The Γ-limit of a finite-strain Cosserat model for asymptotically thin domains and a consequence for the Cosserat couple modulus μ_{c}

Patrizio Neff ${ }^{*}$

Fachbereich Mathematik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

Abstract

We study the behaviour of a geometrically exact 3D Cosserat continuum model for an asymptotically flat domain. Despite the inherent nonlinearity, the Γ-limit of a corresponding canonically rescaled problem on a domain with constant thickness can be explicitly calculated. This "membrane" limit exhibits no bending contributions scaling with h^{3} (similar to classical approaches) but features a transverse shear resistance scaling with h for strictly positive Cosserat couple modulus $\mu_{c}>0$. This result is physically inacceptable for a zero-thickness "membrane" limit model. Therefore it is suggested that the physically consistent value of the Cosserat couple modulus μ_{c} is zero. In this case, however, the Γ-limit looses coercivity for the midsurface deformation in $H^{1,2}\left(\omega, \mathbb{R}^{3}\right)$. For numerical purposes then, a transverse shear resistance can be reintroduced, establishing coercivity.

Copyright line will be provided by the publisher

1 The finite-strain 3D-Cosserat model in variational form

We consider a fully frame-indifferent finite-strain Cosserat [2] formulation on an asymptotically thin domain $\Omega_{h}=\omega \times$ $\left[-\frac{h}{2}, \frac{h}{2}\right]$, where $h>0$ is the characteristic thickness and $\omega \subset \mathbb{R}^{2}$ is the referential midsurface. The two-field Cosserat problem will be introduced in a variational setting. The task is to find a pair $(\varphi, \bar{R}): \Omega_{h} \subset \mathbb{R}^{3} \mapsto \mathbb{R}^{3} \times \mathrm{SO}(3, \mathbb{R})$ of deformation φ and independent microrotation \bar{R} minimizing the energy functional I,

$$
\begin{align*}
I(\varphi, \bar{R}) & =\int_{\Omega_{h}} W(\bar{U})+\mu L_{c}^{p}\left\|D_{\mathrm{x}} \bar{R}\right\|^{p} \mathrm{dV} \mapsto \min . \text { w.r.t. }(\varphi, \bar{R}), \quad \varphi_{\Gamma_{h}}=g_{\mathrm{d}}, \quad \bar{R}_{\left.\right|_{\Gamma_{h}}} \text { free }, \\
W(\bar{U}) & =\mu\|\operatorname{sym}(\bar{U}-\mathbb{1})\|^{2}+\frac{\lambda}{2} \operatorname{tr}[\operatorname{sym}(\bar{U}-\mathbb{1})]^{2}+\mu_{c}\|\operatorname{skew}(\bar{U}-\mathbb{1})\|^{2}, \tag{1.1}\\
\bar{U} & =\bar{R}^{T} \nabla \varphi, \quad \text { non-symmetric Cosserat stretch tensor, },
\end{align*}
$$

$$
\mathrm{D}_{\mathrm{x}} \bar{R}:=\left(\nabla\left(\bar{R} . e_{1}\right)\left|\nabla\left(\bar{R} . e_{2}\right)\right| \nabla\left(\bar{R} . e_{3}\right)\right), \quad \Gamma_{h}=\gamma_{0} \times\left[-\frac{h}{2}, \frac{h}{2}\right],
$$

with Dirichlet boundary condition of place for the deformation φ on a part of the lateral boundary Γ_{h} with $\gamma_{0}: \mathbb{R} \mapsto \partial \omega \subset \mathbb{R}^{2}$ and everywhere Neumann conditions on the Cosserat rotations \bar{R}. The parameters $\mu, \lambda>0$ are the classical Lamé constants of isotropic elasticity, the additional parameter $\mu_{c} \geq 0$ is called the Cosserat couple modulus, whose value is controversial. The parameter $L_{c}>0$ (with dimension length) introduces an internal length which is characteristic for the material, e.g. related to the grain size in a polycrystal. The internal length $L_{c}>0$ is responsible for size effects in the sense that smaller samples are relatively stiffer than larger samples.

In this setting, the variational problem (1.1) admits minimizers for any given thickness $h>0$ and for all $\infty \geq \mu_{c} \geq 0$ ($\mu_{c}=\infty$ formally implies a symmetry constraint). For more information and mathematical existence results concerning this Cosserat bulk model we refer to [7, $6,4,9]$. In the following, we are interested in characterizing the behaviour of minimizers to (1.1) as $h \rightarrow 0$.

2 The rescaled Cosserat model

In order to do so, it is customary to consider a corresponding rescaled problem, i.e. transforming the problem (1.1) on a domain with constant thickness. This is achieved by letting $\Omega_{1}=\omega \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ and defining the rescaled deformations and rotations by $\varphi^{\sharp}(x, y, z):=\varphi(x, y, h z), \quad \bar{R}^{\sharp}(x, y, z):=\bar{R}(x, y, h z)$. The rescaled variational problem reads then

$$
\begin{align*}
& I^{\sharp}\left(\varphi^{\sharp}, \bar{R}^{\sharp}\right)=h \int_{\Omega_{1}} W\left(\bar{U}_{h}^{\sharp}\right)+\mu L_{c}^{p}\left\|\mathrm{D}_{\mathrm{x}}{ }^{h} \bar{R}^{\sharp}\right\|^{p} \mathrm{dV} \mapsto \min . \text { w.r.t. }\left(\varphi^{\sharp}, \bar{R}^{\sharp}\right), \quad \varphi_{\Gamma^{1}}^{\sharp}=g_{\mathrm{d}}^{\sharp}, \quad \bar{R}_{\Gamma^{1}}^{\sharp} \quad \text { free }, \\
& \bar{U}_{h}^{\sharp}:=\bar{R}^{\sharp, T} \nabla^{h} \varphi^{\sharp}, \quad \nabla^{h} \varphi^{\sharp}:=\left(\partial_{x} \varphi^{\sharp}\left|\partial_{y} \varphi^{\sharp}\right| \frac{1}{h} \partial_{z} \varphi^{\sharp}\right) \quad(=\nabla \varphi), \tag{2.1}\\
& \mathrm{D}_{\mathrm{x}}{ }^{h} \bar{R}^{\sharp}:=\left(\nabla^{h}\left(\bar{R}^{\sharp} \cdot e_{1}\right)\left|\nabla^{h}\left(\bar{R}^{\sharp} \cdot e_{2}\right)\right| \nabla^{h}\left(\bar{R}^{\sharp} \cdot e_{3}\right)\right), \quad \Gamma_{1}=\gamma_{0} \times\left[-\frac{1}{2}, \frac{1}{2}\right]
\end{align*}
$$

[^0]and we consider the sequence of variational problems $I_{h}^{\sharp}\left(\varphi^{\sharp}, \bar{R}^{\sharp}\right):=\frac{1}{h} I^{\sharp}\left(\varphi^{\sharp}, \bar{R}^{\sharp}\right)$.

3 The Γ-limit Cosserat "membrane" model

We define the metric space $X=L^{r}\left(\Omega_{1}, \mathbb{R}^{3}\right) \times L^{p}\left(\Omega_{1}, \mathrm{SO}(3, \mathbb{R})\right), r=p^{\prime}=\frac{2 p}{p-2}, p>3$ and note the compact embeddings $H^{1,2}\left(\Omega_{1}, \mathbb{R}^{3}\right) \subset L^{r}\left(\Omega_{1}, \mathbb{R}^{3}\right), W^{1, p}\left(\Omega_{1}, \mathrm{SO}(3, \mathbb{R})\right) \subset L^{p}\left(\Omega_{1}, \mathrm{SO}(3, \mathbb{R})\right)$. The following result has been obtained in [8]. The Γ-limit [3, 1] to the sequence $I_{h}^{\sharp}\left(\varphi^{\sharp}, \bar{R}^{\sharp}\right): X \mapsto \mathbb{R}^{+}$is given by the variational problem (after de-scaling) for the midsurface deformation $m: \omega \subset \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ and the independent microrotation of the plate $\bar{R}: \omega \subset \mathbb{R}^{2} \mapsto \mathrm{SO}(3, \mathbb{R})$:

$$
\begin{align*}
I_{0}(m, \bar{R})= & \int_{\omega} h W^{\text {hom }}(\nabla m, \bar{R})+h \mu L_{c}^{p}\left\|\mathfrak{K}_{s}\right\|^{p} \mathrm{~d} \omega \mapsto \min . \text { w.r.t. }(m, \bar{R}), \\
m_{\left.\right|_{\gamma_{0}}}= & g_{\mathrm{d}}(x, y, 0) \quad \text { simply supported, }, \bar{R}_{\mid \gamma_{0}} \quad \text { free, } \\
W^{\text {hom }}(\nabla m, \bar{R})= & \mu \underbrace{\left\|\operatorname{sym}\left(\left(\bar{R}_{1} \mid \bar{R}_{2}\right)^{T} \nabla m-\mathbb{1}_{2}\right)\right\|^{2}}_{\text {'Intrinsic"shear-stretch energy }}+\mu_{c} \underbrace{\| \text { skew }\left(\left(\bar{R}_{1} \mid \bar{R}_{2}\right)^{T} \nabla m-\mathbb{1}_{2}\right) \|^{2}}_{\text {'Intrinsic"f i rst order drill energy }} \tag{3.1}\\
& +\underbrace{2 \mu \frac{\mu_{c}}{\mu+\mu_{c}}\left(\left\langle\bar{R}_{3}, m_{x}\right\rangle^{2}+\left\langle\bar{R}_{3}, m_{y}\right\rangle^{2}\right)}_{\text {homogenized transverse shear energy }}+\frac{\mu \lambda}{2 \mu+\lambda} \underbrace{\operatorname{tr}\left[\operatorname{sym}\left(\left(\bar{R}_{1} \mid \bar{R}_{2}\right)^{T} \nabla m-\mathbb{1}_{2}\right)\right]^{2}}_{\text {homogenized elongational stretch energy }},
\end{align*}
$$

where we set $\bar{R}_{i}=\bar{R} . e_{i}$. Note that $\frac{2 \mu \mu_{c}}{\mu+\mu_{c}}=\mathcal{H}\left(\mu, \mu_{c}\right), \quad \frac{\mu \lambda}{2 \mu+\lambda}=1 / 2 \mathcal{H}(\mu, \lambda / 2)$, where \mathcal{H} denotes the harmonic mean. This variational limit formulation looses coercivity for the midsurface deformation $m \in H^{1,2}\left(\omega, \mathbb{R}^{3}\right)$ if $\mu_{c}=0$. However, this loss of coercivity is not related to the missing drill-energy contribution but only due to the missing transverse shear term in that case. The proof of this Γ-limit result is first obtained for $\mu_{c}>0$ (in which case equicoercivity for the sequence I_{h}^{\sharp} over X greatly facilitates the task) and thereafter it is shown, that the result remains true also for $\mu_{c}=0$ where, however, one is faced with an unusual loss of equicoercivity of this sequence. For dimensionally reduced Cosserat models based on a formal ansatz we refer to [5] and rerefences therein.

4 A surprising consequence for the Cosserat couple modulus μ_{c}

The Γ-limit describes rigourously the limit of zero-thickness, hence a two-dimensional object. Such a "membrane"-model should neither have bending-resistance (scaling with h^{3}) nor transverse shear resistance, since both effects can only be explained by some remaining small (but finite) thickness. The Γ-limit does not have a bending resistance. The resistance τ against transverse shearing is, however, proportional to $\tau \sim 2 \mu \frac{\mu_{c}}{\mu+\mu_{c}}\left(\left\langle\bar{R}_{3}, m_{x}\right\rangle+\left\langle\bar{R}_{3}, m_{y}\right\rangle\right)$. This strongly suggests that $\mu_{c} \equiv 0$ is the physically consistent value, thus providing us with an answer to the controversy about the value of μ_{c}. From a practical point of view, for the computation of thin structures with a remaining finite thickness $h>0$, one should use the Cosserat Γ-limit model (3.1) with $\mu_{c}=0$ but augment the stretch energy expression $W^{\text {hom }}$ exclusively with some transverse shear contribution. This will restore coercivity for $m \in H^{1,2}\left(\omega, \mathbb{R}^{3}\right)$ and lead to stable computations.

References

[1] A. Braides, Γ-convergence for Beginners (Oxford University Press, Oxford 2002).
[2] E. Cosserat and F. Cosserat, Théorie des corps déformables (A. Hermann et Fils, Paris 1909).
[3] G. Dal Maso, Introduction to Γ-Convergence (Birkhaeuser, Boston 1992).
[4] P. Neff, Existence of minimizers for a geometrically exact Cosserat solid, Proc. Appl. Math. Mech., 4(1), 548-549 (2004).
[5] P. Neff, A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus, Cont. Mech. Thermo., $\mathbf{1 6}(6$ (DOI 10.1007/s00161-004-0182-4)), 577-628 (2004).
[6] P. Neff, A geometrically exact micromorphic elastic solid. Modelling and existence of minimizers, Preprint 2318, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html, submitted to Proc. Roy.Soc. Ed. (2004).
[7] P. Neff, Finite multiplicative elastic-viscoplastic Cosserat micropolar theory for polycrystals with grain rotations. Modelling and mathematical analysis, Preprint 2297, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp03.html, submitted (2003).
[8] P. Neff and K. Chelminski, A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Rigourous justifi cation via Γ-convergence for the elastic plate, Preprint 2365, http://wwwbib.mathematik.tu-darmstadt.de/MathNet/Preprints/Listen/pp04.html, submitted (2004).
[9] P. Neff and S. Forest, A geometrically exact micromorphic model for elastic metallic foams accounting for affi ne microstructure. Modelling, existence of minimizers, identifi cation of moduli and computational results, Preprint 2373, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html, submitted to J. Elasticity (2004)

[^0]: * Corresponding author: e-mail: neff@mathematik.tu-darmstadt.de, Phone: +496151 163495, Fax: +496151 164011

