stretch tensor U is not symmetric and does not coincide with the
symmetric continuum stretch tensor U = RTF = +/FTF. By abuse of notation we set || sym g]|? := Ele || sym £]|?
for third order tensors K.

Here  C R? is a domain with boundary Q and T' C 92 is that part of the boundary, where Dirichlet conditions g4, R4 for
deformations and microrotations or coupling conditions for microrotations, are prescribed. I's C 912 is a part of the boundary,
where traction boundary conditions in the form of the potential of applied surface forces Iy are given with T N T's = §.
In addition, ' C 99 is the part of the boundary where the potential of external surface couples II,, are applied with
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I'NnT¢ = 0. On the free boundary 82 \ {I" U I's U '} corresponding natural boundary conditions for (¢, R) apply. The
potential of the external applied volume force is II; and II,, takes on the role of the potential of applied external volume
couples. For simplicity we assume

for the potentials of applied loads with given functions f € L2(Q,R3), M € L?(Q,M3*3) N € L?(Ts,R%), M, €
Lz(rc, M3><3)_

The parameters u, A > 0 are the Lamé constants of classical isotropic elasticity, the additional parameter . > 0 is called
the Cosserat couple modulus. For . > 0 the elastic strain energy density W, (U) is uniformly convex in U. In contrast,
for p. = 0 the strain energy density is merely convex w.r.t. U.

The parameter L. > 0 (with dimension length) introduces an internal length which is characteristic for the material, e.g.
related to the grain size in a polycrystal. The internal length L. > 0 is responsible for size effects in the sense that smaller
samples are relatively stiffer than larger samples. We assume throughout that a5 > 0,6 > 0,7 > 0. This implies the
coercivity of curvature

Weury (8) >t [|8]|17, (1.5)

which is a basic ingredient of the mathematical analysis.

The non-standard boundary condition of consistent coupling ensures that no unwanted non-classical, polar effects may
occur at the Dirichlet boundary T'. It implies for the micropolar stretch that U|F € Sym and for the second Piola-Kirchhoff
stress tensor Sz := F'DpWmp(U) € Sym on T. A linearization of this Cosserat bulk model with p. = 0 for small
displacement and small microrotations completely decouples the two fields of deformation and microrotations and leads to
the classical linear elasticity problem for the deformation. Thinking in the context of an infinitesimal-displacement Cosserat
theory one might have thought that . > 0 is strictly necessary also for a "true” finite-strain Cosserat theory. This is not
the case. The Cosserat couple modulus . has a decisive influence on the mechanical response of the Cosserat solid: For
positive couple modulus . > 0 the response in (inhomogeneous) torsion is markedly stiffer than would be expected from
measurements in (homogeneous) tension only.

Let us present the existence results for the Cosserat model. We state only the obtained results for the case without external
loads. It is shown in [6, 7]:

Theorem 1.1 (Existence for finite-strain elastic Cosserat model with p. > 0) Let  C R3 be a bounded Lipschitz
domain and assume for the boundary data g4 € H'(Q,R®) and Rq € W11tP(Q,SO(3, R)). Then (1.1) with . > 0, gy >
0,p > 1,¢q > 0 and either free or rigid prescription for R on T’ admits at least one minimizing solution pair (p, R) €
HY(Q,R3) x WE1+tP(Q,SO(3, R)). O

Using the extended Korn’s inequality [6, 8] the following has also been shown in [6, 7]:

Theorem 1.2 (Existence for finite-strain elastic Cosserat model with . = 0) Let Q@ C R? be a bounded Lipschitz
domain and assume for the boundary data g4 € H'(9,R®) and Ry € WhtP+a(Q SO(3,R)). Then (1.1) with p. =
0,4 > 0,p > 1,¢q > 1 and either free or rigid prescription for R on I’ admits at least one minimizing solution pair
(¢, R) € H'(Q,R®) x Wh+7+1(Q,50(3, R)). 0
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