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The
�

-limit of a finite-strain Cosserat model for asymptotically thin
domains and a consequence for the Cosserat couple modulus ���
Patrizio Neff �
Fachbereich Mathematik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

We study the behaviour of a geometrically exact 3D Cosserat continuum model for an asymptotically flat domain. Despite
the inherent nonlinearity, the � -limit of a corresponding canonically rescaled problem on a domain with constant thickness
can be explicitly calculated. This ”membrane” limit exhibits no bending contributions scaling with ��� (similar to classical
approaches) but features a transverse shear resistance scaling with � for strictly positive Cosserat couple modulus 	�

��� . This
result is physically inacceptable for a zero-thickness ”membrane” limit model. Therefore it is suggested that the physically
consistent value of the Cosserat couple modulus 	 
 is zero. In this case, however, the � -limit looses coercivity for the
midsurface deformation in ����� ����������� � . For numerical purposes then, a transverse shear resistance can be reintroduced,
establishing coercivity.
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1 The finite-strain 3D-Cosserat model in variational form

We consider a fully frame-indifferent finite-strain Cosserat [2] formulation on an asymptotically thin domain !#"%$'&)(*,+ " -/.0" -21 , where 354'6 is the characteristic thickness and &8789 - is the referential midsurface. The two-field Cosserat
problem will be introduced in a variational setting. The task is to find a pair :�; . <>=@? !A"B7'9DCFEGH9�CI(KJMLN:PO . 9 = of
deformation ; and independent microrotation < minimizing the energy functional Q ,

QR:P; . <S= $ T2UWV
X : Y =[Z]\#^`_ acbedgf <hbi_Dj�k EGmlon,prq w.r.t. :�; . <>=s. ;ut v V $%wyx . < t v V free .X : Y = $ \zbg{}| l~: Y +�� � =�b - Z���r�}����{�| l�: Y +�� � =�� - Z]\ a b/{��c�e� : Y +�� � =eb - . (1.1)

Y�$ <#��� ; . non-symmetric Cosserat stretch tensor .d/f <�? $): � : < q �y� =�� � : < q � - =e� � : < q � C =�=g.�� " $��0�>( *,+ 3 � . 3 � 1c.
with Dirichlet boundary condition of place for the deformation ; on a part of the lateral boundary � " with �0� ? 9�EG��M&�7�9 -
and everywhere Neumann conditions on the Cosserat rotations < . The parameters \`. � 4F6 are the classical Lamé constants
of isotropic elasticity, the additional parameter \ a¡  6 is called the Cosserat couple modulus, whose value is controversial.
The parameter ^ a 4�6 (with dimension length) introduces an internal length which is characteristic for the material, e.g.
related to the grain size in a polycrystal. The internal length ^ a 4)6 is responsible for size effects in the sense that smaller
samples are relatively stiffer than larger samples.

In this setting, the variational problem (1.1) admits minimizers for any given thickness 3�456 and for all ¢   \ ah  6
( \ a $£¢ formally implies a symmetry constraint). For more information and mathematical existence results concerning this
Cosserat bulk model we refer to [7, 6, 4, 9]. In the following, we are interested in characterizing the behaviour of minimizers
to (1.1) as 3�G¤6 .

2 The rescaled Cosserat model

In order to do so, it is customary to consider a corresponding rescaled problem, i.e. transforming the problem (1.1) on a
domain with constant thickness. This is achieved by letting !¥�h$�&B( *�+ �- . �- 1 and defining the rescaled deformations and

rotations by ;`¦s:�§ .}¨W.i©0=ª? $«;ª:�§ .}¨W. 3 ©2=s. < ¦ :¬§ .�¨�.}©2=ª? $ < :¬§ .}¨�. 3 ©2= . The rescaled variational problem reads then

Q ¦ :P; ¦ . < ¦ = $«3 T2U�­ X : Y ¦" =[Z]\#^ _ a bed f " < ¦ b _ j®k EG¤lon,pSq w.r.t. :�; ¦ . < ¦ =¯. ; ¦ t v
­ $%w ¦x . < ¦ t v

­
free .

Y ¦" ? $ < ¦�° �r� " ; ¦ .±� " ; ¦ ? $£:P�2²c; ¦ � �2³´; ¦ � �3 �2µ�; ¦ = :�$ � ; =�. (2.1)dgf " < ¦ ? $£: � " : < ¦ q �y� =e� � " : < ¦ q � - =�� � " : < ¦ q � C =�=g.�� �¡$%�0�>( *,+ �� . �� 1
¶
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and we consider the sequence of variational problems Q ¦ " :P;D¦ . < ¦ =u? $ �" Q0¦¯:�;`¦ . < ¦ = .
3 The � -limit Cosserat ”membrane” model

We define the metric space �¤$ ^�� :P! � . 9DC = ( ^ _ :P! � . JRLr:PO . 9 =}=¯.�� $��	�g$ - __�
 - . �I4BO and note the compact embeddings� � ° - : ! � . 9DC = 7 ^
� : ! � . 9�C = , X � ° _ : ! � . JML :�O . 9 =�= 7 ^ _ :P! � . JMLN:PO . 9 =}= . The following result has been obtained in [8]. The� -limit [3, 1] to the sequence Q ¦ " :�;`¦ . < ¦ =ª? �'EG¤9�� is given by the variational problem (after de-scaling) for the midsurface
deformation � ? &�7�9 - EG¤9DC and the independent microrotation of the plate <)? &�7�9 - EG�JRL :�O . 9 = :

Q¯�0:�� . <¥= $ T
� 3 X������ : � � . <#=�Z 3 \/^ a _ b���� b _ j & EGmlon�p>q w.r.t. :�� . <¥=g.

�It ���S$�wyxM:¬§ .�¨�. 6 = simply supported . < t � � free .X������ : � � . <S= $ \�b/{�| l�:�: < � � < - = � � � +�� � - =eb -! "$# %
”intrinsic”shear-stretch energy

ZA\ a bg{}� �e� :}: < � � < - = � � � +�� � - =�b -! "$# %
”intrinsic” first order drill energy

(3.1)

Z � \ \ a\zZ]\ a &(' < C . ��²*) - Z ' < C . �~³+) -�,! "-# %
homogenized transverse shear energy

Z \ �� \hZ � �i� � {}| l~:}: < � � < - = � � � +�� � - = � -! "$# %
homogenized elongational stretch energy

.
��� $/.}: � : < q �´� =e� 6 =¯. : � : < q � - =�� 6 =s. : � : < q � C =e� 6 =�0 reduced third order curvature tensor .

where we set <21 $ < q � 1 . Note that
-�3�3+43 � 3+4 $65I: \`.�\ a =¯. 3+7-�3 � 7 $ ��8 � 5�: \`. � 8 � = , where 5 denotes the harmonic mean.

This variational limit formulation looses coercivity for the midsurface deformation �:9 � � ° - : & . 9 C = if \ a $ 6 . However,
this loss of coercivity is not related to the missing drill-energy contribution but only due to the missing transverse shear term
in that case. The proof of this � -limit result is first obtained for \ a 4�6 (in which case equicoercivity for the sequence Q ¦" over� greatly facilitates the task) and thereafter it is shown, that the result remains true also for \ a $�6 where, however, one is
faced with an unusual loss of equicoercivity of this sequence. For dimensionally reduced Cosserat models based on a formal
ansatz we refer to [5] and rerefences therein.

4 A surprising consequence for the Cosserat couple modulus ;=<
The � -limit describes rigourously the limit of zero-thickness, hence a two-dimensional object. Such a ”membrane”-model
should neither have bending-resistance (scaling with 3gC ) nor transverse shear resistance, since both effects can only be ex-
plained by some remaining small (but finite) thickness. The � -limit does not have a bending resistance. The resistance >
against transverse shearing is, however, proportional to >@? � \ 3+43 � 3+4 . ' < C . ��²*) Z ' < C . �~³A) 0 . This strongly suggests that\ aCB 6 is the physically consistent value, thus providing us with an answer to the controversy about the value of \ a . From
a practical point of view, for the computation of thin structures with a remaining finite thickness 3K4)6 , one should use the
Cosserat � -limit model (3.1) with \ a $F6 but augment the stretch energy expression

X �����
exclusively with some transverse

shear contribution. This will restore coercivity for �D9 � � ° - :¬& . 9DC = and lead to stable computations.
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