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11  
 When nature does the same, she 

generally uses cellular materials; wood, bone, coral. There must be 

                                                                                          M .F. Ashby 

Introduction 
When modern man builds large load-bearing structures, he uses 
dense solids; steel, concrete, glass.

good reasons for it. 
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1.1 Cellular solids 

Natural materials, such as wood, cork and cancellous bone, and man-made materials 
such as metal honeycombs and foams, are well-known examples of cellular solids. 
Common to all of them is a microstructure consisting of an interconnected network of 
struts (open cells) or plates (closed cells). Figure 1.1.a-c show three examples of 
cellular solids, namely, a hexagonal honeycomb, an open and a closed cell foam, 
respectively. 
 
 
 
 
 
 
 
                                  
                                   (a)                                                            (b) 
 

 
 
 
 
 
 
                                                                     
                                                       (c)                                                                                              

 
Figure 1.1: Examples of cellular solids: (a) Aluminium honeycomb. (b) Open cell polyurethane 
foam. (c) Closed cell polyethylene foam. (Reproduced, with permission, from Gibson and Ashby 
[1997]).                                                                               
                                             

Theoretical attempts to understand the geometry and the fundamental 
principles of the mechanics of cellular solids dates back to the celebrated 
geometrician Leonard Euler (see De Boor [1998]).  Since then, a large literature 
developed on the geometric, mechanical, thermal and electrical characteristics of 
these solids. An extensive record on the structure and the properties of cellular solids 
is given by Gibson and Ashby [1997]. In this thesis, we focus on the mechanics of 
metal honeycombs and foams, yet, most of our conclusions are applicable to other 
cellular solids as well. 
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 The high specific bending stiffness is an important structural property, which, 
among others, has made metal foams a competitive engineering material in the last 
decades. They are often used in sandwich panels, where they are laminated between 
two dense solids to increase the moment of inertia, owing to their low density and 
good shear and fracture strength. Their damping capacity is up to 10 times that of the 
solid metals, and they have exceptional ability to absorb energy at almost constant 
strain, which makes them attractive for impact absorption systems. Open cell foams, 
with a large accessible surface area, have a very good heat transfer ability. A more 
extensive list of multifunctional features and application areas for a number of 
commercially available metal foams are given by Ashby et al. [2000]. Metal foams 
have already a profitable market, which is growing rapidly due to the improvements 
in the production technology and engineering design. 

1.2 Objective 

The mechanical properties of metal foams (and other cellular solids) depend on the 
properties of the metal that they are made from, on their relative density, and on the 
cell topology (i.e., cell size, cell shape, open or closed cell morphology, etc.). The cell 
size of commercially available metal foams is about 1 to 10 mm.  This is on the order 
of the smallest structural length of specimens in many applications. In such cases, the 
individual response to a load differs significantly from one cell to another, and the 
fundamental assumption of the classical continuum theory that the (physical, 
chemical, mechanical, etc.) properties of a material are uniformly distributed 
throughout its volume fails. Another situation where the classical continuum theory 
loses its accuracy is when the characteristic wavelength of loading is comparable to 
the cell size. An important technological consequence of this is the occurrence of size 
effects. The term "size effect" designates the effect of the macroscopic (sample) size, 
relative to the cell size, on the mechanical behaviour. In the last decade evidence of 
this appeared in a number of experimental studies (see section 1.4). To theoretically 
account for size effects, one may take the cellular morphology into account by 
discretely modelling each cell wall and/or cell face. This allows for an accurate 
representation of the microstructural deformation mechanisms, the bending and 
stretching of cell walls and faces. Such a microstructural model can predict how the 
overall (macroscopic) response is related to the microstructural parameters. In view of 
size effects, the most important feature is that it incorporates, in a physically sound 
manner, the material length scale in the problem, i.e. the cell size. However, such a 
discrete model can become computationally expensive for complex (random) 
microstructures, especially in three dimensions. Another approach is to use a 
generalized continuum theory in which many microstructural details are averaged out, 
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but in which a "characteristic" length scale is retained. The goal of this thesis is 
twofold:  
1) To explore the microstructural mechanisms that are responsible for the size-
dependent elastic behaviour of cellular solids by using a discrete microstructural 
model. 
2) To assess the capability of generalized continuum theories to capture size effects 
through a careful comparison with the discrete simulations. 

In section 1.3, we give a historical overview of generalized continuum 
theories. We discuss two of them in more detail, Eringen’s micropolar theory and 
Toupin-Mindlin’s strain gradient elasticity. In section 1.4, we summarize the 
experimental work performed to detect the size effects in the mechanics of cellular 
solids. Finally, in section 1.5, we outline the contents of this thesis.  

1.3 Generalized continuum theories: a historical overview  

A natural generalization of the classical continuum theory is to model the interaction 
between two material points, not only via a force vector, but also via a couple vector. 
The origin of this evolution can be traced back to the early Euler-Bernoulli beam 
theory, where the displacement and the rotation vectors are independent kinematic 
quantities, and the usual force tractions and couples are independent internal loads. 
The idea of having independent couple-stresses in an elastic continuum is further 
explored by several scientists in the 18’th century (MacCullagh (1839), Lord Kelvin 
(1882, 1884, 1890), Voigt (1887))1. In 1909, E. and F. Cosserat (the Cosserat 
brothers) developed a (non-linear) theory of elasticity for bars, surfaces and bodies; 
they introduced a “rigid triad” at every material point of the continuum, which can 
rotate independently from the local rotation of the medium in the course of 
deformation (Cosserat and Cosserat [1909]). By this way, a “Cosserat continuum” 
fully accounts for the effects of couple stresses in the deformation of an elastic 
continuum. In their work, however, the Cosserat brothers did not give any specific 
constitutive relations.  

The work of the Cosserat brothers did not get the attention it deserved for a 
long time. In the early 1960s, the subject of the theory of elasticity with couple 
stresses is reopened and Cosserat-type theories are discussed independently by several 
authors. Among them, Grioli [1960], Rajagopal [1960], Truesdell and Toupin [1960], 
Aero and Kuvshinskii [1961], Eringen [1962], Mindlin and Tiersten [1962] and 
Koiter [1964] investigated a special case of the Cosserat continuum theory where the 
rotation of the rigid Cosserat triad is not an independent kinematic variable but is 
defined in the usual sense as given in classical elasticity and fluid dynamics. In the 

 
1 See Cosserat and Cosserat [1909] and the references therein. 
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literature, this theory is referred to with a variety of names, such as, “Cosserat theory 
with constrained rotation” (e.g. Toupin [1964]), “Couple stress theory” (e.g. Koiter 
[1964]), “Indeterminate couple stress theory” (e.g. Eringen [1968]), “Cosserat 
pseudo-continuum” (e.g. Nowacki [1986]), or simply as “Cosserat theory” (e.g. Mora 
and Waas [2000]). In the following, we will refer to it as the couple stress theory (see 
Table 1.1). In the couple stress theory, only the gradient of the rotation vector enters 
into the strain energy density function, that is, eight of the eighteen components of the 
first gradient of strain. Subsequently, all the components of the first gradient of the 
strain were introduced into the strain energy density function, in a non-linear form, by 
Toupin [1962, 1964]). This theory is referred to as the “strain gradient theory” in the 
literature. The linear version of the strain gradient theory was given by Mindlin 
[1964]. Green and Rivlin [1964] established the basis of a very general case including 
all higher-order gradients of the strain, referred to as the “multipolar” theory. Mindlin 
[1965] derived a theory where both the first and the second gradient of the strain are 
taken into account, termed the second strain gradient theory, which is a special case of 
the multipolar theory. All these theories, associating energy to the spatial gradients of 
strain, are referred to in the literature as “higher grade theories” (see Table 1.1).  

Another way of extending classical elasticity to include the effects of the 
deformations of the underlying microstructure is by inserting new degrees of freedom 
into the continuum. These degrees of freedom are specified to be independent from 
the usual displacement degrees of freedom. These kinds of theories can be referred to 
as “higher order theories” (see Table 1.1). The (non-linear) micromorphic theory, 
introduced by Eringen and Şuhubi [1964], and the (linear) micro-structure theory of 
Mindlin [1964] fall into this category. The linear form of the micromorphic theory 
(see Eringen [1999]) coincides with the micro-structure theory of Mindlin. In the 
micromorphic theory, a material point possesses three deformable directors that 
introduce nine additional degrees of freedom, ψ ij, which are strain-like dimensionless 
quantities. This corresponds to a “micro-element” embedded in the continuum that 
can rotate and deform independently from the local deformation of the “macro-
element” (material particle), in the language of Mindlin. Two special cases of the 
micromorphic theory are the microstretch (Eringen [1971, 1990]) and the micropolar 
(Eringen [1965, 1966]) theories. In the microstretch continuum, there are four 
additional degrees of freedom: three for the rotation (φ i) and one for the stretch (χ ) of 
the directors. In the case of the micropolar continuum, the directors are rigid and there 
are only three rotational degrees of freedom (φ i) in addition to the three classical 
displacement degrees of freedom. If the directors are taken to be fully coupled to the 
material point, the rotational degrees of freedom of the micropolar theory become 
equal to the classical rotations, φ k =∈ ijk u j,i/2, and the micropolar theory reduces to 
the couple stress theory. As can be observed from Table 1.1, the couple stress theory 
is a special case of strain gradient theory as well. Another connection between the 
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higher order and higher grade theories is that the micromorphic theory reduces to the 
strain gradient theory if ψ ij are defined to be equal to the gradient of displacement u i,j, 
for which case the micro-medium merges with the macro-medium.   

In the last few decades, a huge literature has been built up on the topic of 
generalized media, including elasto-plastic higher order/grade continuum theories (see 
e.g., Aifantis [1987], Fleck and Hutchinson [1993, 1997, 2001], Forest and Sievert 
[2006], etc.). The references listed here are by no means complete, but they point out 
the main directions followed in the field of generalized continuum theories. Table 1.1 
summarizes (some of) the higher order/grade continuum theories and the contacts 
among them. Starting point for the higher order and the higher grade theories in this 
thesis are Eringen’s micropolar theory and Toupin-Mindlin’s strain gradient elasticity. 
Therefore, we will briefly state the fundamentals of these theories in the following 
subsections. 

1.3.1 Theory of micropolar elasticity 
In this section we will review the fundamental equations of the linear micropolar 
continuum. For a more general account of the theory, the reader is referred to Eringen 
[1999]. Note that the names micropolar theory and Cosserat theory are used 
interchangeably by many authors in the literature.  

The kinematic description of the micropolar theory includes the microrotations 
φ i as independent degrees of freedom in addition to the usual displacements u i (see 
Table 1.1). Consequently, the transfer of loading between neighbouring material 
points is achieved both through the couple stresses m ij and the classical Cauchy 
stresses σ ij. In the absence of body forces and body couples, the equilibrium equations 
of the micropolar theory are given as 

 

 ,

,

0,

0,
ji j

ji j ijk jkm

σ

σ

=

+∈ =
 (1.1) 

 
where ∈ ijk is the antisymmetric Levi-Civita permutation tensor. Equation (1.1) 
implies that the Cauchy stress tensor σ ij is not necessarily symmetric and its 
antisymmetric part is determined by the divergence of the couple stress tensor m ij. 
The principal of virtual work reads 
 
  (1.2) ( ) d (  ij ij ij ij i i i i

V S

m k V t u Q Sσ δγ δ δ δφ+ = +∫ ∫ ) d ,

 
where t i  is the surface traction, and Q i is the surface couple. The boundary conditions 
to be specified on the bounding surface S of a micropolar solid are 
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Table 1.1 
Higher order/grade continuum theories and the contacts among them.  
                                                                 

 

Micromorphic (Micro-structure) Theory
DOF: u i, ψ ij      
DM:  γ ij = u j,i −ψ ji, 2e ij = ψ ij +ψ ji, 
        η ijk = ψ ij,k  

Microstretch Theory 
DOF: u i, φ i, χ     
DM:  γ ij = u j,i −∈ kij φ k, k ij = φ j,i 

        β i = 3χ ,i , κ = 3χ  

Micropolar Theory 
DOF: u i, φ i

DM:  γ ij = u j,i −∈ kij φ k, k ij = φ j,i 

Multipolar Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i, 

              η ijkl = ε kl,ij, η ijklm = ε lm,ijk … 
          (all the gradients of strain)

Second Strain Gradient Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i, 

              η ijkl = ε kl,ij

Strain Gradient Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i

Couple Stress Theory 
DOF: u i      
DM: 2ε ij = u j,i + u i,j, 2k ij = ∈ klj u l,ki   
(note that k ii = 0)

Classical Continuum Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j

Higher order theories        Higher grade theories       

ψ ij = u j,

φ k =∈ijk uj,i/2 

DOF: degree of freedom, DM: deformation measure, 
ψ ij: degree of freedom tensor for the deformable triad (micro-element), 
u i: displacement vector, φ i:  rotation vector for the rigid triad 
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*

 
* *

*

 or   = , 

 or  = ,
j ji i i i

j ji i i i

n t u u

n m Q

σ

φ φ

=

=
 (1.3) 

 
here n j is the unit outward normal to the surface S, and * denotes a prescribed 

 

w
quantity on the surface. The (small) strain tensor γ ij and the curvature tensor k ij are 
defined as  
 

,

,

,

.
ij j i kij k

ij j i

u

k

γ φ

φ

= −∈

=
 (1.4) 

 
e can decompose the Cauchy stresses and strains into their symmetric and W

antisymmetric parts 
 
 and ,ij ij ij ij ij ijsσ τ γ ε β= + = +  (1.5) 

here 
  
w
 

, ,
1 1 1( ) ( ) and ( ) (  
2 2 2ij ij ji j i i j ij ij ji ijk k ku uε γ γ β γ γ ω φ= + = + = − =∈ − ).  (1.6) 

 
ote that the antisymmetric part of the strain β ij is related to the difference between 

ergy density 
functio

 

N
the classical macrorotations ω k = (∈ ijk u j,i)/2 and the microrotations φ k. 

For a linear elastic, anisotropic micropolar solid, a strain en
n (i.e. including only the quadratic terms in the kinematic variables) can be 

given as 
 

1 1( , )
2 2ij ij ijkl ij kl ijkl ij kl ijkl ij klw k C B k D k kγ γ γ γ= + + .  (1.7) 

 
n (1.7) the linear terms in γ ij and k ij are omitted to have zero stress in the undeformed I

state. Note that k ij is a pseudo-tensor (i.e., a tensor whose components reverse sign 
under an inversion of the coordinate system); to be able to have an objective strain 
energy density w, the tensor B ijkl must be a pseudo-tensor as well. The independence 
of the stiffness coefficients of a medium with respect to an inversion of the coordinate 
system is called central symmetry, in which case B ijkl vanish and the constitutive 
equations read  
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,ij ijkl kl
ij

w Cσ γ
γ
∂

= =
∂

 

 ,ij ijkl kl
ij

wm D
k

k∂
= =
∂

 (1.8) 

 
where the fourth order stiffness tensors C ijkl and D ijkl  possess the symmetries  
 
  and  .ijkl klij ijkl klijC C D D= =  (1.9) 

 
For the case of an isotropic material, C ijkl and D ijkl are isotropic tensors, and the 
constitutive equations read (see e.g. Nowacki [1986])  
 

 

( ) ( )

( ) ( ) ,

ij ij ji kk ij
ij

ij ij ji kk ij
ij

w

wm k k
k

,

k

σ µ α γ µ α γ λγ δ
γ

ξ υ ξ υ ρ δ

∂
= = + + − +
∂

∂
= = + + − +
∂

 (1.10) 

 
where δ ij is the Kronecker-delta. Equation (1.10) shows that the micropolar theory has 
four new constants, α, ξ, υ, and ρ in addition to the classical Lamé constants, λ and µ. 
The requirement of positive definiteness of the strain energy density places some 
restrictions on the micropolar constants: 
 

 
0,   3 2 0,   0,    3 2 0,

0,   0,   0,   0. 
µ λ µ ξ ρ ξ
µ α ξ υ α υ
> + > > + >
+ > + > > >

 (1.11) 

 
If the microrotations φ i are constrained to be equal to the macrorotations ω i, the 
micropolar theory reduces to the couple stress theory. This corresponds to the case 
α→∞, for which the antisymmetric part of the strain tensor, β ij, and the spherical part 
of the curvature tensor, k ii, go to zero. Consequently, the antisymmetric part of the 
Cauchy stress, τ ij, and the first invariant of the couple stress, m kk, disappear from the 
virtual work principle, as well as from the constitutive equations:  
 

  (1.12) 
2 ,

( ) ( )
ij kk ij ij

ij ij ji

s

m k

λε δ µε

ξ υ ξ υ

= +

= + + − .k

 
The first invariant of the couple stress, m kk, remains indeterminate in the theory, and it 
is taken to be equal to zero (see Koiter [1964]). The antisymmetric part of the Cauchy 
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stress, τ ij, can still be obtained from the equilibrium equations (see Eq. 1.1).  For a 
discussion of the couple stress theory, the reader is referred to Koiter [1964].      

1.3.2 Strain gradient elasticity 
In this section we will review the fundamental equations of the strain gradient 
elasticity. For a more general account of the theory, the reader is referred to Mindlin 
[1964]. 

The kinematic variables in the strain gradient elasticity theory are given as  
 

 , ,

,

1 ( ) strain tensor,
2

strain gradient tensor.

ij j i i j

ijk jk i ikj

u uε

η ε η

= + =

= = =
 (1.13) 

 
The strain energy density function, for a linear elastic, isotropic strain gradient 
material with central symmetry can be written as 
 

 1 2

3 4 5

( , )
2

                  .

ij ijk ii jj ij ij iik kjj ijj ikk

iik jjk ijk ijk ijk kji

w a

a a a

λ aε η ε ε µε ε η η η

η η η η η η

= + + +

+ + +

η
 (1.14) 

 
Note that the eighteen additional kinematic variables in the strain energy density 
function, η ijk, can be defined in three different forms: I, the eighteen components of 
the second gradient of displacement; II, the eighteen components of the first gradient 
of strain; III, the eight components of the first gradient of the rotation and the ten 
components of the fully symmetric part of the second gradient of the displacement (or 
of the gradient of the strain) as shown by Mindlin [1964]. The one that we show here 
corresponds to the second form.  

The constitutive equations (for the second form) are given as  
 

 1 2

3 4 5

2 ,

1 ( 2 ) 2
2

     ( ) 2 ( ).

ij kk ij ij
ij

ijk ij kpp jk ppi ki jpp jk ipp
ijk

ij ppk ik ppj ijk kij jki

w

w a a

a a a

σ λε δ µε
ε

τ δ η δ η δ η δ η
η

δ η δ η η η η

∂
= = +
∂

∂
= = + + +
∂

+ + + + +

 (1.15) 

 
In (1.15) the constants a 1 to a 5 are new material parameters with dimensions of force, 
σ ij are the classical Cauchy stresses and τ ijk are the so-called double stresses, with 
dimensions force per unit length. The positive definiteness of the strain energy density 
requires (see Mindlin and Eshel [1968])  
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 1 2 1 2
2

1 2 1 2 1 2

0,   3 2 0,   ,    0,

 5 2 0,   5 6( )(5 2 ),

d d d a

a a f d d a a

µ λ µ> + > − < < >

+ > < − +
 (1.16) 

 
where 
 

 
1 1 2 3 4 5

2 1 2 3 1 1 2 3

2 4 5 1 2 3

18 2 4 6 3 ,

18 2 4 ,   3 2( ),

,   3 4 2 .

d a a a a a

d a a a a a a a

a a a f a a a

= − + + + −

= − − = + +

= + = + −

 (1.17) 

 
The principal of virtual work for a volume V bounded by a smooth surface S, in the 
absence of body forces, reads 
 
  (1.18) ( ) d (  ij ij ijk ijk j j j j

V S

V t u r Du dσ δε τ δη δ δ+ = +∫ ∫ ) S,

 
where t j  and r j are the surface traction and the surface double traction, respectively, 
on the surface S. The equilibrium equations and the boundary conditions are 
 
 , , 0,jk j ijk ijσ τ− =  (1.19) 

 
and 
 

  (1.20) 
* *

,

* *

( ) ( ) ( )   or  = ,

  or  = ,
j jk ijk i j i ijk l l i j ijk k k k

i j ijk k k k

n D n D n n n t u

n n r Du Du

σ τ τ τ

τ

− − + =

=

u

 
where n j is the unit outward normal to the surface S. For a certain combination of the 
higher grade material constants, the strain gradient theory reduces to the couple stress 
theory: 
 

 1 2 3

4 5

,   ,   ,
2

,   .

a a a

a a
2

ξ υ ξξ υ

ξ ξ

υ− −
→ − → − → −

→ →−
 (1.21) 

1.4 A brief summary of experiments on size effects 

A considerable amount of experiments have been performed to capture the size effects 
in the mechanical behaviour of cellular solids. In this section, we will visit some of 
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these studies, which establish the experimental basis and an important motivation for 
this thesis. 

The first experiments associated with size effects, to the knowledge of the 
author, were performed in the mid 1960s to obtain the couple stress constants of 
conventional engineering dense solids, such as aluminium and steel. Schijve [1966] 
measured the bending rigidity of aluminium sheets, but could not observe any size 
effects, as opposed to the couple stress theory which predicts an enhanced bending 
rigidity with decreasing plate thickness. Similarly, Ellis and Smith [1967] conducted 
bending tests on aluminium and low-carbon steel sheets, and they did not reveal any 
couple stress effects. They concluded that couple stress effects would be active only 
for much smaller sample sizes, where the plate thickness is approximately equal to the 
grain size. Then, experiments on micro-featured materials (such as reinforced 
composites) were conducted, which are expected to show higher-order effects for 
larger samples due to the larger microstructural length scales. Gauthier and Jahsman 
[1975] developed a novel composite material to measure its micropolar elastic 
constants. The composite consisted of an epoxy matrix reinforced by uniformly 
distributed aluminium shots, with a Young’s modulus 20 times that of the matrix. The 
much stiffer aluminium shots represented rigid microelements embedded in a 
deformable medium (i.e. the epoxy matrix). They performed torsion tests on circular 
cylindrical samples, but the samples behaved according to the classical theory. They 
concluded: “Possible micropolar behaviour is masked by material property variations 
(from one sample to another with a different size) due to inhomogeneity”. Gauthier 
[1982], however, was able to fit the wave propagation experiments on the same 
reinforced composite by using micropolar theory, with a characteristic length very 
close to the radius of the aluminium shots, 0.7 mm. Lakes and co-authors performed 
several experiments on different micro-featured solids, such as human bones. Yang 
and Lakes [1981], conducted quasi-static torsion tests on circular cylindrical compact 
bones, and showed that the couple stress theory can capture the enhancement in 
torsional rigidity with decreasing sample radius. They found the couple stress 
characteristic length to be around 0.15-0.25 mm, which is comparable to the diameter 
of the major structural element in compact bones, the osteon.  

The early experiments on cellular solids to observe the dependence of the 
macroscopic material properties on the specimen size dates back to the 1980’s. Lakes 
[1983, 1986] measured the bending and torsional rigidities of two polymeric foams 
and a syntactic foam, as a function of diameter. He concluded that the micropolar 
elasticity is a suitable model to pick-up the enhanced bending and torsional rigidities 
with decreasing diameter of the polymeric foams, whereas the syntactic foam behaves 
as a classical solid. Opposed to these results, however, some others indicated a 
decreasing bending and torsional stiffness/strength with decreasing sample size. For 
example, Brezny and Green [1990] measured the Young’s modulus and the bending 

 



Introduction  13 
 
strength (by three-point bending experiments) of a reticulated vitreous carbon foam 
consisting of relatively isotropic open cells, and found that both the modulus and the 
strength of this material decrease dramatically with decreasing specimen size. The 
weakening effects in both bending and torsion were detected for closed cell 
polymethacrylimide foam and open cell copper foam as well (Anderson et al. [1994], 
Anderson and Lakes [1994]).  

Size effects in foams under uniaxial compression are also experimentally 
investigated. Bastawros et al. [1999] measured the Young’s modulus and the 
compressive strength of closed cell Alporas aluminium foam, by changing the area 
under compression while keeping the length of the samples in the compression 
direction constant. Andrews et al. [2001], on the other hand, conducted uniaxial 
compression tests on square prisms of both closed cell Alporas and open cell Duocel 
foams, where the samples had identical geometry but different absolute size. Both sets 
of experiments, similar to the observations of Brezny and Green, showed that the 
Young’s modulus and the compressive strength of the samples decrease dramatically 
with decreasing specimen size. The common conclusion to all of these studies 
showing a weakening in the (bending, torsional or compressive) stiffness and strength 
was that these size effects are actually “edge effects”. The edge effects were related to 
an incomplete cell layer located at the surface of the specimens, which is included in 
the total specimen volume but contribute very little to the mechanical properties. 
Surface damage introduced by cutting or machining of specimens enhances these 
edge effects. Anderson and Lakes [1994] argued that the edge effects and the 
micropolar effects are usually both present and it is possible to observe weakening or 
strengthening behaviour depending on which one is more dominant. 

Shear experiments on metal foams were also reported. These studies indicated 
an enhanced shear strength with decreasing sample thickness (e.g. Andrews et al. 
[2001], Chen et al. [2002]). In these experiments, the shear load is applied through 
face sheets that are perfectly bonded to the metal foam. As a result, the surface cells 
that are perfectly bonded to the top and the bottom face sheets are much more 
constrained compared to those located in the bulk. This gives rise to a gradient in 
deformation, so that “strong” boundary layers are formed adjacent to the face sheets; 
the volume fraction of these boundary layers increase with decreasing thickness and it 
leads to a higher shear strength. Kesler and Gibson [2002], conducted three point 
bending experiments on sandwich panels with an Alporas foam core, of varying size,  
with the panels designed to fail by core shear. By accounting for the size effects in the 
foam core shear strength, they were able to give a good estimate of the failure load of 
the panels. 

Stress/strain concentrations due to notches, holes and inclusions in cellular 
solids are other topics of essential interest for experimental investigation. The effect 
of the notch size (relative to the cell size), is examined on aluminium closed cell 
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foams (Antoniou et al. [2004]). They observed that under uniaxial compression, the 
net section strength of double-edge-notched specimens is larger when the net section 
width is smaller, whereas it is insensitive to the net section width in the case of single-
edge-notched specimens. Mora and Waas [2000] performed uniaxial compression 
tests on a plate of polycarbonate honeycomb with circular cells, containing a 
cylindrical hole and a rigid inclusion, respectively. They could not detect any size 
effects in the case of the hole, but were able to fit the strain fields near the circular 
inclusion with the couple stress theory, for a variety of inclusion sizes. 

1.5 Outline of this thesis 

The aim of this thesis is to explore the microstructural origin of the size effects in the 
mechanical behaviour of cellular solids, in particular of metallic foams, and to 
investigate/propose generalized continuum theories that can capture these size effects. 

In chapter 2, we use two-dimensional beam networks to mimic real (three-
dimensional) foams, which allow us to account for the discreteness of their 
microstructure. We perform simple shear, uniaxial compression, and pure bending 
tests on a large variety of samples, and calculate the change in the macroscopic 
mechanical properties corresponding to a change in size. We close the chapter with a 
summary of the size effects that we observed in our calculations and discuss the 
possible mechanisms behind these size effects. 

Chapter 3 uses the micropolar theory to capture the size effects observed in 
chapter 2. We fit the elastic constants of the micropolar continuum theory by 
comparing the analytical solution of the simple shear problem with the discrete 
analyses, in terms of the best agreement in the macroscopic shear stiffness of the 
samples. We develop a strain mapping procedure and evaluate the performance of the 
fitted micropolar constants in predicting the local deformation fields, the 
microrotations and shear strains. Finally, we solve the pure bending problem 
analytically for the micropolar theory and close the chapter with a discussion on the 
limitations of the Cosserat-type theories. 

In chapter 4, we propose a generalized continuum theory (strain divergence 
theory), which associates energy to the divergence of strain. We derive the 
equilibrium equations and the boundary conditions for the strain divergence 
continuum, and develop a finite element implementation of the theory. We solve the 
simple shear and the pure bending problems analytically and compare the solutions 
with the discrete calculations, as well as with the analytical solutions for the couple 
stress theory. 

Chapter 5 explores the strain concentration problem around a cylindrical hole 
in a field of uniaxial tension. First, we perform discrete calculations on samples with 
different hole sizes and show the effect of the hole size on the strain distribution near 
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the hole. Then we compare the discrete analyses with the analytical solutions for the 
classical, couple stress and strain divergence theories.  

Finally, in Chapter 6, we summarize the size effects that we observed in the 
mechanical behaviour of the two dimensional cellular solids, and we compare the 
different generalized continuum theories with respect to their ability in capturing size 
effects. 
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change the size of the samples gradually and measure the 
corresponding change in the overall elastic response. 

 

Discrete Analysis of Size Effec
In this chapter, we analyze size effects in the mechanical behaviour of 
cellular solids. For this purpose, we perform simple shear, uniaxial 
compression and pure bending tests on two-dimensional cellular 
materials, having regular (squares, hexagons) and irregular 
(perturbed hexagons, Voronoi tessellations) microstructures. We
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2.1 Introduction 

In Chapter 1, we gave an overview of the experimental work investigating the effects 
of the specimen size, relative to the cell size, on the measured mechanical properties 
of cellular solids (see Section 1.3). Experiments indicate that when the specimen size 
(and/or the loading wavelength) and the cell size are of the same order of magnitude, 
the individual response of cells varies considerably throughout the specimen. This 
leads to differences in the macroscopic response from one specimen to another with a 
different size. Classical continuum theory does not incorporate a length scale, and 
therefore cannot capture size-dependent behaviour. One approach to account for size 
effects, which will be followed in this chapter, is to explicitly account for the cellular 
morphology by modelling individual cell walls (or cell faces) by using the finite 
element method (see e.g. Andrews et al. [2001], Onck et al. [2001], Chen and Fleck 
[2002], Diebels and Steeb [2002]).   

 Our aim in this chapter is to investigate the size effects (and their physical 
grounds) in the mechanical behaviour of foams. To mimic the behaviour of real 
foams, we use two-dimensional microstructures (honeycombs), with both regular 
(square, hexagons) and irregular (perturbed hexagons, Voronoi tessellations) 
microstructures. In section 2.2, we introduce the mechanical properties and the 
deformation mechanisms of some two-dimensional microstructures, including the 
ones used in here. We discuss the effect of imperfections (such as cell wall 
misalignments, cell wall waviness, cell size variations, etc) on the mechanical 
behaviour of cellular solids, and modify our models accordingly to be able to 
represent metal foams more realistically. In section 2.3, we perform simple shear, 
uniaxial compression and pure bending tests on specimens with different 
microstructures. We change the specimen size gradually to detect the size effects. 
Finally, section 2.4 summarizes the size effects observed for each boundary value 
problem and comments on the underlying mechanisms.  

2.2 Two-dimensional cellular solids 

In this section, we discuss the mechanical behaviour of regular and irregular two-
dimensional cellular solids and analyze their usefulness in representing real three-
dimensional foam structures.  

2.2.1. Regular cellular solids 
Regular two-dimensional cellular solids (also referred to as lattices or honeycombs) 
are often used as two-dimensional representations of more complex three-dimensional 
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foams. They enable closed-form expressions for the macroscopic in-plane properties 
as a function of the cell wall thickness t and length l, and the properties of the cell 
wall material (subscript s), the Young's modulus E s, the Poisson's ratio ν s, and the 
yield stress σ ys. The three simplest lattice structures are the hexagonal structure, the 
square structure and the fully triangulated structure (see Fig. 2.1). Due to six-fold 
(hexagonal) symmetry (i.e. a structure has the same appearance six times in a 360o 
rotation around its centre), the triangulated and hexagonal structures are isotropic in  

                      (a)                                      (b)                                         (c)                      

Figure 2.1: Regular two-dimensional cellular solids. (a) Regular hexagonal structure. (b) Square 
structure. (c) Triangular structure. (Reproduced, with permission, from Gibson and Ashby [1997]). 
 
the plane (see e.g. Wang and Stronge [1999], Warren and Byskov [2002]), while the 
square structure, with four-fold symmetry, is orthotropic (see e.g. Ostoja-Starzewski 
et al. [1996]). For the low density isotropic structures, the Young's modulus can be 
written as 
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for the hexagons1 (Gibson et al. [1982]), and 
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for the triangles (Christensen [1995]). The square structure has two stiff directions, 
parallel to the cell walls,  

                                                 
1 Neglecting shear deformations. 
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and two compliant directions at 45o  (Gibson and Ashby [1997]), 
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The difference in stiffness between these structures is clearly exemplified by plotting 
Young's modulus as a function of the loading direction with respect to the 
microstructural orientation (see Fig. 2.2). The triangular and hexagonal structures are 
isotropic with the former being much stiffer than the latter. The underlying reason for 
this behaviour is the difference in the deformation mechanisms for different cell 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Young’s modulus as a function of loading direction for triangular, square and 
hexagonal cells. The square structure is orthotropic with a low stiffness at 45o and a high stiffness 
at 0o and 90o. The hexagonal and triangular structures are isotropic, having a low and high 
stiffness, respectively. (Reproduced, with permission, from Gibson and Ashby [1997]). 
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topologies: cell wall bending versus cell wall stretching (see Grenestedt [1999], 
Deshpande et al. [2001a, b]). The hexagons and squares-at-45o (i.e. loaded in the 
diagonal direction) deform by cell wall bending, leading to a cubic dependence on t/l 
(see Eqs. 2.1 and 2.4), while the triangular structure and the square structure loaded 
parallel to the cell walls deform by cell wall stretching, leading to a linear dependence 
on t/l (see Eqs. 2.2 and 2.3). The uniaxial plastic properties of these structures show a 
comparable dependence on t/l (quadratic when bending-dominated and linear when 
stretching-dominated). Note that Fig. 2.2 is plotted for the same t/l value for all three 
microstructures, which means that the relative density is slightly different for each 
case.      

A similar difference in bending versus stretching response is observed for 
three-dimensional models of perfect (i.e. without imperfections) cellular solids 
(Gibson and Ashby [1997]). A more suitable scaling quantity of the mechanical 
properties of three-dimensional foams is the relative density ρ. The relative density is 
the density of the cellular material divided by the density of the cell wall material, and 
it scales with (t/l)2 for open-cell foams and with t/l (here t is the thickness of the cell 
faces) for closed-cell foams. Open-cell foams deform by bending, yielding a quadratic 
dependence on ρ for stiffness and a power 3/2 dependence for plastic strength. 
Closed-cell foams, on the other hand, deform by stretching of the cell faces, giving a 
linear dependence on ρ for both stiffness and strength. Table 2.1 summarizes these 
scaling relations for cellular solids having a perfect cellular structure.  
 
Table 2.1 
Scaling relations for perfect cellular solids. 
 
 Relative 

density 
Stiffness Plastic strength 

2D cellular solids 
1. bending-dominated 
2. stretching-dominated 

ρ ∝ t/l  
E*/Es ∝ ρ 3 

E*/Es ∝ ρ  

 
σ*

pl /σ ys  ∝ ρ 2 

σ*
pl /σ ys  ∝ ρ 

3D open-cell foams ρ ∝ (t/l)2 E*/Es ∝ ρ 2 σ*
pl /σ ys  ∝ ρ3/2

3D closed-cell foams¶ ρ ∝ t/l E*/Es ∝ ρ  σ*
pl /σ ys  ∝ ρ 

¶Assuming all material is in the cell faces (having a thickness t). 
 

Experiments on closed-cell metal foams, however, show a scaling that closely 
resembles that of open-cell foams, owing to the fact that imperfections in the cell 
faces (such as curvatures, corrugations and cracks) reduce their mechanical 
contribution, promoting bending of the cell edges to be the dominant deformation 
mechanism (Sugimura et al. [1997], Simone and Gibson [1998b], Bart-Smith et al. 
[1998], Andrews et al. [1999]).  Analytical and finite element models of closed cell 
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foams accounting for such imperfections are in good agreement with these 
experiments (Simone and Gibson [1998a], Grenestedt [1998]). Due to the random 
distribution of cell size and shape, the overall mechanical properties of three-
dimensional foams are isotropic. Since the two-dimensional hexagonal structure is 
isotropic and deforms by cell wall bending as well, it is an attractive model material 
for the elastic and plastic behaviour of real three-dimensional foams in case of 
uniaxial loading.  

2.2.2 Irregular cellular solids 
Although hexagons are useful as a model material under uniaxial stress states, under 
multiaxial stress states, however, the mechanical behaviour of regular hexagons 
diverges from that of real metal foams. When hexagons are loaded equi-biaxially 
(macroscopic normal stresses σ 1=σ 2), all internal bending moments in the structure 
vanish, causing cell wall stretching to be the dominant deformation mechanism. As a 
result, the yield strength under hydrostatic loading (i.e. in-plane equi-biaxial 
compression) is much higher than under deviatoric loading (such as uniaxial 
compression), making the yield surface elongated in the σ1=σ2 direction, see Fig. 2.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: The yield surface for a regular hexagonal structure for t/ l=0.1. Stresses are 
normalized with the uniaxial plastic strength σ*

pl=2/3 (t / l)2. (Reproduced, with permission, from 
Gibson and Ashby [1997]). 
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A similar conclusion can be drawn for the elastic properties in terms of the bulk 
modulus versus Young’s modulus. Experimentally-obtained yield surfaces of real 
foams, however, are approximately circular in the deviatoric-hydrostatic stress space 
(e.g. Gioux et al. [2000], Deshpande and Fleck [2000], Doyoyo and Wierzbicki 
[2003]), demonstrating that the yield strength under hydrostatic loading is 
approximately the same as under uniaxial loading. This can be traced to the fact that 
under both stress-states, plastic bending is the dominant deformation mode, due to the 
presence of imperfections. In two-dimensional structures this behaviour can be 
mimicked by introducing imperfections such as wiggles, missing cell-walls and cell-
wall misalignments in the regular hexagonal structure, or by using Voronoi 
tessellations which account for the cell size variations (Grenestedt [1997], 
Triantafyllidis and Schraad [1998], Chen et al. [1999]). This causes a much bigger 
knock-down in the hydrostatic properties than in the uniaxial properties, leading to a 
circular yield surface.  

Cell wall misalignments are introduced in the regular hexagonal 
microstructures by displacing all triple junctions with coordinates (x 1, x 2) in a random 
direction θ and over a random distance b, chosen from a uniform distribution [0, α l ], 
where α is a constant and l is the cell wall length (see Fig. 2.4a). Then the new 
coordinates (x 1

', x 2
') can be written in terms of the old ones as 
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                       (a)                                       (b)                                           (c)      

Figure 2.4: (a) Sketch illustrating the introduction of cell wall misalignments into a regular 
hexagonal microstructure. (b) Perturbed hexagonal microstructure in the default orientation for 
α=0.4. (c) Perturbed hexagonal microstructure in the rotated orientation for α=0.4. 
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These structures, called ‘perturbed hexagons’, will be adopted as one of the two-
dimensional structures to study size-effects in Section 2.3. Although the perturbed 
hexagonal microstructures are produced in a random manner, they still might carry 
the underlying topological foot-print of the hexagonal “close-packed” ordering. To 
analyze this, two orientations of the perturbed hexagonal microstructures with respect 
to the loading direction will be investigated, termed the ‘default orientation’ (Fig. 
2.4b) and the ‘rotated orientation’ (Fig. 2.4c), using α = 0 .4.  

To account for a fully random distribution of cell sizes and shapes, we use 
Voronoi [1908] tessellations.  The Voronoi tessellation technique is akin to a foaming 
process, where bubbles nucleate at random sites and expand in the liquid material. 
The final space-filling packing of cells is identical to a Voronoi tessellation if the 
following assumptions are made (see also Zhu et al. [2001a] and the references 
therein): 

1. All nuclei appear simultaneously. 

2. All nuclei remain fixed in location throughout the growth process. 

3. For each nucleus, the growth occurs at the same rate in all directions. 

4. The linear grow rate is the same for each cell associated with a nucleus 

5. Growth ceases for each cell whenever and wherever it comes into contact with 
a neighbouring cell. 

Based on these assumptions, the final shape and the size of the cells are uniquely 
determined by the initial distribution of the nuclei. Even though a foaming process is 
more complicated than the model suggested here2, the experimentally measured 
topology parameters (e.g. average number of struts per cell face, average number of 
faces per cell, etc.) of many foams are in close agreement with those of Voronoi 
tessellations (see Gibson and Ashby [1997]).  

To create two-dimensional Voronoi diagrams, a set of nuclei is generated in a 
rectangular box with area A. For a fully random tessellation (often referred to as a Γ-
Voronoi), the coordinates of the nucleation points are chosen randomly (i.e. from a 
uniform distribution). Once all the nucleation points are created, adjacent points are 
connected to each other by straight lines (see the dashed lines in Fig. 2.5), resulting in 
a triangulation of the area, known as a Delaunay [1934] triangulation. Voronoi 
polygons are then generated by drawing normals that divide the dashed connector 
lines (i.e. the sides of the Delaunay triangles) into two and finally trimming these 
normals where they meet (see Fig. 2.5). We use the commercial software Matlab to 
create Voronoi diagrams. 

 
2 Typical for closed-cell metal foams is cell coalescence, as a result of which the one-to-one 
correspondence between nucleus and cell is lost. 
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Figure 2.5: Construction of a Voronoi diagram. Adjacent nucleation points are connected to 
each other by straight lines (dashed). Drawing normals that divide these connector lines into two 
and trimming these normals where they meet generate Voronoi polygons (solid lines).  
 

In a Γ-Voronoi the nucleation sites can be arbitrarily close together, leading to 
a wide distribution of cell sizes. Many open-cell foams, however, have a much 
narrower cell-size distribution. This can be straight-forwardly accounted for by 
imposing a constraint on the distribution of nuclei. One way of imposing such a 
constraint is to start from a distribution of nuclei corresponding to a regular hexagonal 
microstructure and then to displace each nucleus in a restricted area around the initial 
position (see e.g., Van der Burg et al. [1997], Fazekas et al. [2002]). Another method, 
the one employed here, is to randomly place n nucleation points in the area A such 
that the separation between any two nuclei must be larger than a minimum allowable 
distance, s (e.g. Zhu et al. [2000, 2001a, b]). The resulting structure is called a δ-
Voronoi, to be distinguished from the fully random Γ-Voronoi. To classify the 
randomness, the separation distance can be normalized by a reference length r, 
defined as 
  

 2
3
Ar
n

= , (2.6) 

 
being the distance between any two adjacent nuclei if the n nucleation points (i.e. 
number of cells) in the area A, would have been distributed in a closed-packed manner 
so as to generate a regular hexagonal packing. The measure of randomness, δ = s / r   
ranges from δ = 1, the regular case of perfect hexagons, to δ = 0, the fully random case 
of a Γ-Voronoi.   

Depending on the boundary value problem analyzed, we used either periodic 
or displacement boundary conditions in the following. The periodicity of the Voronoi 
diagrams is achieved by dividing the two-dimensional plane into nine equal 
rectangles, the one in the middle being an RVE (Representative Volume Elements) 
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with area A. For each nucleation point created in A, a corresponding point is created in 
each of the eight surrounding areas. Each subsequent nucleation point is accepted 
only if it is located at a distance greater than δ from the points already present. Once 
all nucleation points are created, the Voronoi tessellation is generated, which accounts 
for full periodicity of the middle area A. Finally, the periodic RVE is obtained by 
cutting the middle area A from the centre of the nine rectangles. Figure 2.6 shows 
three Voronoi structures with different levels of randomness, δ = 0, 0.4 and 0.7, with 
periodicity being accounted for. 

   (a)                                           (b)                                           (c)      

Figure 2.6: Voronoi tessellations: (a) δ =0. (b) δ =0.4. (c) δ =0.7. Periodicity is accounted for. 
 

2.2.3 The effect of imperfections in Voronoi structures  
As stated in the previous section, Voronoi tessellations have a less elongated 

yield surface than regular hexagons, due to their non-uniform cell size distribution. 
However, to represent real foams, a further knockdown of the hydrostatic yield 
strength, relative to the uniaxial strength, is needed. For this purpose, we introduced 
two types of imperfections in the Voronoi structures. The first one consists of cell 
wall misalignment as also applied on the hexagonal structures, see Fig. 2.4. In the 
case of the Voronoi tessellations, the lengths of the cell walls that meet at a junction 
are not the same. To avoid convex shaped cells, we pick the random displacement of a 
junction node from a uniform distribution in the range 0 to α l m , where l m is the 
minimum of the cell wall lengths among those connected to this junction. The second 
imperfection is cell wall waviness. To introduce cell wall waviness, we impose a 
lateral displacement on cell walls, in such a way that it turns a straight cell wall into a 
sinusoidal-shaped cell wall, according to  

 

 ( ) sin xy x q
l

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (2.7) 



Discrete modelling of size effects  27 
 
where q is a random number chosen from a uniform distribution [0, β l ], with β a 
constant, which defines the amplitude of the cell wall waviness, l is the cell wall 
length and x and y are the coordinates on a local Cartesian frame with x being the 
coordinate along the end-to-end distance. By comparing the morphology of the 
generated microstructures with the electron microscope images of real cellular solids, 
it was concluded that for α larger than 0.2 or β larger than 0.06, the microstructures 
are not realistic. To illustrate the morphological changes introduced by the 
imperfections, Fig. 2.7a shows a fully random (δ = 0) Voronoi diagram (i.e. α = 0, 
β = 0, in red) on top of which the same structure is plotted having the triple points 
randomly displaced (α = 0.2, β = 0, in green). Then, in Fig. 2.7b, cell wall wiggles are 
imposed on the perturbed structure (in green), resulting in a (α = 0.2 , β = 0.06 ) 
microstructure, in blue.  

  (a)                                                              (b)                                              

0, 0α β= =
0.2, 0α β= =
0.2, 0.06α β= =

Figure 2.7: (a) Fully random (δ =0) Voronoi diagram (i.e. α =0, β =0, in red) on top of which 
the same structure is plotted with α =0.2, β =0 (in green). (b) Fully random (δ =0) Voronoi 
diagram with triple points perturbed (α =0.2, β =0, in green) on top of which cell wall wiggles are 
imposed (α =0.2, β =0.06, in blue). 
 

To evaluate the effect of the imperfections on the yield surface of the Voronoi 
tessellations, we performed uniaxial compression and hydrostatic loading tests on 
periodic RVE’s (Representative Volume Elements) with different levels of 
imperfections, each containing 800 cells. We assume that all the cell walls in a 
microstructure have the same, uniform thickness t. For two dimensional structures, the 
relative density ρ reduces to the area fraction of solid material; it is directly 
proportional to the cell wall thickness t and is given by 
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where k is the total number of cell walls within the microstructure and L1 and L2 the 
side lengths of the rectangular area analyzed. To discretise the cell walls, we use 
quadratic Timoshenko beam elements (B22 element in ABAQUS element library). 
Some cell walls in random microstructures (perturbed hexagons and Voronoi 
tessellations) are too short to be modelled as beam elements, and their percentage 
increases with increasing randomness. To decrease the contribution from these stocky 
cell walls, we remove those with a thickness to length ratio larger than 1/2 for a 
relative density 0.1. One of the end nodes of any removed cell wall is deleted, and the 
cell walls that were connected to this deleted node are reconnected to the undeleted 
one. There still remain some stocky cell walls in the microstructures, with a thickness 
to length ratio larger than 1/3, but their percentage, even in fully random tessellations, 
is less than 5 percent and the error due to modelling them as beam elements is 
expected to be small (Chen et al. [1999]). To ensure that the relative density is the 
same for different random realizations due to the removal of stocky cell walls, we 
redefine the cell wall thickness after the removal process. Silva et al. [1995] reported 
that the effective stiffness of a microstructure increases with decreasing percentage of 
stocky cell walls, due to the decrease in the total number of degrees of freedom in the 
microstructure. We observe an opposite tendency, i.e., both the effective stiffness and 
the plastic yield strength decreases with decreasing percentage of stocky cell walls. 
This trend is related to the fact that after the removal of stocky cell walls the average 
cell wall length in the cellular materials increases (and therefore the thickness 
decreases to ensure a constant density), making the material more compliant.  

In case of elastic deformation, only a single beam element per cell wall is 
sufficient for a converged solution. To investigate mesh sensitivity in case of plastic 
deformation, we used two different discretisation methods. The first method is to 
discretise each cell wall with the same number of beam elements, resulting in 16 to 20 
elements per cell wall for a converged solution. The second method is to keep the 
length of a beam element constant and equal to the cell wall thickness t, in which case 
the number of beam elements used to model a cell wall is given by the ratio of the 
length of this cell wall, l i, to the cell wall thickness t. This number can be 30 to 40 for 
relatively long cell walls, and this increases the computational time excessively. 
Therefore, we limited the maximum number of beam elements used to model a cell 
wall and change this limit to see its effect. A converged solution is obtained when the 
limit is set to be 10, which required much less computational time than the first 
method. The second method, with the maximum number of beam elements set to 10, 
was used for all calculations reported. 
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The cell wall material is assumed to be elastic-plastic with a Young’s modulus 
of E s = 70 GPa, a Poisson’s ratio of ν s = 0.33, and a yield stress of σ ys = 130 MPa. The 
relative density of the samples is chosen to be ρ = 0 .1, which is high enough to avoid 
premature elastic buckling of the cell walls for the material properties used. To avoid 
numerical problems for the finite element calculations, we employ linear isotropic 
hardening using a relatively low hardening slope of H = dσ / dε = 100 MPa. We apply 
periodic boundary conditions on pairs of nodes J and I, located at the same position 
but on the opposite edges of the boundary, by describing  
 
  (2.9) J I J I J I

3 3( ),   0,   , =1,2.p p pq q qu u x x p qε φ φ− = − − =

 
The corresponding macroscopic stresses read 
 

 J I J J I J
2

1 (( ) ( ) ),
2pq p p q q q px x F x x F

L
σ = − + −∑  (2.10) 

 
where L is the length of the square Voronoi diagram, φ 3 is the rotation of the cell 
walls in the x 1-x 2 plane, F p

J are the reaction forces in nodes J (periodicity  
corresponds to F p

I = −F p
J ), and the summation is carried out over all the boundary 

nodes J. The shear strain ε12 is taken to be zero. In the case of uniaxial loading, ε 11 
(ε 22) is incremented while letting the edges with a surface normal parallel to the x 2 

(x 1) direction traction free. For the case of hydrostatic loading, ε 11 is kept equal to 
ε 22.  Similar boundary conditions were employed by Chen et al. [1999]. 
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Figure 2.8: (a) The calculated compressive stress σ 22 normalized by the yield stress σ ys plotted 
against the compressive uniaxial strain ε 22 for δ =0 Voronoi tessellations. (b) The calculated 
hydrostatic tress σ h normalized by the yield stress σ ys plotted against the hydrostatic strain 
(ε 11+ε 22).  



30  Chapter 2 
 

Figures 2.8a and b demonstrate the results for the uniaxial and hydrostatic 
compressive loadings, respectively, for fully random Voronoi tessellations (δ = 0). 
The hydrostatic stress is defined as σ h = σ pp/ 2, as in (Chen et al. [1999]), and the 
yield strength is defined by the peak of these stress strain curves. We see that either 
cell wall misalignments or cell wall waviness have a negligible effect on the 
compressive uniaxial yield strength (Fig. 2.8a). The hydrostatic yield strength, on the 
other hand, is highly reduced by the existence of cell wall misalignments (α = 0.2, 
β = 0, Fig. 2.8b). The additional effect on the hydrostatic yield strength associated 
with cell wall waviness is relatively small (α = 0.2, β = 0.06, Fig. 2.8b). Table 2.2 
shows an overview of the ratio of the Young’s modulus to the bulk modulus, E/κ, and 
the compressive yield strength to the hydrostatic yield strength, σ u /σ h, for Voronoi 
tessellations, with different δ, α and β values. It can be observed that the ratio σ u /σ h 
is smaller for more regular structures, which is in accordance with the conclusions of 
Chen et al. [1999]. The same tendency holds for the ratio E /κ as well. Note that κ and 
σ h  scale linearly with the relative density, while σ u  scales quadratically and E 
cubically. 
 
Table 2.2 
The ratio of the Young’s modulus to the bulk modulus, E /κ, and the compressive yield strength to 
the hydrostatic yield strength, σ u /σ h, for Voronoi tessellations, with different δ, α and β values.   
 

δ 0 0 0 0.4 0.4 0.4 0.7 0.7 0.7 
α 0 0.2 0.2 0 0.2 0.2 0 0.2 0.2 
β 0 0 0.06 0 0 0.06 0 0 0.06 
E/κ 0.071 0.128 0.174 0.064 0.120 0.156 0.058 0.128 0.152 
σ u /σ h 0.35 0.53 0.60 0.30 0.49 0.50 0.19 0.43 0.44 

2.3 Size effects 

In this section we investigate the effect of specimen size on the elastic response of 
regular (square and hexagonal lattices) and irregular (perturbed hexagons and Voronoi 
tessellations) cellular structures. We will explore simple shear (section 2.3.1), uniaxial 
compression (section 2.3.2) and pure bending (section 2.3.3) boundary value 
problems. All the calculations are performed assuming the strains to be small.  

2.3.1 Simple shear 
Figures 2.9a and b show the boundary conditions for a simple shear test on a 
sandwich panel having a perfect hexagonal microstructure (in the default orientation) 
and a Voronoi microstructure as a core, respectively. Here and in the rest of this 
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thesis, we will focus on Voronoi tessellations with δ = 0 .7, α = 0 .2 and β = 0 (see 
section 2.2.3). For all microstructures we use one beam element per cell wall, take a 
relative density ρ = 0.1 and use a Poisson’s ratio ν s = 0.33. The results shown are 
normalized by the Young’s modulus of the cell wall material, E s. To have a common 
measure for the cell size d, both for the hexagonal microstructures (regular and 
perturbed) and the Voronoi tessellations, we take d ≈ 1.82l, equal to the diameter of a 
circle with the same area as a regular hexagonal cell with a cell wall length l. Note 
that for the Voronoi structures the average cell wall length l av can be deduced from 
the area A and the number of nuclei n, through l av = r/√3, with r defined in equation 
2.6. For the square microstructures, d = l (see Fig. 2.1c). To avoid the edge effects 
common to the shear problem, we take an infinitely long material in the x 1 direction. 
Consequently, in case of regular microstructures such as perfect hexagons and 
squares, it suffices to analyze only one column of cells and to apply periodic 
boundary conditions on both sides of the unit cell (see the indicated region in Fig. 
2.9a). For irregular microstructures, on the other hand, due to the stochastic 
imperfections, the unit cell is enlarged to L ≈ 143d, still featuring periodic boundary 
conditions (see Fig. 2.9b).  

unit cell
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(a)                                                    (b) 

Figure 2.9: Boundary conditions for a simple shear test on a sandwich panel: (a) Perfect 
hexagonal microstructure in the default orientation. (b) Voronoi microstructure. 

 
The face sheets are assumed to be rigid and perfectly bonded to the cellular 

material. This allows applying the boundary conditions directly to the cellular 
structure. At the bottom all degrees of freedom are constrained (u i = φ 3 = 0, i = 1,2). 
Note that the u i and φ 3 are the displacements and rotations of the cell walls at the 
locations were they are connected to the face sheets. At the top a horizontal 
displacement is applied, u 1 = −γ H , consistent with a shear strain γ, while the other 
degrees of freedom are constrained, u 2 = φ 3 = 0. The macroscopic shear stress is 
obtained by dividing the sum of the reaction forces at the top nodes by the area of the 
unit cell, L b , where b is the out of plane thickness and L is the length of the unit cell 
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in the x 1 direction. The ratio of the shear stress to the applied shear strain gives the 
macroscopic shear stiffness, F/(Lγ), with F the total shear force per unit out-of-plane 
thickness.  

The value of the macroscopic shear stiffness depends not only on the relative 
specimen height H/d, but also on the length and the orientation of the cell walls at the 
boundaries, to which we refer to as the boundary configuration. To consistently check 
the dependence on the boundary configuration, we also analyze the regular and 
perturbed hexagons in a 90o rotated orientation (termed the rotated orientation), as 
compared to the default orientation shown in Fig. 2.9a. For the same reason, we 
analyze different possibilities of “cutting specimens” for each value of H/d. As an 
example, Figure 2.10 shows two different cuts from a perfect hexagonal 
microstructure in the default orientation, with the same height, but with different 
boundary configurations. In the case of regular microstructures, only a limited amount 
of cuts (6 and 8 for the default and the rotated orientation of the regular hexagonal 
microstructures, respectively, and 5 for the square microstructures) are sufficient to 
cover almost all possible boundary configurations. For irregular microstructures 

                                  (a)                                      (b) 

Figure 2.10: Two different cuts with the same height for the regular hexagonal microstructure in 
the default orientation. 
 
(perturbed hexagons and Voronoi tessellations), we take 100 different cuts. Each new 
sample is made by shifting the sample window (corresponding to one specific value 
of H/d) over a certain distance with respect to the previous sample. This distance is 
called the cutting step size (CSS). For the irregular calculations performed here we 
use CSS = d/10. By performing convergence tests for H/d = 1, 2, 3, and 5 on perturbed 
hexagonal microstructures, we found that for more than 100 cuts, the average and 
standard deviation of the macroscopic shear stiffness did not change anymore. Note 
that for each specimen cut, the thickness of the cell walls is adjusted to ensure that all 
specimens have the same relative density.  
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Figure 2.11 shows the macroscopic shear stiffness, F/(Lγ), normalized by the 
shear modulus, G, plotted against the relative specimen size, H/d, for the 
microstructures analyzed. Each dot in Fig. 2.11 corresponds to one finite element 
calculation. For each microstructure, G corresponds to the effective shear stiffness of 
an infinitely large block with the corresponding microstructure. For the square 
structure in its current orientation (see the inset of Fig. 2.11a) it is given by  

 

 3
s 2

1 1( / ) ,
2 1 (2.4 1.5 )( / )s

G E t l
t lν

=
+ +

         (2.11) 

 
and for the regular hexagonal microstructures, irrespective of the orientation, it is 
given by 

 3
s 2

1 1( / ) ,
1 (3.30 1.75 )( / )3 s

G E t l
t lν

=
+ +

 (2.12) 

 
where E s is the Young’s modulus and ν s is the Poisson’s ratio of the solid material 
from which the cellular structure is made (see also Gibson and Ashby [1997]). For 
irregular microstructures, the shear modulus is found by performing a convergence 
test while continuously increasing the thickness of the specimens. We found that for 
the irregular microstructures analyzed the value of the shear modulus is 
approximately 10−15 percent larger compared to the regular hexagons. A comparable 
enhanced stiffness was found by Silva et al. (1995) for a δ-Voronoi structure.  

For the square microstructures, we observe a large scatter in data, especially in 
the small H/d regime, which decreases with increasing height (see Fig. 2.11a). The 
overall shear stiffness increases with decreasing height, and it converges to the shear 
modulus with increasing H/d, given in Eq. 2.12. This stiffening behaviour, 
F/(LGγ ) > 1, is associated with the constrained rotations of the cell walls bound to the 
top and bottom face sheets. It is interesting to see that weakening, i.e. F/(LGγ ) < 1, is 
also possible for some boundary configurations for small values of H/d. This is related 
to the fact that we keep the density constant for all specimens, leading to thinner cell 
walls for some configurations. On average, nevertheless, there is a stiffening 
behaviour in the small H/d regime. 

For the regular hexagons in the default orientation we observe weakening 
behaviour for some boundary configurations as well (see Fig. 2.11b), but this is absent 
for the hexagons in the rotated orientation (Fig. 2.11c). For the irregular 
microstructures (perturbed hexagons and Voronoi tessellations, Figs. 2.11d-f), the 
effect of the constrained boundary layers (leading to stiffening) is always dominant 
over the effect of the lower cell wall thickness (leading to weakening). The scatter in 
data for small H/d is less in case of irregular microstructures and tends to zero with 
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Figure 2.11: The macroscopic shear stiffness, F/(Lγ ), normalized by the shear modulus, G, 
plotted against the relative specimen size, H/d, for the: (a) Square microstructure. (b) Perfect 
hexagonal microstructure in the default orientation. (c) Perfect hexagonal microstructure in the 
rotated orientation. (d) Perturbed hexagonal microstructure in the default orientation. (e) Perturbed 
hexagonal microstructure in the rotated orientation. (f) Voronoi microstructure. 
 
increasing height. The stiffening effect is larger than it is for the regular hexagons, 
being largest for the Voronoi tessellations (see Fig. 2.11f). 

The system parameters that determine the overall elastic response to a shear 
deformation are t, d, H, E s and ν s. From the three length scales two dimensionless 
quantities can be constructed: t/d (that is proportional to the relative density) and H/d.  
For the size effects we explored the effect of H/d for one value of the relative density. 
To explore the effect of t/d we repeated the calculations for values of t/d in the range 
0.001–0.15. No effect was found on the F/(GLγ )  versus H/d curves, indicating that 
the effect of the relative density only enters through the definition of the shear 
stiffness G. In other words, the overall stiffness S (=F/(Lγ )) can be written in terms of 
the system parameters (neglecting the effect of shear deformation of the cell walls) as 
  

 ( )s, , ,  ,HS t d H E G f
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.13) 

with 
  

 
3

s ,tG cE
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.14) 

 
with the dimensionless constant c and the function f being specific for the cellular 
microstructure under consideration.      
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2.3.2 Uniaxial compression 

We performed uniaxial compression tests for the irregular microstructures 
(perturbed hexagons and Voronoi tessellations) only. Figure 2.12 shows the boundary 
conditions for a uniaxial compression test in the x 1 direction on a perturbed 
hexagonal microstructure in the default orientation. We apply periodic boundary 
conditions on the left and the right boundaries of the structure, to imitate an infinitely 
long material in the x 1 direction, u 1

J−u 1
I = ε 11( x 1

J−x 1
I ),  u 2

J−u 2
I = 0 and φ 3

J−φ 3
I = 0. 

J and I are pairs of nodes on opposite edges of the mesh (see Fig. 2.12). The top and 
bottom boundary nodes are prescribed to be force and moment free. The compressive 
stress is calculated by dividing the sum of the reaction forces on the boundary nodes 
by the area under compression, Hb. The uniaxial compressive stiffness is calculated 
from the ratio of the compressive stress and the compressive strain, and is given by 
F/(Hε 11), with F being the force per unit out-of-plane thickness. The length of the 
specimens relative to the cell size is taken to be large enough (L/d = 150) to ensure 
that the uniaxial compressive stiffness is independent of L/d. We increase the height 
of the block, taking 100 different cuts for each H/d value.  

Figure 2.12: Boundary conditions for a uniaxial compression test on a perturbed hexagonal 
microstructure in the default orientation. 
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Figure 2.13 shows the calculated uniaxial stiffness, F/(Hε 11), normalized by 
the Young’s modulus E, plotted against H/d, for different microstructures. Since the 
the Young’s modulus of the irregular structures differs by only a few percent from 
that of the regular hexagonal structure we used Young’s modulus of the hexagonal 
structure to normalize all calculations: 
 

 3
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4 1( / ) ,
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E E t l
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=

+ +
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see also Gibson and Ashby [1997]. We detect a severe weakening in the small H/d 
regime for all microstructures, with the scatter being much larger for the rotated 
hexagonal microstructures (Fig. 2.13b) compared to the hexagons in the default 
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orientation (Fig. 2.13c) and the Voronoi structures (Fig. 2.13a). Due to the boundary 
conditions, the cell walls located at the boundaries with a normal perpendicular to the 
direction of compression are stress free. In addition, the cells next to these stress free 
boundary layers are also less constrained than those away form the boundaries. The 
area fraction of this weak boundary layer, consisting of both the stress free cell walls 
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Figure 2.13: The calculated uniaxial compressive stiffness, F/(Hε ), normalized by the 
Young’s modulus E, plotted against H/d, for the: (a) Voronoi microstructure. (b) Perturbed 
hexagonal microstructure in the default orientation. (c) Perturbed hexagonal microstructure in the 
rotated orientation. 

11

 
and the less-constrained cells, is large when the height of the specimen is small, 
resulting in a decrease in the macroscopic stiffness. While the specimen size 
increases, the contribution of this weak boundary layer to the macroscopic stiffness 
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diminishes and the compressive stiffness converges to the classical (bulk) value. The 
number of load carrying cell wall members differs from one cut to another for the 
same height, which is the reason for the scatter in data. The largest possible distance 
between two subsequent load carrying cell edges is larger for the default orientation, 
and therefore the scatter in data is larger as well. In the case of Voronoi 
microstructures, we see that the scatter is relatively low, but it shows a tendency to 
slightly increase with increasing H/d, which is the opposite of what would be 
expected. The reason for this is explored below. 

As mentioned before, taking a long structure (L ≈ 143d ) ensures that we have 
enough cells in the samples so that they represent the average characteristics of the 
microstructure analyzed, even for small H/d values. On the other hand, when the 
samples have a large aspect ratio, there is a small additional contribution of 
macroscopic bending to the overall compliance. Therefore, we also analyzed the 
effect of the aspect ratio on the stiffness. On one side we constrain the horizontal 
displacements, u 1(x 1 = 0) = 0 (and the vertical displacements of one node to avoid 
rigid body translations), while we apply a horizontal displacement on the other side, 
u 1(x 1 = L) =  −ε 11L. Calculation of the overall stresses proceeds in a similar fashion as 
before. Figure 2.14a shows the calculated uniaxial stiffness, F/(Hε 11), normalized by 
the Young’s modulus E, plotted against the aspect ratio L/H, for Voronoi 
microstructures with H/d = 3. The solid line in Figure 2.14a passes through the 
average value for each aspect ratio. We see that the scatter in data is very large for 
small aspect ratios, whereas it converges for aspect ratios larger than 10. The 
sensitivity of the average value to the aspect ratio is much smaller; for aspect ratios of 
1 and 5 the difference is about 10 percent, and for 2 and 5 it is about 5.5 percent. For 
aspect ratios larger than 5 the average value is almost the same. The average stiffness 
is always smaller than the corresponding bulk value (weakening behaviour) 
irrespective of the aspect ratio of the samples. The increase of the scatter in data for 
large thicknesses in case of Voronoi tessellations (see Fig. 2.13a) is associated with 
the fact that the length L ≈ 143d is kept constant while changing the thickness H, 
resulting in a decreasing aspect ratio with increasing thickness. Figure 2.14a clearly 
shows that a decreasing aspect ratio leads to an increasing scatter. Figures 2.14b, c 
and d show the calculated uniaxial stiffness, F/(Hε 11), normalized by the Young’s 
modulus E, plotted against H/d, for structures with a fixed aspect ratio L/H = 2 for 
Voronoi structures, perturbed hexagons in the default and the rotated orientations, 
respectively. By comparing Fig. 2.13 with Figure 2.14, we see that the conclusions 
drawn for structures with a fixed length (L ≈ 143d, Fig. 2.13) still holds for structures 
with a fixed aspect ratio L/H = 2 (Fig. 2.14), with the difference between the two 
being that for the latter case the scatter is larger and the average value is slightly 
shifted upwards.  
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Figure 2.14: (a) The calculated uniaxial compressive stiffness, F / (Hε 11), normalized by the 
Young’s modulus E, plotted against L/H, for the Voronoi microstructure with H/d=3. The 
calculated uniaxial compressive stiffness, F / (Hε 11), normalized by the Young’s modulus E, 
plotted against H/d, for L/H=2, for the: (b) Voronoi microstructure. (c) Perturbed hexagonal 
microstructure in the default orientation. (d) Perturbed hexagonal microstructure in the rotated 
orientation. 
 

2.3.3 Pure bending 
The final boundary value problem that we solve is pure bending. The samples 
analyzed are similar to the one shown in Fig. 2.12. A pure bending state is achieved 
by fixing the left end and applying a macroscopic rotation at the right end. The  
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Figure 2.15: (a) The normalized macroscopic bending stiffness, B/B class, plotted against L/H, for 
Voronoi microstructures with H/d=3. The normalized macroscopic bending stiffness, B/B class, 
plotted against H/d, for the: (b) Voronoi microstructure. (c) Perturbed hexagonal microstructure in 
the default orientation. (d) Perturbed hexagonal microstructure in the rotated orientation. 
 
macroscopic rotation is applied through a linearly varying displacement field over the 
sample height. The corresponding displacement and rotation boundary conditions at 
the cell walls read u 1(x 1 = 0) = 0, φ 3(x 1 = 0) = 0 (u 2 = 0 for one node at x 1 = 0 ) and 
u 1(x 1 = L) =  −cLx 2. Here, x 2 is measured from the midsection of the structure and c is 
the curvature. The macroscopic moment is calculated from the reaction forces f1 (k ) in 
the n cell walls at x 1 = L through  
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The discrete bending stiffness B is calculated from M/c. The results are 

normalized with the classical bending stiffness of a dense sample with Young’s 
modulus E and height H, defined as B class = EbH 3/12 (b being the out-of-plane 
thickness). As in the previous section, E is taken to be the stiffness of a regular 
hexagonal structure, given in Equation (2.15).  Figure 2.15a shows the effect of the 
aspect ratio on the macroscopic bending stiffness of Voronoi microstructures with 
H/d = 3. The scatter is larger for smaller aspect ratios. As it was the case for uniaxial 
compression, the sensitivity of the average value to the aspect ratio is very small; for 
aspect ratios of 3 and 7 the difference is about 12 per cent, and for aspect ratios larger 
than 7 the average value is almost the same. Although the sample will not be in pure 
bending for small aspect ratios, the results of Fig. 2.15a show that the effect of aspect 
ratio on the results is small. Figures 2.15b-d show the effect of specimen height on the 
bending stiffness for long, large-aspect-ratio samples (L ≈ 143d ) for Voronoi 
structures (Fig. 2.15b), and perturbed hexagonal microstructures in the default (Fig. 
2.15c) and rotated orientation (Fig. 2.15d). There is a severe weakening in the small 
H/d regime similar to what we observed in the uniaxial compression test, and the 
value of the macroscopic bending rigidity converges to the classical value with 
increasing height. For a classical material, the material points located at the largest 
distance from the neutral axis would have the main contribution to the macroscopic 
bending stiffness. For the cellular microstructure, however, there are stress free 
boundaries and this causes a weakening in the bending rigidity, which is almost 
entirely due to the weakening in the macroscopic uniaxial stiffness. Indeed, the 
appearance of Fig. 2.15 is very similar to Fig. 2.13. Along these same lines, for 
materials which are size-independent under uniaxial loading, no size-effect is 
expected under bending. This is in accordance with the results for square lattices 
(analyzed in the Appendix) that, despite an increase in scatter, show a size-
independent bending stiffness.    

2.4 Conclusions 

We analyzed size effects in the mechanical behaviour of cellular solids. To represent 
the cellular solids in two-dimensions, we used a large range of microstructures, both 
regular (squares and perfect hexagons) and irregular (perturbed hexagons and Voronoi 
tessellations). We performed simple shear, uniaxial compression and pure bending 
tests and analyzed the effect of the size of the samples, relative to the cell size.  Figure 
2.16 summarizes the effect of the specimen size on the macroscopic mechanical 
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that we keep the density the same for every specimen cut. As a result some samples 
have a smaller cell wall thickness and weakening can occur.  

properties of cellular solids. We found that in simple shear the stiffness increases with 
decreasing sample height, while under uniaxial compression and in bending the 
overall (bending) stiffness decreases with decreasing specimen width. We relate these 
size effects to strong boundary layers in case of shear and weak boundary layers in 
case of uniaxial loading and bending. 

Bulk-
value

Stiffness

H/d (number of cells in H)

H

H

H

shear

uniaxial
compression

bending

Figure 2.16: Summary of the size effects observed in the mechanical behaviour of cellular 
solids. 
 

In simple shear, the cell walls connected at the top and the bottom boundaries 
are fully constrained, as a result of the bonding of the cellular material to the face 
sheets. The additional support gives rise to top and bottom regions that are stiffer than 
the interior regions of the material. The thickness of these strong layers depends on 
the boundary configuration (i.e., the length and the orientation of the cell walls at the 
boundaries), and we estimate them to be between 1 and 2 cell sizes. Therefore, the 
specimens with a small thickness, for which the area fraction of the strong boundary 
layers is large, have a larger macroscopic shear modulus compared to the classical 
(bulk) value. With the increasing specimen thickness, the area fraction of the strong 
boundary layers diminishes, and the macroscopic shear modulus converges to the 
classical value. We noted that for some boundary configurations, in case of regular 
microstructures, a weakening behaviour is also possible, which is related to the fact 
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dom to deform and are 
therefo

pecimen size. For the shear results the scatter 
clearly 

In case of uniaxial compression, the cell walls at the free edge are stress free. 
In addition, the cells next to these cell walls have more free

re more compliant. These two phenomena, stress free cell walls and cells that 
are more compliant, are responsible for weak boundary layers parallel to the free 
edges. The contribution of these weak layers is large for small sample heights, leading 
to overall weakening. With increasing specimen height, the area fraction of the weak 
boundary layers diminishes, and the overall stiffness converges to the classical (bulk) 
value. Similar conclusions can be drawn for bending, leading to one weak boundary 
layer in tension and one in compression. The overall weakening due to the boundary 
layers is slightly larger in case of bending, due to the relatively large contribution of 
regions away from the neutral axis. 

Typical for the results presented in this chapter is the presence of the scatter, 
which increases with decreasing s

reflects the periodicity of the microstructure in case of squares and hexagons 
(see Fig. 2.11). By comparing the results for the hexagons in both orientations it can 
be observed that the average stiffening is approximately the same, but the appearance 
of the scatter is very different (see Figs. 2.11b and c). Due to the introduction of 
randomness the periodicity reduces (perturbed hexagons, Fig. 2.11d and e) and finally 
vanishes for fully random structures (Voronoi tessellations, Fig. 2.11f). Note that the 
amount of stiffening increases with randomness (Fig. 2.11). Similar conclusions with 
respect to the scatter can be drawn for uniaxial compression and bending: A large 
difference in scatter behaviour can be observed for the perturbed hexagons depending 
on orientation (see Figs. 2.13 and 2.15).  
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Appendix: Pure bending of square lattices   
In this Appendix we analyze a long slender beam having a square cellular 
microstructure with cell size d. We do not cover the whole range of different cuts (as 
is done in section 2.3.3), but instead we test two extreme cases, Type A and Type B, 
having different lines of symmetry (see the inset of Fig. A1). The beam is in a pure 
bending mode having curvature c, so that the normal strain felt by the discrete 
members is ε (k ) = −x 2

(k )c, with x 2
(k )  being the distance of horizontal member (k) 

from the neutral axis. The effective moment follows from the normal forces f 1
(k )  in 

the horizontal members through  
 

  (A1)   ( ) ( ) ( ) 2
1 2 2

1 1
( )

n n
k k k

s
k k

M f x E btK x
= =

= =∑ ∑
                                                                                                                               
so that the discrete bending stiffness for the Type A and Type B symmetries can be 
written as 
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and 
 

  (A3) 
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n
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−

=

= ∑ 2−

                                                                               
respectively. Here, n is the number of horizontal beams, related to the height of the 
beam, H/d, through 

                                                 

 
mod( ),     for Type A

mod( ) 1, for Type B

H
dn
H
d

⎧
⎪⎪= ⎨
⎪ +
⎪⎩

 (A4) 

                 
The discrete bending stiffness is compared to the continuum bending stiffness, 

B class, obtained by multiplying the stiffness of an infinitely large square material, 
E s t/d, by the moment of inertia of a dense comparison beam, bH 3/12. In Figure A1, 
the discrete bending stiffness, normalized by the continuum bending stiffness, is 
plotted against the normalized height. Although the results are sensitive to the 
symmetry-type (A or B) no clear trend can be observed. The scatter, which is partly 
due to the discreteness of the stiffness and partly due to the discreteness of the 
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moment of inertia, increases with decreasing height.  It should be noted that the cell 
wall thickness t for all the cuts was kept constant and equal to the cell wall thickness 
of an infinitely large structure with the same density. The effect of this on the results 
shown in Figure A1 is expected to be small. 

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Type B
Symmetry line

Type A
Symmetry line

class

B
B

H d

Figure A1: The normalized macroscopic bending stiffness, B/B class, plotted against H/d for 
the square microstructure. Type A and Type B have different lines of symmetry. 
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nding problem of a plane-strain 
micropolar beam and critically address the limitations of the 
micropolar continuum theory.   

 Micropo
Effects 

In this chapter, we fit the elastic micropolar constants of the 
microstructures that we modelled discretely in chapter 2, by 
comparing the discrete and micropolar solutions for the simple shear 
problem in terms of the best agreement in the macroscopic shear 
stiffness. We develop a strain mapping procedure to be able to 
estimate the displacement and strain fields for the discrete 
calculations, and to compare the discrete and the analytical solutions 
for the local response under simple shear. Finally, we give the 
analytical solution for the pure be
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3.1 Introduction 

In the previous chapter, we have shown the size effects in the mechanical behaviour 
of two-dimensional cellular solids (i.e. honeycombs with square, hexagonal and 
Voronoi microstructures), for which we took the discreteness of the cellular 
morphology into account by modelling individual cell walls as beam elements. 
Although the mechanical properties calculated this way are in good agreement with 
experiments, this method is computationally expensive for more complex (especially 
three dimensional) microstructures. Another approach to account for these size effects 
is to use a generalised continuum theory. Here, we use the micropolar (Cosserat) 
theory for this purpose. For an overview of generalized continuum theories, including 
the micropolar theory, the reader is referred to chapter 1.   

The elasticity matrix of a micropolar solid includes new constants relating 
microrotations to antisymmetric stresses, and couple stresses to curvatures (gradient 
of microrotations). In the literature, several homogenization/averaging techniques are 
proposed to obtain these constitutive coefficients for the micropolar theory. In most of 
these studies, cellular solids are represented by lattice frameworks (e.g. Aşkar and 
Çakmak [1968], Banks and Sokolowski [1968], Bazant and Christensen [1972], 
Ostoja-Starzewski et al. [1996], Adachi et al. [1998], Chen et al. [1998]). Micropolar 
homogenization approaches for irregular microstructures suffer from a dependence of 
the resulting effective constants on the specific choice of boundary conditions and 
RVE (representative volume element) size (e.g. Dendievel et al. [1998], Onck 
[2002]). Therefore, we do not use a homogenization technique, but instead, fit the 
elastic constants of the microstructures modelled discretely in chapter 2 by comparing 
the discrete solutions for the simple shear problem with the analytical micropolar 
solution, in terms of the best agreement in the macroscopic shear stiffness.  

In section 3.2, we give the two-dimensional constitutive relations for 
micropolar solids. In section 3.3, we solve the simple shear problem for a micropolar 
continuum. After fitting the elastic constants of each microstructure in section 3.4.1, 
we develop a strain mapping procedure in section 3.4.2. In section 3.4.3, by means of 
this strain mapping procedure, we analyse the microrotation and strain fields for the 
discrete structures and compare them to the corresponding continuum fields of the 
micropolar theory. In section 3.5, we solve the pure bending problem of a plane-strain 
micropolar beam, and section 3.6 concludes this chapter by discussing the limitations 
of Cosserat-type continuum theories. 
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k

3.2 Constitutive equations  

The three-dimensional elastic constitutive relations of a centro-symmetric micropolar 
(Cosserat) solid read 
  
 ,        .ij ijkl kl ij ijkl klC m Dσ γ= =  (3.1) 

 
For the most general case of a two-dimensional anisotropic micropolar solid, the in-
plane elastic constitutive relations can be written in matrix-notation as  
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and in terms of the symmetric and the antisymmetric stresses and strains as    
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where  
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with ω k = (∈ ijk u j,i) / 2 the classical macrorotation vector. By substituting σ ij = s ij + τij 
and γ ij = ε ij + β ij into Equations (3.2) and solving for the symmetric (s ij) and 
antisymmetric (τ ij) stresses, the coefficients of Equations (3.3) are found in terms of 
those of Equations (3.2) as 
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(1) (1) (1)
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According to the constitutive Equations (3.3), a two-dimensional anisotropic 
micropolar solid has 13 independent constants. The discrete structures analyzed in 
chapter 2 fall in two classes: in-plane orthotropic (the square structure) and in-plane 
isotropic (hexagons, perturbed hexagons and Voronoi structures). By incorporating 
the specific symmetries of these structures, it turns out that they can both be written as 
(Nowacki [1986], Dendievel et al. [1998], Wang and Stronge [1999], Warren and 
Byskov [2002]) 
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For general in-plane orthotropic structures there are three independent classical 
constants, C1111, C1122 and (1)

1212A , while for in-plane isotropic structures only two of 
these are independent. In addition, there are two micropolar constants that need to be 
determined, (3)

1212A  and D1313. These constants must be larger than zero to satisfy 
positive definiteness of the strain energy density (Eringen [1999]). 

In the following we will obtain closed-form expressions for the classical 
constants in terms of the microstructural parameters t (cell wall thickness), d (cell 
size), E s (Young’s modulus of the cell wall material) and ν s (Poisson’s ratio of the 
cell wall material). To do so, we start with the general expression of Hooke’s law for 
an orthotropic linear elastic classical material: 
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with 

 31 13 23 3221 12

2 1 3 1 2 3
, , .

E E E E E E
ν ν ν νν ν

= = =  (3.8) 

 
Throughout this thesis, the in-plane properties are those in the x 1-x 2 plane (as shown 
in Fig. 2.1), and the properties in the direction parallel to the axis of the prismatic 
cells, that is in the x 3 direction, are referred to as the out-of-plane properties. The 
Poisson’s ratio ν ij is defined as the negative of the normal strain in the j direction 
divided by the normal strain in the i direction, for normal loading in the i direction (ν ij 
= -ε jj /ε ii, no summation over the indices i and j).  

For squares it can be deduced that 
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with d the length of an edge of a square and with shear deformations taken into 
account. The elastic constants of Equations (3.6) can be obtained in terms of the 
microstructural parameters (t, d, E s, ν s) by inverting Equations (3.7) after substituting 
Equations (3.9). Assuming plane stress conditions (s 33 = s 13 = s 23 = 0), the elastic 
constants read 
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Similarly, for plane strain (ε 33 = ε 13 = ε 23 = 0): 
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The hexagonal microstructures (both regular and perturbed) and Voronoi 

tessellations are transverse isotropic, i.e., there is a plane of isotropy (the x 1-x 2 plane), 
but the material properties are not symmetric with respect to the out-of-plane, or 
transverse (x 3), direction. For transverse isotropy we can therefore write: 
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Because of symmetry, we have in addition: 
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.

E E
ν ν
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For the strain energy density to be positive definite, the elastic constants must satisfy 
(Hibbitt et al. [2001], Padovani [2002]): 
 
 1 2

p t pt p t p, 0,   ( / ) ,   E E E Eν> < 1.ν <  (3.14) 

 
Note that the in-plane Poisson’s ratio ν p can be larger than 0.5, which is not possible 
for isotropic materials. For the transverse isotropic microstructures that we analyzed, 
the main deformation mechanism is bending of cell walls in case of in-plane loading. 
When they are loaded in the out-of-plane direction, on the other hand, the cell walls 
deform by stretching, and consequently the out-of-plane Young’s modulus (E t) is 
much larger than the in-plane Young’s modulus (E p) (see also Table 2.1). As a 
consequence, the Poisson’s ratio associated with the effects of the in-plane loads in 
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the out-of-plane direction is very low, as shown by Gibson and Ashby [1997], and we 
take it to be zero: 
 

 p
pt s
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E
v v

E
= ≈  (3.15) 

 
Now, if we insert Equations (3.12) and (3.15) into Equations (3.7), assume plane 
strain and invert, the in-plane equations follow to be 
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which would be exactly the same if plane stress was assumed. Thus, for the case of 
ν pt = 0, the plane-stress and plane-strain in-plane constitutive relations for a transverse 
isotropic solid are the same and given by (3.16). Comparison of (3.16) with (3.6) 
yields 
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For the regular hexagonal structure, E p and ν p (taking shear deformations into 
account) can be directly written in terms of the microstructural parameters as (Gibson 
and Ashby [1997]) 
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For the irregular structures (perturbed hexagons and Voronoi structures) we will 
perform finite element calculations on large periodic unit-cells to obtain the elastic 
constants.     

The in-plane constitutive equations for an isotropic and a transverse isotropic 
(with ν pt = 0) micropolar solid can both be written in the form of Equation (3.6). For 
an isotropic material (with E and ν ) in plane-strain, the coefficients in the first three 
equations of (3.6) read 
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They can also be written in terms of the classical Lamé constants λ and µ (=G) as 

 
 (1)

1111 2222 1122 12122 ,   ,   2 ,C C C Aλ µ λ= = + = = µ  (3.20) 
 
For isotropic materials the Lamé constants are related to Young’s Modulus and 
Poisson’s ratio as µ = E /2(1+ν ) and λ= 2Eν /{2(1+ν )(1-2ν ). For transverse isotropic 
materials with ν pt = 0 (see Equations (3.16)) the moduli can also be written in terms of 
‘in-plane’ Lamé constants µ p and λ p ,  similar to Equations (3.20), with µ p and λ p  

defined as µ p = E p /2(1+ν p ) and λ p = 2 E pν p/{2(1+ν p)(1-ν p)}. Therefore, if we know 
the solution of a plane-strain boundary value problem for an isotropic material 
expressed in terms of  λ and µ, we can obtain the solution for a transverse isotropic 
material (with ν pt = 0) simply by substituting µ p for µ  and λ p for λ. We will make use 
of this conversion at several places in the thesis. 

3.3 Analytical solution of the simple shear problem  

In this section, we analyze the simple shear of a sandwich panel having a micropolar 
material as a core (see also Diebels and Steeb [2002], Tekoğlu and Onck [2003a, b] 
and [2005]). The boundary conditions are similar as for the discrete structures 
analyzed in chapter 2, i.e. u 1 = −γ H, u 2 = φ 3 = 0 at the top (x 2 = H) and u 1 = u 2 = φ 3 = 0 
at the bottom (x2 = 0). The panel is assumed to be infinitely wide in the horizontal (x1) 
and out-of-plane (x3) directions and is under a state of plane strain. For this situation 
the kinematic equations reduce to: 
  

 (
11 22 2,2

12 1,2 12 1,2 3

13 23 3,2

0,   ,
1 1,  2 ,
2 2
0,  ,

u

u u

k k

)
ε ε

ε β

φ

= =

= = − +

= =

φ  (3.21) 

 
while the equilibrium equations read 
 
 12, 2 12, 2 22, 2 23, 2 120,   0,   2 0.s s mτ τ− = = + =  (3.22) 

 
Inserting (3.21) into (3.22) via the constitutive equations (3.6), yields 

 
 ( ) 1,22 3,21 2m u mφ 0,+ + =  (3.23) 
 
 2, 22 0,u =  (3.24) 
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0, 2
c 3,22 3 1,22l m muφ φ− − =  (3.25) 

 
with 
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The parameter l c is a material length, and it is often referred to as the 

characteristic length. The constant m, on the other hand, is a dimensionless term that 
can be seen as a coupling factor between the microrotation and macrorotation fields. 
For the limit m → ∞, the micro- and macrorotation fields are fully coupled, and the 
micropolar theory reduces to the couple stress theory. We will explore the effect of 
the two higher order constants, m and l c, in the following. The solution of the 
differential equations reads 
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with eigenvalue ω and coefficient P defined as 
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The remaining constants are determined by inserting the boundary conditions into the 
solutions (3.27), (3.28) and (3.29) and are given by 
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The external work done by the surface tractions and couples can be calculated as 
shown on the left side of the virtual work expression (see Equation (1.3)). The 
microrotations and vertical displacements are zero on the surface, so that the surface 
couples Q 3 and vertical tractions t 2 do not contribute to the external work per unit-
out-of-plane thickness, W ex, which reduces to 
 
 1 1 12 12S ( ) .ex

S
W t u d s L H Fτ γ γ= = − =∫  (3.36) 

  
Here, F is the shear force per unit out-of-plane thickness and L the width of the 
sample (introduced to connect the continuum results of this chapter to the discrete 
results of the previous chapter). By substituting the constitutive equations (3.6), one 
can write  
 
 ( ) ( )2

1,2 3,22 1,21 cF LG m u LG l uφ= − + = − + ,  (3.37) 

 
where (1)

1212 2A G=  has been substituted. In the second expression the boundary 
condition φ 3 = 0 has been used, while for the third expression Equation (3.25) has 
been incorporated. These equations clearly emphasize the dependence on the two 
additional micropolar constants present in the theory. For classical elasticity we have 
l c = m = 0 and u 1,2 = −γ , so that F = L Gγ. This force will be used to normalize the 
results for the micropolar solid.  

Figure 3.1a shows the normalized shear force (or normalized shear stiffness), 
F/(LGγ ), plotted against the relative specimen size, H/d, for different values of l c/d 
and a fixed coupling factor (m = 1). For convenience we normalize H and l c with the 
cell size d to facilitate comparison with the discrete results. For l c/d → 0, the solution 
for the micropolar continuum theory reduces to the solution of the same problem in 
the classical continuum theory, irrespective of the coupling factor m. We see that with 
increasing l c/d, the stiffening behaviour in the small H/d regime becomes more 
pronounced, and the convergence rate of the macroscopic shear stiffness, F/(Lγ ), to 
the shear modulus, G, decreases. In the limiting case of l c/d → ∞, it can be easily 
deduced from Equations (3.23), (3.24) and (3.25) that u2 = φ 3 = 0 and u1= −γ x2 is the 
solution of the problem and that the normalized shear modulus does not depend on H 
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Figure 3.1: (a) The normalized shear force (or normalized shear stiffness), F/(LGγ ), plotted 
against the relative specimen size, H/d, for different values of l c/d and a fixed coupling factor 
(m = 1). (b) The effect of m on F/(LGγ ) plotted against H/d for l c/d = 1. The normalized 
microrotation φ 3 /φ 3' (φ 3'= γ /2) through the thickness of a specimen with H/d = 10, for: (c) a fixed 
m and increasing l c/d. (d) a fixed l c/d and increasing m. The normalized symmetric shear strain ε 12 

/ ε 12' (ε 12'= -γ /2), through the thickness of a specimen with H/d = 10, for: (e) a fixed m and 
increasing l c/d. (f) a fixed l c/d and increasing m. The normalized antisymmetric strain β 12 / ε 12' 
(ε 12'= -γ /2), through the thickness of a specimen with H/d = 10, for: (g) a fixed m and increasing 
l c/d. (h) a fixed l c/d and increasing m. 
 
and is given by F/(LGγ ) = 1+ m (see the second expression in (3.37)).  

Figure 3.1b shows the effect of m on F/(LGγ ) plotted against H/d for l c/d = 1. 
In this case, the stiffening behaviour in the small H/d regime becomes more and more 
pronounced as m approaches to the couple stress limit at m → ∞. However, in contrast 
to Fig. 3.1a, the convergence rate of the shear stiffness to the classical shear modulus, 
G, increases with increasing m. For m → 0, the macroscopic shear stiffness does not 
depend on H/d and is equal to the classical value F/(LGγ ) =1.  

Next, we will explore the local fields through the thickness of the specimen, 
responsible for the overall behaviour shown in Figs. 3.1a and b. Figure 3.1c shows the 
normalized microrotation φ 3 /φ 3

' (φ 3
'= γ /2) through the thickness of a specimen with 

H/d = 10 and m = 1. A boundary layer is formed at the top and bottom, characterized 
by the constrained microrotations. The thickness of the boundary layer increases with 
increasing l c/d. Figure 3.1d, on the other hand, shows that for a fixed l c/d, the 
thickness of the boundary layer decreases with increasing m and converges to a 
thickness of approximately l c for m → ∞. Figures 3.1e and f show the normalized 
symmetric shear strain ε 12 / ε 12

', through the thickness of the specimen, for a fixed m 
and increasing l c/d, and for a fixed l c/d and increasing m, respectively. Here ε 12

' is the 
classical shear strain, given as ε 12

'= -γ /2. Similar to the case of the normalized 
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rotations, we see that for a fixed m (l c/d) the thickness of the boundary layer increases 
(decreases) with increasing l c/d (m). 

Note that when l c goes to zero (for fixed m) or when m goes to zero (for fixed 
l c), the overall response is size-independent and the shear stiffness is equal to its 
classical counterpart (see Figs. 3.1a and b), while the symmetric shear strains are 
uniform over the thickness (see Figs. 3.1e and f) for both cases. However, these two 
cases are not equivalent as can be nicely exemplified by analyzing the antisymmetric 
strains β 12 (see Figs. 3.1g and h). For the case of m = 0, the microrotation field is not 
coupled with the displacement field (see Equations (3.23) and (3.25)). Incorporating 
the boundary conditions yields φ 3 = 0 (see Fig. 3.1d) and u 1 = −γ x 2 (or ε 12 = -γ /2, see 
Fig. 3.1f). As a result, the antisymmetric shear strains are not zero as for the l c/d = 0 
case (see Fig. 3.1g), but become equal to β 12 = γ /2 (see Fig. 3.1h). For different 
boundary conditions for φ 3, however, the microrotation field throughout the specimen 
would be different, whereas the displacement field and the macroscopic shear 
stiffness would still coincide with their classical counterparts. The case of zero 
coupling, m = 0, is analyzed by Lakes [1985] as well, for a quasistatic torsion problem 
of a circular cylindrical rod of an isotropic micropolar solid. He showed that for m = 0, 
a given value of applied torque can be realized in more than one way by using 
different boundary conditions. This does not correspond to a failure of uniqueness in 
the usual sense, since different local boundary tractions are associated with different 
displacement and microrotation fields, even though the total microscopic load is the 
same. However, m = 0 is a pathological case in the sense that the macroscopic end 
load does not uniquely determine the displacement and microrotation fields. 
Therefore, the classical elasticity is only recovered as a special case of the micropolar 
theory when both m and l c vanish.  

For the case of m → ∞ (couple stress solution), the microrotations become 
equal to the macrorotations, φ 3 = (u 2,1-u 1,2) /2, and the antisymmetric part of the shear 
strain vanishes (see e.g. Fig. 3.1h), so that the strain tensor becomes symmetric and 
equal to that in the classical continuum theory. The governing differential equations 
for the shear problem follow from combining Equations (3.23) and (3.25) and 
substituting φ 3 = − u 1,2 /2, yielding 
 

 
2

c
1, 2222 1, 22 0,

2
l u u− =  (3.38) 

 
supplemented by Equations (3.24), which stays the same. The external work done on 
the material per unit out-of-plane thickness reduces to  
 

 
2

1 1 1, 222 S
2

ex c
S

lW t u d HGL uγ= =∫ . (3.39) 
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Note that in the limit that l c goes to zero, W ex converges to HGLγ 2, the solution for 
the classical problem. 

3.4 Comparison with the discrete results    

In this section, we will compare the discrete results for the simple shear problem (see 
chapter 2) with the analytical solution for the micropolar continuum theory, and fit the 
micropolar constants, m and l c, to give the best overall agreement. We will, in 
addition, develop a strain mapping procedure that enables a comparison between the 
discrete and continuum deformation fields.     

3.4.1 Macroscopic response 
Figures 3.2a-f show the best fit of the micropolar solution to the average value of the 
discrete results for the macroscopic shear stiffness, F/(Lγ ), for the microstructures 
that we analyzed. To reflect the scatter, we plot the upper and lower bounds as well. 
For all cases, the couple stress solution (m → ∞) gives the best agreement. We see that 
the characteristic length l c depends on the cell orientation in the case of the perfect 
hexagonal microstructure (l c = 0.15d for the default and l c = 0.28d for the rotated 
orientations), whereas the difference is very small for the perturbed case (l c = 0.55d 
versus l c = 0.47d). The stiffening behaviour is the largest for the Voronoi 
microstructure, followed by the square, perturbed hexagonal and perfect hexagonal 
microstructure, respectively, which is reflected in a larger value for the characteristic 
length l c. Clearly, the characteristic length not only scales with the cell size, it also 
depends on the cellular morphology. 
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discrete
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Figure 3.2: The best fit of the micropolar solution to the average value of the di
the macroscopic shear stiffness, F/(Lγ ), for the: (a) Sq
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In this section, we will develop a strain mapping procedure that will be used 
h  different boundary value problems. The finite element 

 

microstructure in the default orientation. (c) Perfect hexagonal microstructure in the rotated 
orientation. (d) Perturbed hexagonal microstructure in the default orientation. (e) Perturbed 
hexagonal microstructure in the rotated orientation. (f) Voronoi microstructure. For all cases, the 
couple stress solution (m → ∞) gives the best agreement with the discrete results. 

3.4.2 Strain mapping 

throug out the thesis for
calculations performed on the discrete models (see chapter 2), provide the 
displacements and rotations of cell vertices, i.e. the locations at which the cell-walls 
meet. Figure 3.3, for instance, shows a Voronoi sample, indicated with red lines, 
having cell vertices that are indicated by black dots. We construct a square 
background grid (black dashed-lines), having grid nodes that are indicated with open 
squares. We take the average of the displacements and rotations at the cell vertices 
that are located inside a square, and assign these average values to each node of the 
square. Here, we only show a single sample for clarity, but in case there are multiple 
samples, the averaging is performed over the vertices of all the samples that are 
located in that square. If a node is shared by n squares, the values of the displacements 
and the rotations at that node are given by the arithmetic average of the values coming 
from each of these n squares. After finding the displacements and the rotations for 
each grid node, we divide each square in two triangles and calculate the strains for 
each triangle using standard finite element techniques. The strains within a triangle

 

Grid Size (GS)
  
Figure 3.3: A square mesh for the strain mapping procedure plotted on top of a Voronoi sample.
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 (3.40) 

 
where N i  (i= p, r, q) are the shape functions for a constant strain triangle (see 

ienkiewicz and Taylor [2000]). Finally, the strains within a square are obtained by 

amples (NS) included in the strain mapping 
proced

tion by prescribing symmetry conditions at 
the left

Z
taking the average of the two triangles.  

The accuracy and the scatter in the estimated displacement and strain fields 
depend, obviously, on the number of s

ure. The samples that we analyze are cut from a large block of material, and 
each one of them corresponds to a different boundary configuration and cell 
distribution. The difference between two samples depends on the cutting step size 
(CSS, see section 2.3.1) and we will see that this affects the number of samples 
required for a converged displacement or strain field. The grid size (GS), i.e. the 
length of the edge of a square of the background grid (see Fig. 3.3), plays an 
important role as well. In the following, we explore the effect of these parameters on 
the strain maps of a uniaxial strain field.  

Figure 3.4a shows a Voronoi sample with a length of 40d and a height of 24d. 
The sample is compressed in the x 1-direc

 and a uniform horizontal displacement field at the right. Figures 3.4b, c and d 
show the strain field ε 11 normalized with the applied strain ε appl for the sample of Fig. 
3.4a, for 25 samples, and for 200 samples, respectively. The grid size is taken to be 
equal to the average cell size and the cutting step size to half a cell size (GS = d and 
CSS = d/2). We see that in the case of a single sample, there are large fluctuations in 
the value of ε 11 (Fig. 3.4b), whereas with increasing number of samples the 
fluctuations decrease (Fig. 3.4c), resulting in a smooth field for 200 samples (Fig. 
3.4d). It can be observed that the strain is underestimated in an edge layer parallel to 
the left and right boundaries. To investigate whether these layers are a consequence of 
the strain mapping procedure or related to the discrete behaviour of the cellular 
material, we applied the strain mapping procedure to a linearly increasing 
displacement-field. The same edge layers were observed as for the discrete structure 
(Fig. 3.4d). The underlying reason of this behaviour is that the squares located at the 
left (right) boundary share only their right-side (left-side) nodes with other squares. 
As a result, the displacements are almost the same for all nodes and consequently, the 
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Figure 3.4: (a) A Voronoi sample with a length of 40d and a height of 24d. The strain field ε 11 
normalized with the applied strain ε appl for: (b) the sample shown in (a). (c) 25 samples. (c) 200 
samples. 
 
strains are much lower for these elements. This is a bias of the strain mapping 
algorithm and results in edge layers with a thickness on the order of the grid size. 
Note that this artefact does not develop at the top and bottom, where the strain ε 11 is 
calculated from the displacement gradients in a direction parallel instead of 
perpendicular to the edges.   

                                 (a)                                                                  (b)  

Figure 3.5: The effect of the number of samples NS on the normalized strain ε 11/ε appl, plotted 
through the thickness at the line x 1 = L/2, for a cutting step size (CSS) of (a) d/10. (b) d/2.  

40L d=

24H d=

(d)(c)

(b)(a)

0.90
0.92

0.97

1.01

1.06

1.10

0.99

1.03

1.08

0.94

11 applε ε

NS=1
NS=50
NS=100
NS=200

11

appl

ε
ε

2x d

11

appl

ε
ε

2x d

NS=1
NS=50
NS=100
NS=200

 



Micropolar modelling of size effects  65 
 

Figures 3.5a and b show the normalized strain ε 11/ε appl through the thickness 
at the line x 1 = L/2, for a cutting step size (CSS) of d/10 and d/2, respectively. In both 
cases, the fluctuations in the ε 11/ε appl value decreases with increasing number of 
samples NS, as it would be expected. The convergence rate, however, is much larger 
for the case of CSS = d/2: The field averaged over 50 samples (NS = 50) for CSS = 
d/2 (Fig. 3.5b) is almost the same as the field averaged over 200 samples (NS = 200) 
for CSS = d/10 (Fig. 3.5a).    

                                                                       (a) 
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                                      (c)                                                                  (d) 

Figure 3.6: (a) The effect of the grid size GS on the normalized strain ε 11/ε appl, plotted through 
the thickness at the line x 1 = L/2 for CSS = d/2 and NS = 200. The normalized rotation φ 3 /φ 3' 
(φ 3'= γ /2) (b) and the normalized shear strain ε12/ε12' (ε12'=-γ /2) (c) through the thickness, for 
samples with H = 10d and L = 100d.  
 

Figure 3.6a shows the effect of the grid size GS on the normalized strain 
ε 11/ε appl, plotted through the thickness at the line x 1 = L/2 for CSS = d/2 and NS
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The res

L = 100d. The rotation φ 3 and the shear strain ε 12 
corresponding to an x 2 coordinate are the average values over all the nodes with the 
same x 2 coordinate along the length L of the samples. We see that the gradients near 
the top and bottom boundaries can be better picked up with small grid sizes, at the 
expense of an increased scatter in the central region.  

We can summarize the effects of the different strain mapping parameters as 
follows. 

• The number of samples (NS) should be large enough to smooth out the 
fluctuations in the field variables. An increase in the cutting step size (CSS) 
can significantly reduce the number of samples NS required for a converged 
solution. 

• The optimal grid size (GS) is the one that is small enough to capture the 
gradients in non-uniform regions and large enough to provide relatively 
smooth fields in uniform regions. 

3.4.3 Local response 
In section 3.4.1 we found that the best fit to the global results (i.e. the macroscopic 
stiffness) was made by the couple stress theory (m → ∞). Each specific cellular 
microstructure resulted in a specific value for the characteristic length, which turned 
out to be on the order of the cell size (ranging from l c = 0.15d to 0.9d). In this section, 
our aim is to see how accurate the corresponding local continuum fields correspond to 
the discrete results. To do so, we analyze the normalized rotations φ 3 /φ 3

' (φ 3
'= γ /2) 

and the normalized shear strains ε 12 / ε 12
' (ε 12

'= -γ /2) through the thickness of samples 
with height H = 5d and 10d.                                       

Figures 3.7a and b show the normalized microrotation φ 3 /φ 3
' for the square 

microstructure (corresponding to Fig. 3.2a). To accurately account for the fields we 
smaller step size, CSS = d/10 instead 

nesses. These 

d case (Fig. 3.7b), explaining why the stiffening for 
e H = 10d case is lower as well (cf. Fig. 3.2a). 

ults are as expected: The larger the grid size, the smoother the strain field. 
However, to be able to capture the gradients in the field variables, the grid size should 
be small enough. To investigate that, we plot the rotations and strains through the 
thickness for the Voronoi samples tested in shear in chapter 2 (section 2.3.1, Fig. 
2.11f).  Figures 3.6b and c show the normalized rotation φ 3 /φ 3

' (φ 3
'= γ /2) and the 

normalized shear strain ε12/ε12
' (ε12

'=-γ /2), respectively, through the thickness, for 
samples with H = 10d and 

repeated the calculations from chapter 2 using a 
of d/5. The discrete data correspond to the rotations of cell vertices (i.e. the locations 
where four cell walls meet). The fit is very good for both sample thick
figures clearly show that the thickness of the strong boundary layers located at the top 
and bottom of the samples is the same for both sample heights, approximately one cell 
size. As a result, the ratio of the boundary layer thickness to the total specimen 
thickness is smaller for the H = 10
th
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normal
microst
by applying the strain m
and
microro
Figs. 3.8a and b), whereas for the shear strain (Figs. 3.8c and d), all values at the 

ordinate are shown in addition to the averages. We see that 

                                      (a)                                                                  (b) 

Figure 3.7: The normalized rotation φ /φ ' (φ '= γ /2) for

cCouple Stress ( 0.5 )l d=
Discrete Structure 

2

H
x

'
3 3φ φ

2x
H

'
3 3φ φ

cCouple Stress ( 0.5 )l d=
Discrete Structure 

3 3 3  the square microstructure with: (a) 
H = 5d. (b) H = 10d. 
 

Figures 3.8a (c) and b (d) show the normalized microrotation φ 3 /φ 3
' (the 

ized shear strain ε 12 / ε 12
') through the thickness, for the Voronoi 

ructures with H = 5d and H = 1 0d, respectively. The discrete data is obtained 
apping procedure as explained in section 3.4.2 with NS = 100 

 GS = d/2 (note that the 100 samples were cut with CSS = d/10). For the 
tation, only the average value at each x 2-coordinate is shown (dashed lines in 

nodes with the same x 2-co
the couple stress theory is able to nicely pick up the local fields and the boundary 
layer thickness for each case. For both the rotations and strains for the H/d = 5 case the 
average discrete fields are slightly overestimated, although the continuum solution is  
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                                                                         (e)         

Figure 3.8: The normalized rotation φ 3 /φ 3' (φ 3'= γ /2) through the thickness, for the Voronoi 
microstructures with: (a) H = 5d. (c) H = 1 0d. The normalized shear strain ε 12 / ε 12' (ε12'=-γ /2) 
through the thickness, for the Voronoi microstructures with: (b) H = 5d. (d) H = 1 0d. (e) 
Comparison of the strain maps for the couple stress solution (l c/d = 0.9) and discrete analyses with 
the best fit for the couple stress theory for Voronoi tessellations. All the strain maps are for a grid 
size GS = d/2. 
 
well located within the scatter band of the discrete results. For the H/d = 10 case, the                             
agreement is very good. To investigate the role of the strain mapping procedure in the 
discrepancy between the discrete and continuum solution for the H/d = 5 case, strain 
maps are constructed of the analytical (exact) displacement fields. As input for the 
strain map procedure we take the displacement values given by the analytical solution 
at the locations of the grid points for a grid size GS = d/2. Figure 3.8e shows that the 
strain map for the analytical solution overestimates the field variables in the boundary 
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layers as well. In addition, the analytical strain map slightly underestimates the
analytical shear strains in the central (core) region. Thus, the difference between the 
discrete and couple stress results is partly due to the inaccuracy in the strain mapping 
procedure, and partly due to the inaccuracy in the couple stress prediction. 

3.5 Analytical solution of the pure bending problem  

In this section, we will solve the pure bending problem of a straight plane-strain beam 
(i.e. a plate that is infinitely wide in the out-of-plane direction) for an isotropic, 
centro-symmetric micropolar material. The midplane of the plate is set as the x 1-x 3 

 

 

 pure bending 
x 2-x 3 plane, 

 

plane, the x 3 direction coinciding with the out-of-plane direction. The
assumption states that “transverse plane sections (that are parallel to the 
in our case) remain plane and normal to the longitudinal fibres”, see Fig. 3.9.  

1x2

R

x

H

Figure 3.9: Notation and geometry of the plane-strain pure bending problem. 
 

The most general displacement field that satisfies this can be written as 
 

2
1 1 2 2 1 2 32

1 1,  ( ) ,  0,u x x u x f x P u
R R

 
where R is the radius of curvature, f a function of x 2 alone and P is an integration 
constant. The kinematic equations reduce to: 
  

 

= = − + + =  (3.41) 

11 2 22 , 2 12

12 1 3 13 3,1 23 3, 2

1 ,   ,   0,

1 , ,  ,

x f
R

x k k
R

ε ε ε

β φ φ φ

= = =

⎛ ⎞= − + = =⎜ ⎟
⎝ ⎠

 (3.42) 

 
while the equilibrium equations are similar to the shear problem and given in 
Equations (3.22). Since the shear strains ε 12 are zero, the first equilib
(Equation 3.22a) combined with the constitutive behaviour (see Equations (3.6)) and 

rium equation 
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the kinematics states that k23 must vanish. As a result, the third equilibrium equation 
(Equation 3.22c) corresponds to τ 12 =β 12 =0, so that the only expression for the 
microrotations that satisfies equilibrium is given by 
 

 3 1
1 .x
R

φ = −  (3.43) 

 
Finally, from the second equilibrium equation (Equation 3.22b) and the requirement 
that the surface tractions t i and surface couples Q i must vanish at the top and bottom, 
the remaining unknowns in Equations (3.41) can be determined, yielding  
 

 2 21122
1 1 2 2 1 2 3

1 1,  ( ),  0,Cu x x u x x u= = − + =  
11112R R C

(3.44) 

 
which is equal to the solution of the bending problem in classical elasticity. Using the 
virtual work expression (1.2), we can find the bending moment per unit out-of-plane 
thickness acting on the beam as 
 

 

2 2

11 2 2 13 2
2 2

2 3
1122

1111 1313
1111

 d  d

    .
12

H H

H H

M s x x m x

C H HC D
C R

− −

= −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

∫ ∫

R

 (3.45) 

 
Multiplying the bending moment M with the radius of curvature R yields the bending 

 material (Equations (3.19)) and 
c length (Equation (3.26a)), the normalized 

stiffness B. By substituting the moduli for an isotropic
using the definition of the characteristi
bending stiffness B /B class can be written as 
 

 
2

class
1 12(1 ) ,clB

B H
ν ⎛ ⎞= + − ⎜ ⎟

⎝ ⎠
 (3.46) 

 
with the classical bending stiffness B class defined as  
 

 
3

class 2 .
12(1 )

EHB
ν

=
−

 (3.47) 

 
The above results agree with the solutions given by Koiter [1964] and Gauthier and 
Jahsman [1975]. Similarly, by substituting the moduli for the transverse isotropic  
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material (Equations (3.17)), we find  
 

 
2

class

121 ,
1

c

p

lB
B Hν

⎛ ⎞= + ⎜ ⎟+ ⎝ ⎠
 (3.48) 

 
with  
 

3E H
 p

malized 
bending stiffness for a transverse isotropic material with ν p = 0.9, which is a 
representative value for the cellular microstructures that we analyzed. We see that, as 
in the case of simple shear (see Fig. 3.1a), for l c/d → 0, the solution for the micropolar 
continuum theory reduces to the solution of the same problem in the classical 
continuum theory. There is a stiffening in the small H/d regime (B/B class > 1), which 
becomes more pronounced with increasing l c/d. Note that our results for the discrete 
models (see chapter 2), on the contrary, show weakening, i.e. a lower bending rigidity 
for small heights. For larger heights, the bending stiffness converges to its classical 
counterpart. Figure 3.10b shows the effect of the Poisson’s ratio on the stiffening 

                                      (a)                                                                  (b) 

igure 3.10: (a) The effect of the characteristic length l  on the normalized bending stiffness for 

class .
12

B =  (3.49) 

 
Since we have ν pt = 0 for the transverse isotropic materials, there is no coupling with 
the out-of-plane dimension and the classical bending stiffness (Equation (3.49)) is 
lower than the classical bending stiffness for isotropic materials (Equation (3.47)). 

Figure 3.10a shows the effect of the characteristic length l c on the nor

behaviour; the stiffening is larger for a lower Poisson’s ratio. 
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a transverse isotropic material with ν p = 0.9. (b) The effect of the Poisson’s ratio ν p on the 
normalized bending stiffness for l c/d = 0.9. 
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e investigated the effect of the 
o additional micropolar constants: the coupling factor m and the characteristic 

l c. By comparing the analytical and the di
roblem in terms of the macroscopic shear stiffn

crete results only if the coupling factor m was taken to be very large 

 From the 
omparison it was found that l c scales with the cell size d and depends on the cellular 

l c/d in the range 0.15 – 0.9.   
We developed a strain mapping procedure to be able to obta

ased on the displacement data given by the discrete calculations. For the square and 

y the analytical couple stress solution. It was shown 
at the characteristic length l c obtained by fitting the macroscopic shear stiffness 

resulted in an excellent agreement between the discrete and continuum microrotation 
and strain fields. 

Hexagonal materials have six-fold symmetry in the x
them transversely (in-plane) isotropic both in classical and micropolar continuum 
theories (see also section 2.2.1). This means there is only one l c value for the regular 
exagonal structure, irrespective of its orientation. This is clearly in contradiction 

ter, it also decreases the difference 
etween the two orientations (Figs. 2.11d and e and Figs

fitting procedure is more accurate, leading to values of l c that are close together. The 
sults for the fully random structures are orientation-independent with a limited 

 into account the isotropy of the 
ructures, good fits are obtained for l c/d = 0.28 for the regular hexagons, l c/d = 0.47 
r the perturbed hexagons and l c/d = 0.9 for 

characteristic lengths also reflect the increasing stiffening with increasing 
ndomness.  

3.6 Summary and discussion 

In this chapter, we have solved the simple shear and the pure bending problems 
analytically for the micropolar continuum theory. W
tw
length screte solutions for the simple shear 
p ess, we found that it was possible to 
fit all dis
(m → ∞). In this limit, the micropolar theory reduces to the couple stress theory in 
which microrotations are no longer independent degrees of freedom but are 
constrained to be equal to the macroscopic rotations, (u 2,1-u 1,2)/2.
c
morphology, with 

in the strain fields 
b
the Voronoi microstructures, we used this strain mapping procedure to compare the 
discrete microrotation and strain fields for the simple shear problem with their 
continuum counterparts given b
th

1-x2 plane, which makes 

h
with Fig. 3.2b and c, yielding two different values for l c for the default (l c = 0.15d) 
and the rotated (l c = 0.28d) orientation. However, the large scatter in the discrete 
results and the relatively low stiffening makes it hard to find a unique fit; i.e. taking l c 
= 0.28d would also make a reasonable fit for the default hexagons that falls well 

ithin the scatter band (see Figs. 2.11b and 3.2b). Randw
hexagonal structure not only reduce the scat

om imperfections in the 

b . 3.2d and e). As a result, the 

re
amount of scatter (Figs. 2.11f and 3.2f). By taking
st
fo the Voronoi structures. These 

ra
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le stress theory (m → ∞). Warren and Byskov 
997] and Chen et al. [1998] found m =1, lc/d = 0.289 and m =1, lc/d = 0.577, 

es, Warren and B
ab [1998] and Wang and Stronge [1999] found m=0.5 

al. [1998] found m=0.5 and lc/d = 0.22. By comparing the continuum solutions based 
s  parameters with the discrete results and the best couple stress fits (Figs. 3.2a-
follows that the ‘homogenization parameters’ have a strong tendency to 

ate the discrete stiffening effect. It should be noted, however, that the 
atter in the small H/d regime is too large to make

The system parameters that determine the overall elastic response to a shear 

The current study enables a comparison with existing homogenization studies 
on regular lattices. For square structures, Banks and Sokolowski [1968] and Adachi et 
al. [1998] found lc/d = 0.289 for coup
[1
respectively. For regular hexagonal structur yskov [2002], Pradel and 
S and lc/d = 0.11, while Chen et 

on the
), it 

e
c
underestim
sc  any conclusive statements.   

deformation in couple stress theory are H, E p, ν p and D 1313. The overall stiffness S 
(=F/(Lγ ))  can be written in terms of the system parameters as 
 

 ( )p p 1313
c

, , ,  ,HS H E D G g
l

ν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.50) 

 
 
with 2G = Ep/(1+νp), 2

c 13132 ,l D G= and the function g being dependent on H/ l c 
only. As discussed in section 2.3.1 a similar expression for the average discrete results 
was obtained in terms of the microstructural parameters: 
 

 ( )s, , ,  ,HS t d H E G f
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.51) 

 
with 

 
3

,s
tG cE
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.52) 

 
and c a dimensionless constant. By taking G to be the classical shear stiffness of the 
specific cellular microstructure under consideration in both Equation (3.50) and 
(3.51), the function g can be fitted to the discrete function f, which was found to yield 
l c = α d, with α  a dimensionless constant between 0.28 and 0.9, depending on cellular 
morphology. By using the definition of l c, the new micropolar constant D 1313 can be 
written in terms of the microstructural parameters as  
 

 ( )2
1313 2 ,s

tD cE dα⎛ ⎞= ⎜ ⎟  
3

d⎝ ⎠
(3.53) 
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esults show softening while micropolar theory 
predicts stiffening for non-zero values of the characteristic length (independent from 

ects leading to softening 
, giving the opposite effect instead.  

with α and c dimensionless constants specific for the cellular microstructure under 
consideration.  

For pure bending the discrete r

the value of the coupling factor m). Clearly, free edge eff
cannot be captured by the micropolar theory
 

 



44  
the simple shear and the pure bending problems, and compare the 
esults with the discrete analyses of chapter 2.       

 
    

Strain Divergence Theory 
In this chapter, we propose a higher-grade continuum theory that 
treats the divergence of the strains as an independent deformation 
measure, in addition to the classical strains. We derive the 
equilibrium equations and the natural boundary conditions. We solve 

r



76  Chapter 4 
 

4.1 

4.2 

Introduction  

The discrete results obtained in Chapter 2 show that a stiffening mechanism is 
triggered when the cellular materials are subjected to an applied shear deformation. 
By analyzing the local deformation fields we learned that boundary layers form that 
are associated with gradients in micro-rotations and shear strains. Another 
deformation mode that is often associated with deformation gradients and size effects 
is bending. However, under pure bending the stiffening mechanism was found to be 
not active. Instead, free-edge effects resulted in overall weakening, which was also 
observed under uniaxial loading, i.e. in the absence of gradients. Aim of this chapter 
is to find a generalized continuum theory that is able to pick up the stiffening 
mechanism under shear, but leaves it inactive under bending. 

The stiffening mechanism in the micropolar theory is associated with the 
gradients in microrotation. These are triggered under shear and when fully coupled to 
the macroscopic rotations, are able to accurately describe the global (stiffening) and 
local (boundary layer) response of the discrete microstructures analyzed. However, 
the same rotation gradients are active under bending as well, erroneously leading to 
stiffening. Here, we focus on the gradients of strain instead. The particular strain 
gradient measure should preferably coincide with the shear strain gradient in shear 
and should be absent in bending. For this, we propose to use the divergence of strain 
as an additional deformation measure in the theory. 

In section 4.2 we derive the equilibrium equations and the natural boundary 
conditions of the strain divergence theory. In section 4.3, we develop a finite element 
implementation of the theory. Section 4.4 shows the analytical solution for the simple 
shear problem and the comparison of the analytical and the discrete results in terms of 
the macroscopic shear stiffness. In section 4.5, we solve the pure bending problem 
analytically for the strain divergence theory and finally, in section 4.6, we summarize 
and discuss the results. 

Strain divergence theory  

The deformation measures in strain divergence theory are the conventional strain ε ij 
and the divergence of strain η i, defined as  
 

 , , , , ,
1 ( )   and   ( ).
2 2ij j i i j i ij j j ij i jju u u uε η ε= + = = +

1  (4.1) 
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For a linear elastic, anisotropic material, the strain energy density function can be 
written as  
  

 1( , ) ,
2ij i ijkl ij kl ijk ij k ij i jw C B Dε η ε ε ε η= + + η η  (4.2) 

 
where the linear terms in ε ij and η i are omitted to have zero stress in the undeformed 
state. Note that in the third term of Equation (4.2), the components of the vector η k 

change sign under an inversion of the coordinate system, whereas the components of 
the tensor ε ij do not. To have an objective strain energy density, B ijk must be a 
pseudo-tensor (i.e. a tensor whose components change sign under an inversion of the 
coordinate system). For a material with central symmetry, however, the elastic 
constants must be independent with respect to an inversion of the coordinate system, 
and this requires the tensor B ijk to vanish (see also section 1.3.1). 

The constants D ij are new higher-order constants associated with the 
divergence of strain η i, and they have unit of force. The Cauchy stress tensor σ ij and 
the higher-order stress vector τ i are work conjugates to the strain tensor ε ij and to the 
strain divergence vector η i, and are given as  
  

   and   2 ,ij ijkl kl i ij j
ij i

w wC Dσ ε τ
ε η
∂ ∂

= = = =
∂ ∂

η

d .

 (4.3) 

 
respectively. For an isotropic material, D ij = aδ ij, with “a” being a positive constant. 
The variation of the total strain energy in a volume V can be written as  
 
 

1 2

 d  d  ij ij i i
V V V

I I

w V V Vδ σ δε τ δη= +∫ ∫ ∫  (4.4) 

 
I 1 and I 2 are the parts of the total strain energy density associated with the 
conventional and higher order terms, respectively. Applying Gauss’s divergence 
theorem, I1 yields 
 
 1 d  i ij j ij i j

S V
, d ,I n u S u Vσ δ σ δ= −∫ ∫  (4.5) 

 
where n i is the outward unit vector normal to the boundary surface S of the volume V. 
I 2 can be written as  
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1 2

2 , ,
1 d  
2 i j ij i i jj

V V

P P

d .I u V u Vτ δ τ δ

⎛ ⎞
⎜ ⎟
⎜= +
⎜
⎜ ⎟
⎝ ⎠

∫ ∫ ⎟
⎟

d .

 (4.6) 

 
Applying Gauss’s divergence theorem to P 1 gives 
 
  (4.7) 

1 2

1 , , ,d  j i j i i j j i
S V

K K

P n u S u Vτ δ τ δ= −∫ ∫

 
Note that if δ u j is already specified on the surface S, the surface part of δ u j,i cannot 
be prescribed independently. Therefore, to be able to correctly determine the 
independent boundary conditions, we decompose the gradient operator into its surface 
and normal components (see e.g. Mindlin [1964]),  
 
 ,i i iD n D∂ = +  (4.8) 
 
where the surface gradient operator D i and the normal gradient operator D are defined 
as 
 
 ( )    and   ,i ij i j j kD n n D n kδ= − ∂ = ∂  (4.9) 

 
respectively. Now we can write K 1 in terms of the components of the gradient vector, 
 
  (4.10) 1 [ ( ) ( ) ] di j i j i j i j i j i j

S

K D n u D n u n n Duτ δ τ δ τ δ= − +∫ .S

.

 
To further reduce the first term of K 1 we make use of Stokes’ surface divergence 
theorem. This theorem states that the integral of the surface gradient of a continuously 
differentiable vector function v on a surface S having and edge C, can be written as  
 
  S ( )  d  di i i i j j i i

S S C

D v d D n n v S z v s= +∫ ∫ ∫  (4.11) 

  
In (4.11), z i =∈ ijk  q nj k where ∈  is the Levi-Civita permutation tensor, q  is the unit 
tangent vector along the edge C, n

ijk j

k is the unit normal to the surface S and s is the arc 
length along C in the direction of q . The positive sign of q  is such that “a man 
walking along the edge C in the positive q  direction will find the interior of S to the

j j

j  
left, provided his head is in the positive n k direction” (Malvern [1969]). For the 
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.

situation that the volume V has a surface S that consists of m smooth surface segments 
S , with each surface segment having an edge C , it follows thatm m   
 
  d ( )  d  d

m

i i i i j j i i
mS S C

D v S D n n v S z v s= +∑∫ ∫ ∫  (4.12) 

 
Figure 4.1, for instance, shows a volume V with a surface S consisting of 32 surface 
segments S m (20 hexagons and 12 pentagons). The last term of Equation (4.12) is the 
 

S1

C1

z (1)
q (1)

n (1)

n(2)

q (2)
z(2)S2

C2

C

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Ill  with respect to 
the surfaces S

ustration for the positive directions q (1) and q (2) along an edge C

m of all integrals over the closed contours C m. This means that each edge segment 

).  (4.13) 

 
y substituting z i

(d ) =∈ ijk q j
(d )n k

(d ), (d = 1, 2) and accounting for the fact that the 

d ,  (4.14) 

1 and S 2 to which it is connected.  
 
su
C (see Fig. 4.1) has contributions from two contour integrals (over the edges C1 and 
C2 in Fig. 4.1) associated with the two adjacent surface segments S1 and S2: 
 

1 2

(1) (1) (2) (2d di i i i i i
C C C

z v ds z v s z v s= +∫ ∫ ∫ 

B
tangents q j have opposite directions, q j

(2) ds (2) = − q j
(1) ds (1),  the contribution of an 

edge C to the last term of Equation (4.12) can be written as 
 

(1) (1) (2) (1) (1) (1)( )  dijk j k k i i i
C C

q n n v s b v s∈ − = ∆∫ ∫ 
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ith ∆b i
(1) =∈ ijk q j

(1)(n k
(1)− n k

(2)). The edge contribution is assoc
∆b i

(1)  that vanishes when there are no sharp edges (n k
(1) = n k

(2)). If written in terms of 

D n n n D n u S

n n Du S z n u s

τ τ δ

τ δ τ δ

−

+ +∑∫ ∫
 (4.15) 

 
By applying Gauss’s divergence theorem to K 2 in Equation (4.7), we find  

(4.16) 

Following the same procedure for P 2 in Equation (4.6), we can write the variation in 
e total strain energy density as  

 

w iated with the jump 

jumps as in Equation (4.14), the contour integrals in Equation (4.12) reduce to line 
integrals and the summation extends over all line segments (such as C in Fig. 4.1). 
Here, we will not do so, but continue with the expression in Equation (4.12). 
Applying Stokes’ surface divergence theorem (Equation (4.12)) to the first term of K1 
in Equation (4.10) yields   
 

1K = ∫ [( ) ( )]  d

    ( )  d d .

p p i j i i j i j
S

i j i j i j i j
mS Cm
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1                      [ { ( )( ) ( ) }
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2

1                 [ ( )]  d
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ij i i ji j ii j
V V

i ij p p j i i j i j j i

i j i i j j

i j i i j j
S

u V

n D n n n

D n n u S

n n n Du S

τ τ δ

σ τ τ τ τ

τ τ δ

τ τ δ

+ +

+ + − +

− + +

+ +

∫

∫
1               ( )  d .
2

m

i j i i j j
m C

z n n u sτ τ δ+∑ ∫

 (4.17) 

 
The external work done on the body is  

,j j j j j
mV S C

r Du S s u sδ δ+ +
 
  d (ex

j j jW f u V t uδ δ= + ) d  d
m

∑∫ ∫ ∫  (4.18) 

where f j is the body force per unit volume, t j is the surface traction, r j is the higher-
rder surface traction and s j is the line force acting over any sharp edge C m. By 

 

o
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equating the external work done on the body to the internal energy stored, we obtain 
the equilibrium equations  
 

 , , ,
1 ( )
2ij i i ji j ii jfσ τ τ 0,− + + =  (4.19) 

 the volume V, and the boundary conditions on the su
dges C m, respectively,  

 

 
in rface S and along the sharp 
e
 

*
, ,

*

* *

1{ (i in D nσ +
1)( ) ( ) } ( )

2 2
                                                 or   ,

1                         ( )    or   ,
2

j p p j i i j i j j i i j i i j j

j j

i j i i j j j j

n n D n n t

u u

n n n r Du Du

τ τ τ τ τ τ

τ τ

+ − + − + =

=

+ = =

 (4.20) 

and 

 * *1 ( )    or   ,
2 i j i i j j j jz n n s u uτ τ+ = =  (4.21) 

here the superscript * indicates a prescribed quantity on t
dge. Note that the strain divergence theory is a special case of Toupin-Mindlin’s 

4.3 Finite element implementation 

To ana ns of the strain divergence theory 
for engineering problems with complex geometries and/or complex loading 

 
w he surface, or along an 
e
strain gradient elasticity: If the four higher-order constants (a 1, a 2, a 4, a 5) in Equation 
(1.14) vanish, the strain gradient theory reduces to the strain divergence theory, with 
a 3 = a.  

lytically solve the partial differential equatio

conditions is a tedious job and even impossible in some cases. Therefore, we will 
develop a finite element implementation of the strain divergence theory in this 
section. The strain divergence involves second order gradients of the displacements, 
which requires C 1-continuous interpolation functions (i.e., both the function and its 
derivative are continuous at the interface between elements) for the usual 
displacement-based finite elements. However, there exist no robust C 1-continuous 
finite elements in the literature for higher order continuum theories (Shu et al. [1999], 
Engel et al. [2002]). Hence, we will re-write the virtual work principle in such a form 
that it is sufficient to use C 0-continuous shape functions. For this purpose, we 
introduce extra nodal degrees of freedom through a second order tensor φ ij, and a 
related deformation vector ˆiη = (φ ij + φ ji), j /2. If we strictly enforce the constraint  
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 ,ij i juφ =  (4.22) 

 
ˆeverywhere, then ˆiη  becomes exactly equal to η . In that sense, φ  and i ij iη  can be 

ferred to as the ‘relaxed’ displacement gradie
o enforce this constraint we will use a penalty method. We define an error e ij as  

re nt and strain divergence, respectively. 
T
 
 , ,ij i j ije u φ= −  (4.23) 
 
and a work conjugate penalty measure ρ ij as 
 
 ,ij ijkeρ =  (4.24) 

here k is the penalty factor. Now, the kinematic
e volume in an average sense through 

hich also ensures that the error e ij will be small at the surface.
smooth surface (so that the line integral at the right hand side of Equation (4.18) 

anishes), the virtual work principal may be written, in the absence of body forces, as  

here R ij = n ir j. For plane strain loading conditions, the principle of v
be written in vector form as  

here 
 

,

 (4.28) 

 

 
w  constraint (4.22) may be enforced in 
th
 
  d 0   (no summation on  and ),ij ij

V

e V i jρ δ =∫  (4.25) 

 
w  Finally, assuming a 

v
 
 ˆ( ) d ( ) d ,ij ij i i ij ij j j ij ij

V S

e V t u R Sσ δε τ δη ρ δ δ δφ+ + = +∫ ∫  (4.26) 

 
w irtual work can 

 
 T Td  d ,V Sδ δ=∫ ∫χ κ q f  (4.27) 

V S

 
w

T
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κ, χ, f and q are the generalized stress, generalized strain, generalized traction and 
nodal degrees of freedom vectors, respectively. The superscript T indicates the 

anspose of a matrix or vector. To be able to obtain a unique s
prescribe four independent boundary conditions on a smooth surface, see Equations 
(4.17). If the tractions t j

* and higher order tractions r j
* on the surface are known, the 

oundary conditions to be specified for the finite element method are 

*

tr olution, one has to 

b
 
 * *  and   .j j ij i jt t R n r= =  (4.29) 

  
Note that for the remainder of this chapter, subscript indices take the values 1 and 2 
only. In case of pure displacement loading (u j

* and Du j
* are prescribed), we have 

 
 .* *  and   j j ij j iu u n Du Dφ= = +

u j
*. 

o make this explicit, we can write 

j iu  (4.30) 

 
Equation (4.30b) consists of four boundary conditions, of which only two are 
independently related to Du j

*. The additional two enforce that the relaxed 
displacement gradients tangent to the surface are equal to the surface gradients of 
T
 
 ( ) ( ) ,  ij ik k j ik k jn n m mφ φ φ= +  (4.31) 

u m m uφ  (4.32) 

wing that the first two equations of (4.32) are used to describe the 
e 

Figure 4.2a and b show two triangular elements that we developed for the 
rain gradient elasticity, to which we refer as the linear 
spectively. The linear element has in total 18 degrees of freedom, six at each node, 

d strain vector χ is related to the nodal values of displacements u i and the 
laxed

 
where m i is a unit vector tangent to the surface. Equation (4.30b) is then identical to 
 
 n Dφ = * *

,and  = ,ik k i ik k k i k

 
clearly sho
boundary conditions and the second two to complete the constraint e ij = 0 at th
surface.  
 
st and the quadratic element, 
re
namely u 1, u 2, φ 11, φ 22, φ 12, φ 21. The displacements u i and the relaxed displacement 
gradients φ ij are both interpolated using standard linear shape functions. The 
generalize
re  displacement gradients φ ij via 
 
 .eLN=χ q  (4.33) 
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Figure 4.2: Sketch of (a) a linear element and (b) a quadratic element. 
 
where L is the differential operator matrix, N is the shape function matrix and q e is the 
vector for the 18 nodal degrees of freedom for an element.  L is given as 
 

1 2 1 2

2 1 20 0 0 0 0x x x⎢ ∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥

 
1

1

2 1

0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 2 2 0 0 0 1

Tx x x x
x

x

x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎥∂ ∂

∂ ∂ −⎢ ⎥

⎥
⎥∂ ∂ ∂ ∂ −⎣ ⎦

 
    
The generalized stress vector κ is related to the generalized strains χ through   

 ,

2

2 1

,0 0 0 0 0 1 0 0
0 0 0 2 2 0 0 1 0

L x
x x

=
∂ ∂ −⎢ ⎥

⎢ ∂ ∂ ∂ ∂ −
⎢

 (4.34) 

 
1 2( )D kD= +κ χ  (4.35) 

where 
 

1111 1122

1122 1111
(1)

0
0

C C
1212

2

0 00
2

2 , .0
2 1

0 0 1
0 0 1

0 1
0

C C

A

a D
a

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥

0
⎢ ⎥⎢ ⎥

1D
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎥⎢
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦
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 (4.36) 
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D 1 relates the stress σ ij and the higher order stresses τ i  to the strains ε ij and the strain 
divergence ˆiη , and D 2 relates the error e ij to the penalty measure ρ ij. Note that the 
classical coefficients can be obtained for several cellular microstructures from chapter 
3. By substituting Equations (4.33) and (4.35) in the principle of virtual work for one 
element, Equation (4.27), it follows that  
 
  d ,T T T T T

1 2( ) de e e

V S

B D B kB D B V N Sδ δ+ =∫ ∫q q q f  (4.37) 

 
here B = LN. The discretised equilibrium equations read 

 
V  (4.39) 

  
1

e and K 2
e form together the stiffness matrix K e for an element, and they introduce 

n point, respectively.  
The linear element (Fig. 4.2a) uses linear shape functions; therefore a patch 

st for this element must satisfy  

,i i i iu A B x C x

w
 

 1 2( ) ,e e e e e eK kK q K q f+ = =  (4.38) 

with 
 

1 1 2 2d      and      d .e T e T

V V

K B D B V K B D B= =∫ ∫ 

K
five and four independent relations at each Gauss integratio

te
 

1 2 
, ,ij i juφ

= + +

ent is satisfied. In addition, 
iffness matrix for a patch should be non-singular provided 

at the rigid body modes are eliminated (for a detai
see e.g. Zienkiewicz and Taylor [2000]). If we use a single Gauss integration point for 
oth K 1

e and K 2
e,  the total number of independent equations is nine, whereas a 

=
 (4.40) 

 
for all possible patches and boundary conditions. In other words, if the values 
corresponding to the fields given in (4.40) are prescribed at the boundary nodes, the 
finite element calculations should give the exact values of the displacements u i and 
the relaxed displacement gradients φ ij for the internal nodes (consistency 
requirement). We used several different patches containing at least one internal node 

om which it was concluded that the consistency requiremfr
to ensure stability, the st
th led discussion of the patch test, 

b
single element has thirteen degrees of freedom after subtracting the minimum number 
of degrees of freedom required to eliminate the rigid body motion. As a result, it fails 
the stability test. The singularity of the total stiffness matrix disappears for patches 
with large number of elements. It should be noted that for large patches the element is 
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th the analytical solution for 
e simple shear problem. 

.4 Analytical solution of the simple shear problem 

susceptible for locking for large values of k, since the stiffness matrix K 2
e is non-

singular (see e.g. Zienkiewicz and Taylor [2000]).        
The quadratic triangular element (see Fig. 4.2b) has six nodes. It has 24 

degrees of freedom in total: Each corner node contains all six degrees of freedom (u 1, 
u 2, φ 11, φ 22, φ 12, φ 21) and each mid-side node contains only two displacement degrees 
of freedom (u 1, u 2). Displacements u i are interpolated using quadratic shape functions 
and the relaxed displacement gradients φ ij are interpolated using standard linear shape 
functions. For that reason, next to the patch test performed in the case of linear 
element, we also performed a quadratic patch test, where 
 

 
2 2

1 2 1 2 1 2 ,
.

i i i i i i iu A B x C x D x x E x F x
uφ

= + + + + +

=
 (4.41) 

,ij i j

 
K 1

e and K 2
e are integrated by three- and one-point Gaussian quadrature, respectively. 

For several assemblies tested, as well as a single element, the quadratic triangular 
element satisfies both the consistency and stability requirements of the patch test. In 
addition, K 2

e is singular, so that locking will not occur when k becomes large.  
In the next section, we will show the convergence for the linear and quadratic 

elements by comparing the finite element calculations wi
th

4

Figure 4.3 shows the boundary conditions of the simple shear problem for the strain 
divergence theory in plane strain. In addition to the displacement boundary conditions 
corresponding to the classical problem, we specify the higher-order boundary 
conditions (Du 1 = Du 2 = 0, at x 2 = 0, H). The first higher-order boundary condition,  

1u Hγ= − = = = =1 2 2 2, 0, 0, 0 (or 0)Du u Du r

 
Figure 4.3: Illustration of a finite element mesh and boundary conditions for the simple shear 
problem using strain divergence elasticity.  

1 1 2 2 20, 0, 0, 0 (or 0)u Du u Du r= = = = =

H
2x
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u 1 = u 1,2 = 0, represents the perfect bonding between the face sheets and the core 

nts at the nodes where they connect to the face 

D
material, which was embodied into the discrete calculations by fixing the rotational 
degrees of freedom of the beam eleme
sheets (see Fig. 2.9). The second boundary condition, Du 2 = u 2,2 = 0, however, is 
physically less clear. One could equally well prescribe the work-conjugate higher-
order surface traction, r 2 = 0. In the following we will explore both possibilities. 

The sample is taken to be infinitely long in the x 1 direction, and therefore, all 
field variables are independent of x 1. The kinematic variables are 
  

11 22 2, 2 12 1, 2
10,   ,   ,
2

u uε ε ε= = =
  

1 12, 2 1, 22 2 22,2 2, 222

(4.42) 

 the absence of body forces, the equilibrium equations (4.19
 

1 ,  .u uη ε η ε= = = =

  
In ) reduce to 

 12, 2 1, 222
1 0,σ τ− =  (4.43) 

 
a
 
nd  

 22, 2 2, 22 0.σ τ− =  (4.44) 

serting the kinematics into the equilibrium equations via the constitutive equations 
quations (4.35) with k = 0) gives 

 
In
(E
 
 2

c 1, 2222 1, 22 0,l u u− =  (4.45) 

 
and 
 

2 1111
c 2,2222 2,22(1)

1212

2 0Cl u u
A

,− =  (4.46) 

here l c is the characteristic length defined as  
 
w
  

2 c (1)
1212A

.al =  (4.47) 

he solutions of these differential equations read 
  
T  
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nd 

 (4.49) 

ith K1 = 1/l c and 

 1 2 1 2
1 1 2 2 3 4 ,K x K xu C C x C e C e−= + + +  (4.48) 

 
a
 

2 2 2 2
2 1 2 2 3 4 ,K x K xu D D x D e D e−= + + + 

 
1

2(1)
2 1111 1212 c( / 2 ) /K C A l=w . Incorporating the boundary conditions 

r u 1 yields  

 

fo
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1 1

1 1
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1 1

1
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K H e K H e

H eC
K H e K H e

γ

γ

γ

−

−

−

−

−

−

+ −
=

− − − +

−
=

− − − +

−
=

− − − +

−
=

− − − +

 (4.50) 

 
For u 2, both choices of the higher order boundary conditions, u 2,2 = 0 or r 2 = 0 at 
x 2 = 0 and H, give the same result:  

he non-vanishing tractions at the top surface of the sample are 

HKγ −

 
 1 2 3 4 20 0.D D D D u= = = = ⇒ =  (4.51) 
 
T
 

(1)
1212

1 1, 2 1, 222 1 1, 22  and   
2 2 2

t u au r au= − = 1 1 .A  (4.52) 

ince the work-conjugate to r 1, Du 1, is zero on the surface, the ex
out-of-plane thickness is done solely by t 1 and reduces to  

here L is the width of the sample and 

 
S ternal work per unit 

  
 2

1 1 c 1, 222d ,ex

S

W t u S HGLl uγ= =∫  (4.53) 

 
(1)
1212 2A G=w  has b

from Equations (4.48) and (4.50) it follows that in the limit that l c goes to zero, W  ex 
onverges to HGLγ 2, the solution for the classical problem. 

een substituted. Note that 

c
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ement fields and overall 
respons

By comparing the governing equations and boundary conditions of the shear 
problem for strain divergence theory (see above) and couple stress theory (see 
Equations (3.38) and (3.39)), it follows that the displac

e are identical, provided that  
 

 
Couple Stress

Strain Divergence c
c .ll =  (4.54) 

2

 chapter 3, we have shown that the couple stress th
predict the local and global response for the analyzed discrete structures under simple 

ear, yielding specific values for the characteristic couple stress length. Therefore, 

 the normalized shear strain ε 12 /ε 12
' (ε 12

'= -γ /2) through the thickness of a 
sample

plotted for an increasing number of elements in the x 2 direction (NE).  

 
In eory is able to successfully 

sh
the characteristic strain divergence length can be directly obtained from Equation 
(4.54).  

In Figures 4.4a and b, we show the convergence for the linear and the 
quadratic finite elements implemented in the previous section, respectively. We 
compare

 with H/d = 10 and  l c/d = 0.64, for the analytical and finite element solutions (d 
is the cell size). The finite element mesh is shown in Fig. 4.3. The vertical 
displacements along the sides of the column are constrained to be zero. The penalty 
factor k in Equation (4.35) needed to constrain the relaxed displacement gradients φ ij 
to be equal to u i,j was found be at least (1)

121250 .A  To trace the convergence, we 
gradually increase the number of elements in the x 2 direction (NE). Both linear and 
quadratic elements give a converged solution with increasing NE, with the 
convergence rate being much larger for the quadratic element.   

(a) (b) 

Figure 4.4: Convergence study for (a) the linear and (b) the quadratic elements. The normalized 
shear strain ε 12 / ε 12' (ε 12'= -γ /2) through the thickness of a sample with H/d = 10 and l c/d = 0.64 is 
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4.5 Analytical solution of the pure bending problem 

3

g assumption states that 
“transverse plane sections (that are parallel to the x 2-x 3 plane, in our case) remain 
plane a s that the 
shear s 12 ent field 

In this section, we will solve the pure bending problem for the strain divergence 
theory1. The midplane of the plate is set as the x 1-x 3 plane, the x  direction coinciding 
with the out-of-plane direction (see Fig. 3.9). The pure bendin

nd normal to the longitudinal fibres”. A direct consequence of this i
trains ε  are zero throughout the beam. The most general displacem

that satisfies this can be written as 
 

 2
1 1 2 2 1 2 3

1 1,  ( ) ,  0,
2

u x x u x f x P u
R R

= = − + + =  (4.55) 

 
where f is a function of x 2 alone and P is an integration constant. The corresponding 
non-vanishing in-plane strains and strain divergence are  
 

11 2 22 , 2 2 , 22
1 ,  ,   and  . x f f
R

ε ε η= = =  (4.56) 

 found as  

 

 
By inserting (4.56) into the constitutive equations (Equations (4.35) with k = 0), the 
non-vanishing in-plane stresses and higher-order stress are
 

2
11 1111 1122 , 2

2 22 1111 , 2 1122

2 ,222 .

, 

, 

xC C f
R

xC f C
R

afτ =

σ

σ

= +

= +  (4.57) 

The only non-trivial in-plane equilibrium equation is 
 

 

 22, 2 2, 22 0,  σ τ− =  (4.58) 

which combines with Equation (4.57) to yield the governing differential equation 
 

  
  

, 2222 1111 , 22 1122
12 0af C f C .
R

− − =  (4.59) 

                                                

 
 

 
1  See the Appendix for a summary of the bending solution for the strain gradient theory. 
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The solution of (4.59) reads 
 

1111 1111
2 22 1C Cx xa 211222 2

1 2
1111 11112

a a C
2 3 2 4. f q e q e

C R C
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 we merge the two constants q 4 in Equation (4.60) and P in Equation (4.55) into a 
our unknowns (q 1, q 2, q 3, B ) to be determined from the 

oundary conditions. The tractions at the top and the bottom surfaces are zero, 
yielding the (non-trivial) boundary conditions  

x q x q+ +  (4.60) 
−⎛ ⎞

 
If
single constant B, we have f
b

 
2 22 2,2 2 
2 2 2   at   2 .r x H

( ) 0   at   2 ,

0

t x Hσ τ

τ

= ± − = = ±

= = = ±
 (4.61) 

2 1 2 lving the four equations for the four 
nknowns yields 

 
The first two equations (t 2 = 0 at ± H/2) are not linearly independent, which leaves 
only 3 independent equations. The fourth equation comes from specifying the 

isplacement u  to be zero at x = x = 0. Sod
u
 

1111

 
1111

1 2 3

2
1111

,    0.
4

1
C H

a

q q q
a

C R e

8
1111 1122

C H
aBC C e

= = − = =
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

 (4.62) 

 
Now that we know the displacement fields, we can calculate the macroscopic bending 
moment by using the external work expression (4.18). The line force si acting at the 

arp out-of-plane edges of a cross-section perpendicular to the len
follows from Equation (4.21) to be (s 1, s 2, s 3) = (τ 2/2, τ 1/2, 0) at x2 = H/2 and (s 1, s 2, 

s 3) = (-τ 2/2, -τ 1/2, 0) at x2 = - H/2. The component of the edge force that does work is 
s 1, but since τ 2 = 0 is prescribed at the top and bottom surfaces, this contribution 
anishes. As a result, the bending moment per unit out-of-plane thickness can be 

sh gth of the beam 

v
written as 
 

 
2 2

2 11 2 2 2,2 2 2
2 2

1d ( ) d .
2

H H

H H

M x x x xσ τ τ
− −

= − +∫ ∫  (4.63) 

 
The second integral in Equation (4.63) vanishes irrespective of the material 
parameters and we are left with  
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2

2 11 2
2

d .
H

H

M x xσ
−

= ∫  (4.64) 

 
his expression has exactly the same form as the classical bending moment. In the 

higher-order boundary conditions at the traction-free 
p and bottom surfaces. As a result, σ 11 as given in Equations (4.57), is non-linear 

over the cross-section. In the following we will analyze the difference between the 
rain divergence and the classical solution for is
aterials, for which the material constants C1111 and C1122 in Equations (4.57) follow 

T
strain divergence theory, however, the vertical displacement field u 2 differs from that 
in classical elasticity due to the 
to

st otropic and transverse isotropic 
m
from Equations (3.19) and (3.17), respectively. The ratio of σ 11 for the strain 
divergence theory, σ 11

S D, to the corresponding one for the classical continuum 
theory, σ 11

C, can be written for isotropic materials as  
 

 
C 2SD

,2 2211
C

11

(1 )
1 ,

1 2
f ε νσ

νσ

−
= +

−
 (4.65) 

 
and for transverse isotropic materials (with a zero out-of-plane Poisson’s ratio, 
ν pt = 0), as 
 

C 2SD
, 2 22 p11

C 2
11 p

1 ( )
.

1
f ε νσ

σ ν
−

=
−

  (4.66) 

 
ere, ε 22

C is the classical strain field and ν p the in-plane Poisson’s ratio. Note that 

characteristic length, f falls back onto its classical counterpart (see Equation (4.60)), 
s it should be. For zero Poisson’s ratio, σ 11

S D /σ 11
C =1, irrespective of the value for 

the characteristic length. Figure 4.5a and b show f /ε C and σ S D /σ C,  
spectively, plotted against the normalized distance fro

, for a transverse isotropic material with a characteristic 
 f C

H
f , 2 /ε 22

C depends on the Poisson’s ratio and the characteristic length. For a vanishing 

a
,2 22 11 11

re m the neutral axis, 2x 2/H, on 
the upper half of the beam
length o  l c = 0.64d and for H = 2d. We see that f , 2 /ε 22  is between 0.3 and 0.4 for 
ν p = 0 and converges to one as the value of ν p approaches the incompressibility limit 
ν p = 1. σ 11

S D /σ 11
C, on the other hand, is constant and equal to one throughout the 

whole beam for ν p  equal to zero. With increasing ν p, the ratio increases uniformly 
over the cross-section until ν p ≈ 0.7. With a further increase of ν p, σ 11

S D /σ 11
C 

increases towards the top surface and falls back to one in the middle of the beam. For 
ν p approaching the incompressibility limit, ν p = 1, its value gets very large in a small 
region close to the top surface (σ 11

S D /σ 11
C = 46 at ν p = 0.9999). The tendencies are 

the same in the case of isotropic solids, and will not be shown here.  



Strain divergence theory  93 
 

 

                                      (a)                                                                  (b) 

Figure 4.5: The ratio of (a) the transverse strain ( f , 2 )  and (b) the normal stress (σ 11
S D )  given 

by the strain divergence theory to their classical counterparts (ε 22
C and σ 11

C, respectively), for 
transverse isotropic materials with a characteristic length of l c = 0.64d, a height of H = 2d and with 
different Poisson’s ratios ranging from ν p = 0 to ν p ≈ 1.  
 

Multiplication of the bending moment with the radius of curvature R yields the 
bending stiffness. The bending stiffness of a classical isotropic continuum beam is  
 

 
3EH

class 2 .
12(1 )

B
ν

=
−

 (4.67) 

 
To be able to write the normalized bending stiffness in a more convenient way, we 
will introduce a function g(x 2) such that  
 

 1122
2 2 , 2 2

1111

1( ) ( ) .Cg x f x x
R C

= +  (4.68) 

 
T n as  hen, the normalized bending stiffness can be writte
 

 
2

2 23
class

1  d .
(1 2 ) 2

12 (1 ) H

H

B R x g x
B Hν −

= +
− ∫  (4.69) ν ν−

isotropic case (with a zero out of plane 
oisson’s ratio, ν pt = 0), can be find in a similar manner as 

  
The corresponding solution for the transverse 
P
 

 
2

22 3

12
1  dpRB

2
class 2

,
(1 )

H

p H

x g
ν

= + ∫ x
B Hν −−

 (4.70) 
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with the classical bending stiffness defined as 
  

3
p

class . 
12

 
igure 4.6 shows the normalized bending stiffness plo

E H
B =  (4.71) 

tted as a function of the 
ormalized height H/d, for an increasing Poisson’s ratio for the couple stress theory 
quation (3.48)) and the strain divergence theory (

characteristic length is taken to be the one obtained by fitting the continuum results of 
 discrete results of the Voronoi 

fening in the small H/d regime for both cases.
creasing Poisson’s ratio for the strain divergence

ouple stress theory. For the same Poisson’s ratio, the stiffening is larger for the 

Figure 4.6: The normalized bending stiffness plotted as a function of the normalized height H/d, 
for an increasing Poisson’s ratio, for the couple stress (in blue) and strain divergence (in red) 
theories. The arrows denote the direction of increasing ν p.   

F
n
(E Equation (4.70)). The 

the shear problem to the corresponding
microstructures: l c

CS = 0.9d (corresponding to l c
SD = 0.64d). We see that there is 

stif  The stiffening increases with 
in  case, whereas it decreases for the 
c
couple stress solid, but the difference vanishes as we approach to the 
incompressibility limit ν p = 1. For Poisson’s ratio’s smaller than, say, ν p < 0.7, the 
stiffening for the strain divergence solution is small, whereas it is quite high for the 
couple stress solution.   
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s ’s ratio, the stiffening of a strain 
divergence solid is less than the stiffening of a couple stress solid, with this difference 
being l

4.6 Summary and conclusions 

In this chapter we developed a higher-grade continuum theory that falls in the class of 
Toupin-Mindlin’s strain gradient theories. The theory incorporates the divergence of 
strain to be the additional higher-grade kinematic measure. Fist, we derived the 
equilibrium equations and the boundary conditions for the strain divergence theory. 
We developed a finite element implementation of the theory making use of the 
penalty approach. Then, we solved the simple shear problem analytically and assessed 
the accuracy of the finite element method. The strain divergence and couple stress 
theory turn out to yield the same solution for the simple shear problem, provided that 
the characteristic length for the strain divergence solid l c

CS is related to the 
characteristic length for the couple stress solid l c

CS via l c
SD = l c

CS/√2 .   
In the plane strain bending of a classical solid, ε 22 varies linearly through the 

thickness of the beam. In the case of a strain divergence solid, however, ε 22 becomes 
non-linear (i.e. exponential) as a result of satisfying both the classical and additional 
higher-order boundary conditions. This difference in ε 22 results in an increasing 
bending stiffness with decreasing specimen thickness, being larger for larger 
Poisson’s ratios. Nevertheless, for the same Poi son

arger when the Poisson’s ratio is low.  
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Appendix: Pure bending for the strain gradient theory 
In this appendix we summarize the analytical solution of the plane-strain pure bending 
problem for Toupin-Mindlin’s strain gradient theory. The geometry of the problem is 
shown earlier in Fig. 3.9. The displacement field that satisfies the pure bending 
assumption for the strain gradient elasticity is the same as given for the strain 
divergence theory in Equations (4.55). The corresponding non-vanishing in-plane 
strains and strain gradients (see Equations (1.13)) are 
 

                                                  
11 2 22 , 2

211 222 , 22

1 ,  ,   

1 and . 

x f
R

f
R

ε ε

η η

= =

= =
                                     (A1) 

 
By inserting (A1) into the constitutive equations (1.15), the non-vanishing in-plane 
stresses and higher-order stresses are found as  
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The only non-trivial in-plane equilibrium equation is 
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which combines with (A2) to yield the governing differential equation 
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The solution of (A4) reads 
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where   a h = a 1 + a 2 +  a 3 + a 4 +  a 5. Combining the two constants q 4 in Equation (A5) 
and P in Equation (4.55) into a single constant B, we have four unknowns (q 1, q 2, q 3, 
B ) to be determined from the boundary conditions. The non-trivial traction boundary 
conditions at the top and the bottom surfaces are  
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The first two equations (t 2 = 0 at ± H/2) are not linearly independent, which leaves 
only 3 independent equations. The fourth equation comes from specifying the 
displacement u 2 to be zero at x 1 = x 2 = 0. Solving the four equations for the four 
unknowns yields 
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In the case of the strain gradient elasticity, the line forces s k acting at the sharp edges 
read 
 
                                                                   ,k j i ijks z n τ=                                         (A8) 
 
which reduce to (s 1, s 2, s 3) = (τ 112+τ 211, 0, 0) at x2 = H/2 and (s 1, s 2, s 3) = (−τ 112−τ 211, 
0, 0) at x2 = −H/2 for the out-of-plane edges of a cross-section perpendicular to the 
length of the beam. By inserting these and the (higher-order) tractions in the external 
work expression (4.18), the macroscopic bending moment per unit out-of-plane 
thickness can be written as 
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Multiplying the bending moment with the radius of curvature R yields the bending 
stiffness.  
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e 
generalized continuum theories can capture the effect of the hole size 
(relative to the cell size) on the strain distribution around the hole. 

 Higher-order effects on the 
strain distributi
cylindrical hole  

In this chapter, we investigate the plain-strain problem of a circular 
cylindrical hole in an infinitely large block under a field of uniaxial 
tension. First, we analyse the analytical solutions for the strain 
divergence, couple stress and classical theories. Then, we perform 
discrete analyses on Voronoi samples and compare the results with 
the continuum solutions. Finally, we critically assess whether th
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5.1 Introduction 

The effects of a hole on the strain/stress distribution in a solid material, which is 
uniform at points distant from the hole, is of great practical importance for the 
engineer; the strain/stress concentration induced by the hole may initiate fracture at 
the overstrained/overstressed portions close to the hole boundary. The classical 
continuum solution for circular cylindrical holes gives good agreement with 
experiments on conventional dense metals if the hole is large enough compared to the 
grain size of the crystalline aggregate (see Timoshenko and Goodier [1970] and the 
references therein). However, the classical theory is size-independent and the effect of 
the hole size relative to the size of the micro-constituents is absent in the solution. To 
capture possible hole size effects, one need to employ a generalized continuum 
theory.     

The effects of the hole size on the overall properties and the local strain fields 
have been investigated experimentally for cellular metals and polymers (see e.g. Fleck 
et al. [2001], Paul et al. [1999], Mora and Waas [2000] and Dillard et al. [2006]). 
Mora and Waas [2000] investigated the strain concentration around a circular 
cylindrical hole in a polycarbonate honeycomb. They were not able to detect any size 
effects for the hole problem, in contrast to the case of a rigid circular inclusion. In that 
case they were able to fit the experimental results by using the couple stress theory. 
Dillard et al. [2006] studied the strain fields around a hole in an open-cell nickel 
foam. They concluded that the strain concentration around the hole is closely related 
to the hole size relative to the cell size: for large hole sizes the experimental results 
agreed with classical continuum theory. For a hole size comparable to the cell size, 
however, they did not observe any strain concentration. 

Our aim in this chapter is to investigate the effects of the hole size (relative to 
the cell size) on the strain distribution in an infinite elastic block under uniaxial 
tension. In section 5.2, we first summarize the analytical solution for the strain 
gradient theory, which we use to obtain the corresponding solution for the strain 
divergence theory. Then, we compare the analytical solutions for the strain 
divergence, couple stress and classical theories. In section 5.3, we perform finite 
element calculations on discrete Voronoi models containing holes with different radii. 
We extract the strain distribution throughout the samples from the nodal 
displacements given by the finite element calculations by applying a strain mapping 
procedure developed earlier in section 3.4.2. In section 5.4, we compare the analytical 
and discrete results, in terms of the strain concentration around the hole, both 
qualitatively and quantitatively. Finally, we summarize this chapter and discuss the 
results in section 5.5. 
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u ,

5.2 Strain divergence and couple stress solutions  

In this section, we discuss the analytical solutions of a hole in a strain divergence and 
a couple stress material subjected to a far-field uniaxial stress state. We will compare 
these solutions with the classical field through the relevant dimensionless parameters.    

The governing equations of the strain gradient theory, for an isotropic body 
with a smooth bounding surface, are given in section 1.3.2. If we insert the kinematics 
(1.13) into the equilibrium equations (1.19a) via the constitutive relations (1.15), we 
obtain the displacement equations of equilibrium  
  
  (5.1) 2 2 2 2

1 2  ( 2 )(1 ) (1 ) 0l lλ µ µ+ − ∇ ∇∇ − − ∇ ∇×∇× =iu
 
with 
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+
,  (5.2) 

 
where u is the displacement vector, ∇ is the gradient operator, ∇ 2 is the Laplacian 
operator (see the Appendix for its definition) and l 1 and l 2 are the two characteristic 
lengths of a strain gradient material. Note that any kinematically admissible 
displacement field for an isotropic strain gradient material must satisfy Equation (5.1).   

1x

r

0r

2x

θ
T T

Figure 5.1: Notation and geometry of an infinite plane with a circular cylindrical hole subjected 
to remotely uniform tension.  
 

Figure 5.1 shows the boundary conditions corresponding to the plane-strain 
problem of a circular cylindrical hole (in an infinitely large block) under a field of 
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uniaxial tension. Eshel and Rosenfeld [1970] obtained the solution u of the partial 
differential equation (5.1) for these boundary conditions (a brief summary of their 
solution is given in the Appendix), and showed that the solution depends on five 
independent and dimensionless parameters, namely, 
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where ν is the Poisson’s ratio and r 0 is the hole radius. 

As mentioned earlier in section 4.2, the strain gradient theory reduces to the 
strain divergence theory if the four higher-order constants (a 1, a 2, a 4, a 5) vanish, with 
a 3 = a. In this case, β 1 and β 2 are zero, we have a single characteristic length l c as 
defined in Equation (4.47) and, as a result, p 1 and p 2 are no longer independent (see 
Equations (5.3)). This leaves only two independent parameters that enter the solution, 
namely,   
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 (5.5) 

 
The solution to the same problem is given by Eringen [1999] for the 

micropolar theory, and by Mindlin [1963] for the couple stress theory. Since the 
couple stress theory is a special case of both the micropolar and strain gradient 
theories (see table 1.1), the solution can also be obtained from the micropolar solution 
by imposing m→∞ (see section 3.3) or from the strain gradient solution by 
performing the reduction as discussed in section 1.3.2. Similar to the strain divergence 
theory, the couple stress solution depends on the two dimensionless parameters given 
in Equations (5.5), with the corresponding couple stress characteristic length1. As it 
would be expected, for p→∞ (or l c→ 0), the solution converges to the solution of the 

 
1 Note that Mindlin’s definition for the couple stress characteristic length is (1) 1 2

c 1313 1212( 2 )l D A= . 
Therefore, the characteristic length that we defined in Equation (3.26), i.e. (1) 1 2

c 1313 1212(l D A= )  should 
be divided by 2  when using Mindlin’s [1963] solution.  

 



Higher-order effects on the strain distribution around a circular hole 103 
 
same problem in classical elasticity, for both theories. We note in passing that the 
related problem of a cylindrical rigid inclusion in a field of uniaxial tension is 
investigated for the couple stress theory by Hartranft and Sih [1965] and by Weitsman 
[1965]. The more general cases of spherical and cylindrical elastic inclusions are 
analyzed for the micropolar theory by Zhang and Sharma [2005]. 

As discussed in detail in section 3.2, the discrete cellular structures analyzed 
are transverse isotropic with a zero out-of-plane Poisson’s ratio (ν pt = 0). The 
equations for a plane-strain isotropic problem (Equations (5.1-5) in this case) can 
simply be converted to their transverse isotropic (with ν pt = 0) counterparts by 
replacing µ with µ p and λ with λ p. In the following, the results are given for 
transverse isotropic materials (with ν pt = 0). 

Figures 5.2a-f show the effects of the (in-plane) Poisson’s ratio, ν p, and p (the 
ratio of the hole size r 0 to the characteristic length l c) on the distribution of the strain 
component ε 11, normalized by the applied strain ε appl (i.e. the strain ε 11 applied far 
away from the hole). Figures 5.2a, c and e (5.2b, d and f) are for a classical, strain 
divergence and couple stress solid, respectively, and all three solids have a Poisson’s 
ratio of ν p = 0.3 (ν p = 0.94). The classical case corresponds to p→∞, and for the 
strain divergence and the couple stress solids p is taken to be equal to one, small 
enough to exemplify the higher order effects. The value ν p = 0.3 represents a low 
Poisson’s ratio solid, whereas ν p = 0.94 is the value for the Voronoi honeycombs 
analyzed discretely in chapter 2. Due to the symmetries of the problem, only the upper 
right quarter is shown in Figs. 5.2a-f. For all six cases it holds that the effect of the 
hole on the strain distribution is localized in a regime near its boundary; the value of 
the strain ε 11 rapidly approaches the applied strain ε appl moving away from the hole. 
For the classical solid, the strain concentration factor at the edge of the hole at θ= π/2 
does not depend on ν p and is equal to ε 11/ε appl = 3 (see Figs. 5.2a and b). The strain 
distribution around the hole, however, is quite sensitive to the value of ν p. Along the 
line θ= π/2, ε 11 approaches ε appl faster for the larger Poisson’s ratio (ν p = 0.94), 
whereas at approximately θ= π/4, it approaches ε appl slower. For the strain divergence 
solid, the strain concentration factor (ε 11/ε appl  at x 2 = r 0 and θ= π/2) decreases with 
increasing ν p (ε 11/ε appl≈ 2.92 for ν p = 0.3, and ε 11/ε appl≈ 2.34 for ν p = 0.94), whereas 
the strain concentration remains more localized around the hole (see Figs. 5.2c and d). 
For decreasing ν p, the solution for a strain divergence solid converges to the solution 
for a classical solid (with the same ν p), irrespective of the value of p; for ν p = 0, the 
two solutions are the same. Clearly, a non-zero value of ν p is needed to trigger higher-
order effects in the case of the strain divergence theory. A similar effect was observed 
in pure bending (see Fig. 4.6). In the case of the couple stress solid, on the other hand,
  

 



104  Chapter 5 
 

 

               (a)                                                                  (b) 

                                      (c)                                                                  (d) 

           

e hole size r 0 to 
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Figure 5.2: The effects of the (in-plane) Poisson’s ratio, ν p, and p (the ratio of th
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ical, (a) and (b), 

π for νp=0.3 and 
11/εappl≈ 2.22 for ν p = 0.94, see Figs. 5.2e and f). For the same p and ν p values, the 

a

gence theory and the gradient of the (macro-) 
rotation

applied strain ε appl (i.e. the strain ε 11 applied far away from the hole) for a class
strain divergence, (c) and (d), and for a couple stress solid, (e) and (f). (a), (c) and (e) are for a 
Poisson’s ratio of ν p = 0.3 and (b), (d) and (f) for a Poisson’s ratio of ν p = 0.94. 
 
there is an opposite tendency in the value of the strain concentration factor (ε 11/ε appl  
at x2=r0 and θ= /2); it increases with increasing νp (ε11/εappl≈2.02 
ε
strain concentration factor at the edge of the hole is lower for the couple stress solid 
than for the strain divergence solid. The difference between the two cases diminishes 
s the Poisson’s ratio approaches the incompressibility limit ν p→ 1, at which value 

they are very different from the classical solution (compare Figs. 5.2b, d and f). In 
summary, for low Poisson’s ratio materials, the couple stress field is very different 
from the strain divergence field (which closely resembles the classical field), whereas 
they are very similar for large Poisson’s ratio materials, in which case they differ 
considerably from the classical field.    

The differences between the classical and the higher order/grade solutions are 
associated with the additional deformation mechanisms appearing in the theory: the 
divergence of strain for the strain diver

 for the couple stress theory. To exemplify this, we show the contour plots of 
one component of the strain divergence, η 1 (and one component of the curvature, k 13) 
for the classical and strain divergence (couple stress) theories in Fig. 5. The Poisson’s 
ratio is ν p = 0.94 for each case and p = 1 for both the strain divergence and couple 
stress solutions. It is clear that both η 1 and k 13 in the classical case (see Figs. 5.3a and 
c) are much larger compared to those for the strain divergence and couple stress 
solutions, respectively (see Figs. 5.3b and d). This is caused by the increase in the 
characteristic length l c (or decrease in p = r 0/l c) from the classical to the strain 
divergence (couple stress) solution, putting an energy penalty on the development of  
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                                      (c)                                                                  (d) 

Figure 5.3: Contour plots of one component of the strain divergence, η 1, (a) and (b), and one 
component of the curvature, k 13, (c) and (d). (a) and (c) are for a classical, (b) is for a strain 
divergence solid with p = 1 and (d) is for a couple stress solid with p = 1, each with a Poisson’s 
ratio of ν p = 0.94.   
 
the divergence of strain and the gradient of the (macro-) rotation. The other two in-
plane components, η 2 and k 23, show a similar behaviour and are not presented here. 

5.3 Discrete analyses 

In this section, we discretely analyze the hole problem for Voronoi tessellations (see 
Fig. 5.4). The Voronoi microstructure is similar to the one used in section 2.3. To be 
able to mimic a hole in an infinite block, the size of the samples should be large 
enough compared to the hole radius r0. It was found that for L≈5−6r0, the effect of

Figure 5.4: Geometry and boundary conditions for the discrete analysis of a circular cylindrical 
hole subjected to remotely uniform tension.  
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the hole on the macroscopic stiffness is negligible. Owing to the symmetries of the 
problem (see Fig. 5.1), it is essentially enough to model only a quarter of the 
specimens. However, we take a full length sample in the x 1 direction (the direction of  
the applied tensile strain, ε appl) to avoid underestimated strain values along the line 
θ= π/2, which could arise in the strain mapping procedure that will be employed (for 
a discussion on this, see section 3.4.2). We apply symmetry boundary conditions at 
the bottom boundary (along the line θ= 0 and line θ= π, for x 1 > r 0). Note that we do 
not account for the symmetry in the cellular structure at these locations. Nevertheless, 
the error was found to be negligible. 

 

(b) 

Figure 5.5: ε ε θ π

 

(a) 

1 1.5 2 2.5 3 3.5

The normalized strain 11/ appl over the line = /2, plotted against the normalized 
distance from the edge of the hole x 2/r 0, for (a) a fixed grid size GS = 1.5d and increasing number 
of samples NS and (b) NS = 400 and a decreasing grid size GS.  
 

In section 3.4.2 it was shown that the accuracy of the strain mapping 
procedure is determined by three parameters, the cutting step size CSS for the 
samples, the number of samples NS used for the simulations and the grid size GS of 
the square background mesh. To accurately pick-up the gradients for the different 
hole sizes, these parameters should be carefully selected. In the following we will 
discuss the procedure adopted to do so. As a reference case we analyze a hole with 
radius r 0 = 25d (d is the average cell size for the Voronoi samples), which is large 
enough so that higher-order effects will not be present. This allows benchmarking the 
discrete strain maps against the analytical results of classical elasticity. Each sample is 
cut from a big block with CSS≈ 0.4d. Figure 5.5a shows the normalized strain 
ε 11/ε appl over the line θ= π/2, plotted against the normalized distance from the edge of 
hole, for a fixed grid size GS=1.5d and increasing number of samples NS. We clearly
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uum solution (ν p = 0.94). 

see tha

varying GS. The figure nicely depicts that for the grid sizes chosen the average strain 

                          (a)                                                                  (b) 

                                      (c)                                                                  (d) 

Figure 5.6: The strain field ε 11 normalized with the applied strain ε appl for r 0 = 25d: (a) 1 
sample. (b) 25 samples. (c) 400 samples. (d) The classical contin
 

t a converged field is obtained for NS larger than 200 that exactly coincides 
with the analytical solution of classical elasticity. To also investigate this convergence 
spatially around the hole, we present contour plots of the strain field ε 11/ε appl in Fig. 
5.6a-c for NS = 1, 25 and 400 samples, respectively. We see that there are large 
fluctuations for a single sample, which decreases for 25 samples and finally, for 400 
samples, we obtain a smooth field that is in very good agreement with the classical 
solution, shown in Fig. 5.6d. 

Next, we fix the number of samples NS and investigate the effect of the grid 
size GS. Figure 5.5b shows the strain fields along the line θ= π/2, plotted against the 
normalized distance from the hole for a fixed number of samples (NS = 400) and a 

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3
2

0

x
r

2

0

x
r

1 0x r 1 0x r

p

Classical 
0.94ν =

0 1 2 30 1 2 3
0

1

2

3 3
2

0

x
r

2x

0r

1 0

0

1

2

x r 1 0x r

11 applε ε
3.0
2.7
2.4
2.1

1.5

0.9

0.3

1.8

1.2

0.6

0

 



Higher-order effects on the strain distribution around a circular hole 109 
 
f

size further beyond 2d (not shown) the strain fields are smoothed out to such an extent 
that the gradients can no longer be picked-up. Clearly, to have a converged discrete 
strain field, the GS must be small enough to pick-up the gradients, while the NS must 
be large enough to smooth out fluctuations. In other words, if for a certain NS a 
reduction of the GS does not change the recorded field, a converged solution is 
obtained. This procedure will be employed in the following to find the NS and GS for 
each hole size investigated. 

                                      (a)                                                                  (b) 

                                                                         (c)     

Figure 5.7: The strain fields along the line θ = π /2, plotted against the normalized distance from 
the hole x 2/r 0, for a fixed number of samples NS and a varying grid size GS for: (a) r 0 = 3d 
(NS = 15000). (b) r 0 = 1.5d (NS = 15000). (c) r 0 = 0.5d (NS = 13000). 

ield is accurately picked-up. For this number of samples, the smallest grid size 
(GS = d/2) induces fluctuations around the exact field, while by increasing the grid 
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field. For the r = 0.5d case, the strain concentration is drastically reduced. The two 
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ples without a 

e average strains ε  and ε  by using the strain mapping 

ence 
CS

The discrete results are expected to diverge from the classical solution for 
small hole sizes, where r 0 is on the order of the cell size. Hence, we analyzed the 
cases of r 0 = 6d, 3d, 1.5d and 0.5d. In the simulations, we used 13000 samples for 
r 0 = 0.5d and 15000 samples for the others. We first generated 3000 different Voronoi 
blocks and cut 4-5 samples from each with a CSS = 0.5d. Figures 5.7a-c show 
ε 11/ε appl over the line θ= π/2, plotted against x 2/r 0 for a decreasing GS and for 
r 0 = 3d, 1.5d and 0.5d, respectively. Already for r 0 = 6d, the discrete results converge 
to the classical solution, and therefore the results (which do not differ much from 
those for r 0 = 25d) are not plotted here. For the r 0 = 3d and 1.5d cases, it can be 
observed that the gradient in ε 11/ε appl can not be picked-up for the largest grid size 
(GS = d). With decreasing GS, the fields converge. A further decrease in GS does not 
change the average gradient in ε 11/ε appl but causes oscillations around the converged 

0

largest grid sizes are not sufficiently small to pick up the gradients. Although the 
convergence is not as clear as in the other two cases, the fact that the results for 
GS = d/6 start to oscillate around the GS = d/4 case suggests that the results for 
GS = d/4 are representative for the discrete fields. To obtain more accurate fields, the 
number of samples NS should be drastically increased. Yet, we do not expect
qualitative changes in the results with a smaller GS. 

5.4 Comparison of the analytical and discrete models   

In this section we compare the discrete results with the strain divergence and couple 
stress solutions. As we showed in section 5.1, we need two parameters for the 

al solutions: ν p and p. The Poisson’s ratio ν p = −ε 22/ε 11 = 0.94 

performing uniaxial tension tests in the x 1 direction on Voronoi sam
hole and measuring th 22 11

procedure. For the parameter p = r 0/l c, the characteristic length l c is used that has been 
obtained by fitting the simple shear calculations, l c

SD = 0.64d for the strain diverg
theory (see section 4.4) and l c = 0.9d for the couple stress theory (see section 3.4.1). 
To analyze qualitatively the spatial distribution of the strain field, we show contour 
plots of ε 11/ε appl for the discrete models for r 0 = 0.5d (with GS = d/4 and NS = 13000, 
Fig. 5.8a) and r 0 = 3d (with GS = d/2 and NS = 15000, Fig. 5.8c), next to the 
corresponding strain divergence continuum solution (Figs. 5.8b and d, respectively). 
Figures 5.8a and b show that the discrete results are in reasonable good agreement 
with the strain divergence solution and both differ considerably from the classical 
solution (Fig. 5.2b). For r =0 3d, the discrete and strain divergence solutions (Figs. 
5.8c and d, respectively) already closely resemble the classical solution (Fig. 5.2b). 
The couple stress fields are almost perfectly identical to the strain divergence fields 
(as also discussed in section 5.2) and are not shown here.  
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                                      (a)                                                                  (b) 

                                      (c)                                                                  (d) 

Figure 5.8: Comparison of ε 11/ε appl for the discrete models with (a) r 0 = 0.5d (GS = d/4 and 
NS = 13000) and (c) r 0 = 3d (GS = d/2 and NS = 15000) with the corresponding strain divergence 
continuum solutions (with ν p = 0.94 and l c

SD = 0.64d), (b) and (d). 
 
Figures 5.9a and b show the discrete results for different hole sizes and the 

corresponding strain divergence solutions (with l c
SD = 0.64d) for ε 11/ε appl over the line 

θ= π/2.  It can be observed that the strain concentration factor at the edge of the hole 
for the strain divergence theory is equal to 3 for the largest hole radius, r 0 = 25d, and 
it decreases with decreasing r 0 value (Figs. 5.9b). For the discrete results there is no 
such a tendency and the strains obtained are larger than the continuum measures 
(Figs. 5.9a). For the discrete samples, the cell walls connected to the hole boundary 

us to the hole are more compliant 
compared to the ones located away from the hole. This might result in an 
overestimation of the strains. Moving further away from the hole, however, this effect   

are traction free, and as a result, the cells contiguo
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 5.10. Both the strain divergence 
and couple stress theories are in reasonable agreement with the discrete solutions; the  

                                      (a)                                                                  (b) 

Figure 5.9: Comparison of (a) the discrete results for different hole sizes and (b) the 
corresponding strain divergence solutions (with l c

SD = 0.64d) for ε 11/ε appl over the line θ = π /2.  
 
diminishes and the discrete and the continuum results are in good agreement. Both 
discrete and continuum solutions predict that for larger normalized hole sizes, the 
strain level drops to the far-field level at a smaller normalized distance from the hole 
edge than for small holes. To quantify this, we plot the discrete results for ε 11/ε appl at 
θ= π/2 and x 2/r 0 = 1.75 and compare them with the analytical solutions for both the 
strain divergence and couple stress solutions in Fig.

Figure 5.10: The best fits of the strain divergence, couple stress and micropolar (with a small 
coupling factor m = 1) theories to the change in the normalized strain ε 11/ε appl (at θ = π /2 and 
x 2/r 0 = 1.75) with increasing hole radius r 0/d for the discrete calculations.     
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in the case of 
e fracture of 

ptured a clear 

strain ε 11/ε appl decreases with increasing r 0, whereas the classical theory would 
predict a size-independent response. We also briefly explored micropolar solutions 

the analytical solutions.  

with a small coupling factor m. Figure 5.10 shows the best fit for m = 1, which occurs 
for a characteristic length l c = 2d; it is not able to capture the large gradient in ε 11/ε appl 
with increasing hole size.              

5.5 Summary and discussion 

In this chapter, we analysed the higher-order effects on the strain distribution around a 
circular cylindrical hole in a field of uniaxial tension. First, we investigated the 
differences in the analytical solutions for the strain divergence, couple stress and 
classical continuum theories. Then we performed finite element calculations on 
Voronoi samples with different hole sizes and used a strain mapping procedure to 
extract the strain field around the hole. Finally, we compared the discrete results with 

The grid size in the strain mapping procedure needed to obtain accurate strain 
fields scales with the hole size. As a result, the grid size becomes smaller than the cell 
size for small holes. A direct consequence of this is that many more samples are 
needed to obtain smooth average fields in the region near the hole. Nevertheless, 
except for a region very close to the traction free hole boundary where discrete effects 
prevail, we have been able to obtain a good convergence for each r 0. The discrete 
results have been found to compare equally well with the strain divergence as the 
couple stress theory. 

Our results agree with the experiments of Dillard et al. [2006], in the sense 
that the strain concentration around a hole reduces for hole sizes comparable to the 
cell size. In the experiments, Dillard and co-workers used the same strain mapping 
parameters for their strain mapping procedure for both large and small holes, which, 
as they also state, might have masked possible strain concentrations 
small holes. Nevertheless, they observed that the final crack leading to th
the samples initiated at the hole for large hole radii (for which they ca
strain concentration), whereas this was not the case for samples with a small hole 
radius (for which they could not detect any strain concentration).    

 



114  Chapter 5 
 

 

Appendix: Hole problem for the strain gradient theory 

Mindlin [1964] has shown that any solution of Equation (5.1) can be written in terms 
of a vector function B and a scalar function B 0 as 
 

2 2 2 2 2
2 1 2 0  ( ) [ (1 ) ] 0

2
l l l Bδ= − ∇∇ − − ∇ ∇ − ∇ + =i iu B B r B ,  (A1) 

 
with 
 
 

1

  ( ) ( 2 )δ λ µ λ µ= + + ,                                         (A2) 
 
where r is the position vector, and B and B 0 are the solutions of   
 
 0

2 2 2 2 2 2
2 1(1 ) 0  and  (1 ) 0B ,l l− ∇ ∇ = − ∇ ∇ =B  (A3) 

 
respectively, with ∇ 2 the Laplacian operator defined in cylindrical coordinates (r,θ,z) 
as 
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for a scalar function  f  and a vector function v, respectively. 

                         (a)                                             (b)                                       (c) 

Figure A1: The hole problem (a) can be written as the superposition of two simpler ones: A 
uniaxial tension problem of the same block, but without a hole (b) and a problem where 
compressive tractions are applied only around the hole (c). 

= +
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Figure A.1a shows the boundary conditions corresponding to the hole 
problem. We can write this problem as the superposition of two simpler ones: I-) A 
uniaxial tension problem of the same block, but without a hole (see Fig. A.1b). II-) A 
problem where compressive tractions are applied only around the hole (see Fig. A.1c). 
Note that in Fig. A.1b the uniaxial tensile tractions around the hole ensure the uniform 
strain/stress distribution throughout the block. We know the analytical solution for the 
first sub-problem; therefore we only have to solve the second sub-problem, shown in 
Fig. A.1c.  

Eshel and Rosenfeld [1970] showed that the solution of Equations (A1-A3) 
can be given as 

 
2 1 2 1 2 1

1 0 3 0 5 0 1 1 1(1 ) ( )
2 2 2ru A r r A r r A r l Kδ δ ρ

               2 1 2 2 3 1
1 0 1 2 2 0 2 2 2
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2

A r r l l r A r l r K ρ

4 3 2 1 1

1 1 1
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− − −
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= − − −
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 (A6) 

 
where ρ 1 = r/l 1, ρ 2 = r/l 2, K i ( ) ( i = 1, 2) are the modified Bessel functions of the 
second kind of order i and A j ( j = 0 , 1,…,6) are dimensionless constants. Inserting 
(A5) and (A6) in to the boundary conditions for Fig. A.1c, 
  

 
1 1[1 cos(2 )],  sin(2 ),
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on r = r 0, and 
 
 0,r rt t r rθ θ= = = =  (A
 
on r→∞, via the kinematic and constitutive relations (Equations (1.13) and (1.15)), 

8) 

 of six linear algebraic equations: yields a system
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with β 1, β 2, p 1 and p 2 defined in Equation (5.3). By solving for B 1…, B 6 the solution 
for the problem in Fig. A.1c is complete. The strain distribution can easily be obtained 
by adding the displacements of the two problems using the kinematic relations.      
 

                                                 
2 Note that the encircled plus sign in the second line of Equation (A10) is missing in the solution of 
Eshel and Rosenfeld [1970]; we repeated the analysis and showed that it was a typographical error.  
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conclude the thesis by addressing the limitations of the generalized 
continuum theories and give recommendations for improvement.  

 Discussion  
In this chapter, we discuss our overall results and connect them to the 
goal of this thesis. We distinguish stiffening and weakening size 
effects in cellular solids and comment on the predictive power of the 
generalized continuum theories that we analyzed. Finally, we
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In the introduction of this thesis, we stated our goal as follows:  
1) To explore the physical mechanisms that are responsible for the size-dependent 
elastic behaviour of cellular solids by using a discrete microstructural model. 
2) To assess the capability of generalized continuum theories to capture size effects 
through a careful comparison with the discrete simulations. 

To establish these goals, we first reviewed the deformation mechanisms of 
regular and irregular two-dimensional cellular solids in chapter 2. We performed 
simple shear, uniaxial compression and pure bending tests on discrete samples with 
the regular and irregular microstructures. For all of the microstructures tested, we 
detected two kinds of size effects: i) The macroscopic shear stiffness increases with 
decreasing sample size. ii) The macroscopic (uniaxial) compressive and bending 
stiffness decrease with decreasing sample size. The first, stiffening under simple 
shear, is associated with the strong boundary layers that form adjacent to the top and 
bottom boundaries, to which the cell walls are perfectly bonded. The smaller the 
sample size, the larger the area fraction of the strong boundary layers and thus the 
macroscopic shear stiffness. The second kind of size effect, weakening in the 
compressive and bending stiffness, on the other hand, is a result of weak boundary 
layers that form adjacent to the traction free edges, where the cells are much more 
compliant compared to the bulk.  

  Stiffness can be defined as the resistance of an elastic body to deformation by 
an applied traction. In the classical continuum theory, three displacement degrees of 
freedom are used to quantify the change in the position of a material point and 
deformation is expressed in terms of the symmetric part of the displacement gradients. 
For most (i.e. dense) materials, classical continuum theory suffices to accurately 
describe the elastic deformation, since most sample sizes and loading wavelengths are 
much larger than the characteristic material length scales (e.g. atoms, grains). 
However, in cellular solids, where the cell size sets the material length, this no longer 
holds. Consequently, higher-order deformation modes (whose effect was negligible in 
dense materials) become important at the macroscopic scale and should be accounted 
for. The generalized continuum theories studied here use additional degrees of 
freedom and/or additional deformation modes to add higher-order terms to the 
internal strain energy density. If in a boundary value problem these higher order terms 
are triggered, the overall response will be stiffer compared to the classical theory. The 
simple shear problem is such a case, where gradients in shear strain (or rotation) 
develop near the sample edges resulting in strong boundary layers and an overall 
stiffening compared to classical theory. The size effects of the second kind, or free 
edge effects leading to weakening, are different in character from the first kind. They 
are not associated with an additional deformation mode that is absent in the classical 
continuum theory, but arise due to the fact that near the traction free edges the cells 
cannot transfer the forces as efficient as in the core, resulting in a layer of reduced 
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material stiffness. The generalized continuum theories mentioned in this thesis (see 
Table 1.1) cannot capture these free edge effects.          

In chapter 3 we analyzed the micropolar theory, featuring extra degrees of 
freedom, the microrotations, and the associated higher-order deformations, the 
microrotation gradients. We derived the analytical solutions of the simple shear and 
pure bending problems. By comparing the discrete and analytical results for the 
simple shear problem in terms of the macroscopic shear stiffness, we fitted the 
coupling factor m and the characteristic length l c. It turned out that for the best fit, the 
microrotations should be constrained to be equal to the macrorotations (m→∞), so 
that the micropolar theory reduces to the couple stress theory, featuring one additional 
material parameter, l c, that was found to be on the order of the cell size for the 
microstructures analyzed. The corresponding local response, i.e. the macrorotation 
and shear strain fields through the thickness of the samples, was found to be in 
excellent agreement with the discrete fields. For the pure bending problem, however, 
the analytical solution predicted an increasing bending stiffness with decreasing 
sample thickness, which is opposite to the weakening observed for the discrete 
analyses. The reason for this is that rotation gradients develop in both the simple shear 
problem and the pure bending problem. In the simple shear problem, due to the 
symmetries, the rotation gradients through the thickness account for the gradient in 
shear strain, which is responsible for the extra energy consumed. Thus, only the 
rotation gradients in shear trigger a higher-order response in cellular solids, while the 
rotation gradients in bending do not. In the well-known Euler-Bernoulli beam theory, 
the normal stress gradients through the thickness are replaced by a bending moment 
and its constitutive relation to the rotation gradient (curvature). In micropolar theory, 
however, both the (classical) stress gradients and (higher order) bending moments are 
present, resulting in double counting in case of bending of small samples.    

Another way of extending the classical continuum theory is to associate 
energy not only to strain, but also to its gradients (see Table 1.1). Among these 
higher-grade theories, Toupin-Mindlin’s strain gradient theory is most often 
encountered in the literature. It has inspired many scientists to develop higher-grade 
theories to capture size effects in the mechanical behaviour, both for elasticity (e.g. 
Lam et al. [2003]) and for plasticity (e.g. Aifantis [1987], Fleck and Hutchinson 
[1993, 1997, 2001]). Toupin-Mindlin’s strain gradient theory, however, is based on 
third order tensors (the strain gradients and the conjugate double stresses) and requires 
five additional material constants to be defined for linear elastic, centro-symmetric 
isotropic materials. Therefore, to give a complete and unique experimental delineation 
of strain gradient behaviour is a formidable task. A better strategy is to take into 
account only that part of the strain gradient that actually coincides with the extra 
deformation measure(s) related to the observed size effects. For this purpose, we 
developed a continuum theory that assigns energy to the divergence of strain, which 
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coincides with the shear strain gradient in the case of the simple shear problem. This 
theory is based on vectors (the strain divergence and conjugate higher-order stress) 
and consequently requires only one additional constant for isotropic materials. We 
showed that this strain divergence theory is able to capture the stiffening under simple 
shear with decreasing sample size as accurate as the couple stress theory (in fact, both 
solutions coincide, see chapter 4). For the case of pure bending, however, as a result 
of satisfying both the classical and additional higher-order boundary conditions, the 
transverse strains (ε 22 in chapter 4) turn out to be non-linear, in contrast to the 
classical solution, and this results in an increasing bending stiffness with decreasing 
specimen thickness.  

We also briefly explored the role of the five constants of the full strain 
gradient theory in the shear and bending problems. The analytical solution for the 
simple shear problem for the full strain gradient theory (see e.g. Kouznetsova [2002]) 
can be shown to depend only on the second characteristic length, l 2 = (a 3+2a 4+a 5)/2µ. 
At least one of the constants a 3, a 4, a 5 should be non-zero to exactly capture the shear 
stiffening. When a 5 is the only non-zero constant, however, the non-negativeness of 
the strain energy density is not satisfied. When a 3 is the only non-zero constant, the 
strain gradient theory falls back to the strain divergence theory. When a 4 is the only 
non-zero constant, we can choose it to be equal to l c

SD /µ to ensure an excellent fit to 
the discrete results in shear (see chapter 4). However, by substituting this in the pure 
bending solution for the strain gradient theory (see the Appendix of chapter 4) it 
follows that the stiffening is larger compared to the strain divergence solution, both 
for isotropic and transverse isotropic solids.  

Finally, in chapter 5 we analyzed the effects of a circular cylindrical hole in a 
field of uniaxial tension on the strain distribution. It was observed that the discrete 
strain fields remain largely unaffected for hole radii larger than approximately three 
cell sizes. For smaller hole radii the strain gradients around the hole considerably 
reduce. By comparing the discrete results with the couple stress and strain divergence 
solutions, it followed that they are both able to capture the effect of the hole size, 
except for a region very close to the hole boundary, where discrete effects prefail. 
Outside this regime the discrete strain distribution is successfully captured by these 
two theories, whereas micropolar continuum theory with a small coupling factor m is 
shown to be less accurate.    

Table 6.1 summarizes the performance of the generalized continuum theories 
analyzed in this thesis. The micropolar theory with a small coupling factor m is not 
able to accurately capture the size-dependent response in simple shear and for the hole 
problem, whereas the couple stress and strain divergence theories perform much 
better and equally well. It should be emphasized that in the (planar) problems 
analyzed here, both theories feature only one additional higher-order constant (the 
characteristic length l c). By fitting this constant to the overall discrete response in 
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shear, it is shown that the discrete strain fields in shear and around the hole can be 
well captured by these theories. For uniaxial loading the discrete calculations predict a 
size-independent response when free-edge effects are disregarded, while also in a 
state of pure bending no higher-order modes are triggered in the cellular structures. 
The continuum theories (obviously) show a size-independent response under uniaxial 
loading, due to the absence of gradients. For pure bending, however, stiffening is 
predicted with decreasing sample size for all theories, in contrast to the discrete 
calculations. Note that the discrete structures analyzed here have an in-plane 
Poisson’s ratio ν p = 0.94, close to the limit of incompressibility, for which the couple 
stress and strain divergence theories are almost identical for all the boundary value 
problems analyzed. Real metal foams, however, are isotropic with a much lower 
Poisson’s ratio, around ν ≈ 0.3 (see Ashby et al. [2000]). For such low Poisson’s 
ratios, the two solutions for the hole problem are very different, while stiffening under 
pure bending is negligible for the strain divergence theory, whereas it increases even 
more for the couple stress theory. 
 
Table 6.1 
The performance of the generalized continuum theories analyzed in this thesis.  
 
 Micropolar theory   

(with a small m) 
Couple stress  
theory 

Strain divergence  
theory 

Simple shear                −                              +                             + 
Hole problem               −               +              + 
Uniaxial loading                +               +              + 
Pure bending               −               −              − 

 
The best one can expect from the generalized continuum theories studied in 

this thesis is to give a size-independent response for cases in which weakening size 
effects originate due to traction free edges. To capture weakening in a continuum 
setting, several routes can be followed. Brezny and Green [1990] accounted for 
weakening in bending by using a composite model with boundary layers having a 
lover stiffness than the bulk (see also Andrews et al. [2001]). Lakes [1995] used a 
non-local continuum theory which takes into account long range interactions of 
material points. Finally, one could use a generalized continuum theory that can 
account for the presence of surface stresses (see e.g. Gurtin and Murdoch [1975]). 
This theory has been successfully applied to predict weakening size effects in tension 
and bending of single crystals at the nanoscale (see e.g. Miller and Shenoy [2000]). 
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