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1 The linear elastic Cosserat model in variational form

In the following, (∇u)ij = ∂xj
ui denotes the differential of u : R3 7→ R3. For the displacement

u : Ω ⊂ R3 7→ R3 and the skew-symmetric infinitesimal microrotation A : Ω ⊂ R3 7→
so(3) consider the two-field minimization problem

I(u,A) =
∫

Ω

Wmp(ε) +Wcurv(∇ axlA)− 〈f, u〉 − 〈M,A〉dx (1.1)

−
∫

ΓS

〈fS , u〉 − 〈MS , A〉dS 7→ min . w.r.t. (u,A),

under the following constitutive requirements and boundary conditions1

ε = ∇u−A, u|Γ = ud ,

Wmp(ε) = µ ‖ sym ε‖2 + µc ‖ skew ε‖2 +
λ

2
tr [sym ε]2 strain energy

= µ ‖ sym∇u‖2 + µc ‖ skew(∇u−A)‖2 +
λ

2
tr [sym∇u]2 (1.3)

= µ ‖ dev sym∇u‖2 + µc ‖ skew(∇u−A)‖2 +
2µ+ 3λ

6
tr [sym∇u]2

= µ ‖ sym∇u‖2 +
µc
2
‖ curlu− 2 axlA‖2R3 +

λ

2
(Div u)2

,

φ := axlA ∈ R3, k = ∇φ , ‖ curlφ‖2R3 = 4‖ axl skew∇φ‖2R3 = 2‖ skew∇φ‖2M3×3 ,

Wcurv(∇φ) =
γ + β

2
‖ sym∇φ‖2 +

γ − β
2
‖ skew∇φ‖2 +

α

2
tr [∇φ]2 curvature energy

=
γ + β

2
‖ dev sym∇φ‖2 +

γ − β
2
‖ skew∇φ‖2 +

3α+ (β + γ)
6

tr [∇φ]2

=
γ

2
‖∇φ‖2 +

β

2
〈∇φ,∇φT 〉+

α

2
tr [∇φ]2

=
γ + β

2
‖ sym∇φ‖2 +

γ − β
4
‖ curlφ‖2R3 +

α

2
(Div φ)2

.

Here, f,M are volume force and volume couples, respectively; fs,MS are surface tractions
and surface couples at ΓS ⊂ ∂Ω, respectively, while ud are Dirichlet boundary conditions
for displacement at Γ ⊂ ∂Ω.2 The strain energy Wmp and the curvature energy Wcurv are
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1More detailed than strictly necessary in order to accommodate the different representations in the literature.
Note that axlA× ξ = A.ξ for all ξ ∈ R3, such that

axl

0@ 0 α β
−α 0 γ
−β −γ 0

1A :=

0@−γβ
−α

1A , Aij =
3X
k=1

−εijk · (axlA)k , (1.2)

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the application of the matrix

A to the vector ξ and a × b is the usual cross-product. Note that it is always possible to prescribe essential
boundary values for A but we abstain from such a prescription throughout.

2For simplicity only we assume that Γ∩ΓS = ∅ and that surface tractions and surface couples are prescribed
at the same portion of the boundary. Much more general combinations could be considered.
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the most general isotropic, centro-symmetric quadratic forms in the non-symmetric strain
tensor ε = ∇u − A and the micropolar curvature tensor k = ∇ axlA (curvature-twist
tensor). The parameters µ, λ[MPa] are the classical Lamé moduli and α, β, γ are additional
micropolar moduli with dimension [Pa ·m2] = [N] of a force. It is usually clearer to write
α, β, γ ∼ µL2

cα
′, µL2

cβ
′, µL2

cγ
′ with corresponding non-dimensional parameters α′, β′, γ′ and a

material length scale Lc > 0 [m].
The additional parameter µc ≥ 0[MPa] in the strain energy is the Cosserat couple mod-

ulus. For µc = 0 the two fields of displacement and microrotations decouple and one is left
formally with classical linear elasticity for the displacement u.

1.1 The linear elastic Cosserat balance equations: hyperelasticity

Taking free variations of the energy in (1.1) w.r.t. both displacement u ∈ R3 and infinitesimal
microrotation A ∈ so(3), one arrives at the equilibrium system (the Euler-Lagrange equations
of (1.1))

Div σ = f , −Divm = 4µc · axl skew ε+ axl skew(M) , ε = ∇u−A,
σ = 2µ · sym ε+ 2µc · skew ε+ λ · tr [ε] · 11 = (µ+ µc) · ε+ (µ− µc) · εT + λ · tr [ε] · 11 ,
m = γ∇φ+ β∇φT + α tr [∇φ] · 11, φ = axlA , (1.4)

u|Γ = ud , σ.~n|ΓS
= fS , m.~n|ΓS

=
1
2

axl(skew(MS)) ,

σ.~n|∂Ω\(ΓS∪Γ)
= 0 , m.~n|∂Ω\(ΓS∪Γ)

= 0 .

Here, m is the couple stress tensor. For comparison, in [4, p.111] or [1, 9, 5] the elastic
moduli in our notation are defined to be µ = µ∗ + κ

2 , µc = κ
2 .3 But in this last definition (see

[2]), µ∗ cannot be regarded as one of the classical Lamé constants.4 5 We note that under the
usual positivity requirements on the curvature energy, the couple stress/ curvature relation can
be pointwise inverted. In [4] the role of β and γ is reversed.

2 Constitutive restrictions for Cosserat hyperelasticity

2.1 Pointwise positivity of the micropolar energy

For a mathematical treatment in the hyperelastic case it is often assumed that for arbitrary
nonzero strain and curvature ε, k ∈M3×3 one has the local positivity condition

∀ ε, k 6= 0 : Wmp(ε) > 0 , Wcurv(k) > 0 . (2.1)

This condition is most often invoked as the basis of uniqueness proofs in static micropolar
elasticity, see e.g. [7, 6, 4, 3]. By splitting ε in its deviatoric and volumetric part, i.e. writing

ε = dev sym ε+ skew ε+
1
3

tr [ε] · 11 (2.2)

and inserting this into the energy Wmp one gets

Wmp(ε) = µ ‖dev sym ε‖2 + µc ‖ skew ε‖2 +
2µ+ 3λ

6
tr [ε]2 . (2.3)

Since all three contributions in (2.2) can be chosen independent of each other, one obtains from
(2.1) the pointwise positive-definiteness condition

µ > 0 , 2µ+ 3λ > 0 , µc > 0 ,
γ + β > 0 , (γ + β) + 3α > 0 , γ − β > 0 , (⇒ γ > 0) , (2.4)

3In [8, 4] the Cauchy stress tensor σ is defined as σ = (µ∗ + κ) ε + µ∗ εT + λ tr [ε] · 11 with given constants
µ∗, κ, λ and one must identify µ∗ + κ = µ+ µc, µ∗ = µ− µc.

4A simple definition of the Lamé constants in micropolar elasticity is that they should coincide with the
classical Lamé constants for symmetric situations. Equivalently, they are obtained by the classical formula
µ = E

2(1+ν)
, λ = Eν

(1+ν)(1−2ν)
, where E and ν are uniquely determined from uniform traction where Cosserat

effects are absent.
5Unfortunately, while authors are consistent in their usage of material parameters, one should be careful

when identifying the actually used parameters with his own usage. The different representations in (1.3) might
be useful for this purpose.
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where the argument pertaining to the curvature energy Wcurv is exactly similar, cf. [8, (2.9)].
In effect, one ensures uniform convexity of the integrand w.r.t ε, k. In this case, then, the
stress/strain and couple-stress/curvature relation can be inverted, simplifying the mathematical
treatment considerably.

By a thermodynamical stability argument [4] one may similarly infer the non-negativity
of the energy (material stability), leading only to

µ ≥ 0 , 2µ+ 3λ ≥ 0 , µc ≥ 0 ,
γ + β ≥ 0 , (γ + β) + 3α ≥ 0 , γ − β ≥ 0 , (⇒ γ ≥ 0) , (2.5)

which allows for classical linear elasticity but which condition alone is not strong enough to
guarantee existence and uniqueness of the corresponding boundary value problem. Nevertheless,
all constitutive restrictions on a linear Cosserat solid must at least be consistent with (2.5) from
a purely physical point of view.

2.2 Legendre-Hadamard ellipticity conditions for the Cosserat model

For a dynamic problem, another condition, implying real wave speeds in wave propagation
problems, is useful. This is the Legendre-Hadamard ellipticity condition. Let us investigate
the restrictions which it imposes on the constitutive parameters of the Cosserat model. In the
following we treat the generic case of a quadratic form which can then be applied to the balance
of linear and angular momentum system. The generic quadratic form is

W (∇φ) := a1 ‖ sym∇φ‖2 + a2 ‖ skew∇φ‖2 + a3 tr [∇φ]2 . (2.6)

Replacing ∇φ by the rank one dyadic product ξ ⊗ η we obtain

a1 ‖ sym ξ ⊗ η‖2 + a2 ‖ skew ξ ⊗ η‖2 + a3 tr [ξ ⊗ η]2

=
a1

4
‖ξ ⊗ η + η ⊗ ξ‖2 +

a2

4
‖ξ ⊗ η − η ⊗ ξ‖2 + a3 〈ξ, η〉2 (2.7)

=
a1

4
(
2 ‖ξ ⊗ η‖2 + 2 〈ξ ⊗ η, η ⊗ ξ〉

)
+
a2

4
(
2 ‖ξ ⊗ η‖2 − 2 〈ξ ⊗ η, η ⊗ ξ〉

)
+ a3 〈ξ, η〉2

=
a1

4

(
2 ‖ξ‖2‖η‖2 + 2 〈ξ, η〉2

)
+
a2

4

(
2 ‖ξ‖2‖η‖2 − 2 〈ξ, η〉2

)
+ a3 〈ξ, η〉2

=
a1 + a2

2
‖ξ‖2‖η‖2 +

a1 − a2 + 2 a3

2
〈ξ, η〉2

=
a1 + a2

2
‖ξ‖2‖η‖2 +

a1 − a2 + 2 a3

2
‖ξ‖2‖η‖2 cos2 ϑ

=
a1 + a2

2
‖ξ‖2‖η‖2 (sin2 ϑ+ cos2 ϑ) +

a1 − a2 + 2 a3

2
‖ξ‖2‖η‖2 cos2 ϑ

=
a1 + a2

2
‖ξ‖2‖η‖2 sin2 ϑ+ (

a1 + a2

2
+
a1 − a2 + 2 a3

2
)‖ξ‖2‖η‖2 cos2 ϑ

=
a1 + a2

2
‖ξ‖2‖η‖2 sin2 ϑ+

a1 + 2 a3

2
‖ξ‖2‖η‖2 cos2 ϑ .

Thus

D2W (∇φ).(ξ ⊗ η, ξ ⊗ η) = (a1 + a2) ‖ξ‖2‖η‖2 sin2 ϑ+ (a1 + 2 a3) ‖ξ‖2‖η‖2 cos2 ϑ , (2.8)

and Legendre-Hadamard ellipticity demands that the acoustic tensor Q(ξ) : R3 7→ R3, defined
through D2W (∇φ).(ξ⊗η, ξ⊗η) = 〈η,Q(ξ).η〉R3 is strictly positive definite for any nonzero wave
direction ξ ∈ R3. We infer the necessary and sufficient conditions for strict Legendre-Hadamard
ellipticity of the quadratic form (2.6)

a1 + a2 > 0 , a1 + 2 a3 > 0 . (2.9)

Applying this result to both the strain energy and curvature energy in (1.3) we obtain the
Legendre-Hadamard ellipticity condition for linear, isotropic Cosserat solids

µ+ µc > 0 , µ+ λ > 0 ,
γ > 0 , γ + β + α > 0 . (2.10)

In the case of µc = 0 we recover the well known ellipticity condition for linear elasticity. It is
clear that (2.4) is sufficient for (2.10). But (2.10) alone is not sufficient for well-posedness of
the Cosserat boundary value problem.
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2.3 Further relations for micropolar constants

In the literature on Cosserat or micropolar solids the following abbreviations and definitions are
frequently encountered. As a convenience for the reader, we collect these technical constants
here.

Ψ :=
β + γ

α+ β + γ
, non-dimensional polar ratio , 0 ≤ Ψ ≤ 3

2
,

`2t :=
(

β + γ

2µ∗ + κ

)
=
β + γ

2µ
, ”characteristic length for torsion” , (2.11)

`2b =
γ

2 (2µ∗ + κ)
=

γ

4µ
, ”characteristic length for bending” ,

p2 :=
2κ

α+ β + γ
=

4µc
α+ β + γ

, κ := 2µc ,

N2 :=
µc

µ+ µc
=

κ

2 (µ∗ + κ)
, Cosserat coupling number, 0 ≤ N ≤ 1 .

ν =
λ

2µ∗ + 2λ+ κ
=

λ

2 (µ+ λ)
, classical Poisson ratio.

For every physical material, it is essential that small samples still have bounded rigidity. This
may or may not be true for Cosserat models, depending on the values of Cosserat parameters.
Based on analytic solution formulas for simple three-dimensional Cosserat boundary value prob-
lems it has been shown in [10] that for bounded stiffness for arbitrary slender specimens we
must have

1. torsion of a cylinder: either β + γ = 0 or Ψ = β+γ
α+β+γ = 3

2 .

2. bending of a cylinder: (β + γ) (γ − β) = 0.
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