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Motivation

The motivation to study transport noise in fluid mechanics is
twofold:

0 Holm et al. derived in [7] models with transport noise in fluid dynam-
ics from a physical perspective with the aim of modelling turbulent ef-
fects.

0 Transport noise can have regularisation effects as demonstrated in
[8] for the transport equation and very recently in [9] for the 3D in-
compressible Navier–Stokes equations.

The Mathematical Problem

We consider the stochastic isentropic Euler equations, de-
scribing the flow of a compressible fluid in a bounded domain
O ⊂ Rn in n = 1, 2, 3 dimensions:

𝜕tm + div
(

m⊗m
𝜚

)
= −∇p + ¤𝜼,

𝜕t 𝜚 + div(m) = ¤𝜉.
(1)

The unknowns are the momentum m and the density 𝜚. We
suppose the barotropic pressure law p = p(𝜚) = Ma−2𝜚𝛾,
where Ma > 0 is the Mach-number and 𝛾 ≥ 1 the adiabatic
exponent.
We speak about transport noise if

¤𝜼 =

K∑︁
k=1

div(𝝈k ⊗ m) ◦ dWk

dt
, ¤𝜉 =

K∑︁
k=1

div(𝜚𝝈k) ◦
dWk

dt
, (2)

with given vector fields 𝝈k and stochastic differentials with re-
spect to independent Wiener process Wk in the Stratonovich
sense.

Preliminary Work

In [4] the applicant initiated a systematic study of the com-
pressible Navier–Stokes system (the viscous counterpart of
the Euler system (1)) subject to stochastic forcing, where

¤𝜼 = Φ(𝜚,m) dW
dt

, ¤𝜉 = 0,

with a (possibly infinite-dimensional) Wiener process W and
an operator Φ with appropriate growth assumptions.
1 This lead to the research monograph [3], which includes the exis-

tence of martingale solutions (see also [6, 5] for a result concerning
the system with transport noise) as well as stationary solutions.

2 For problems where uniqueness is not at hand, stationary solutions
are taken as a substitute for an invariant measure - a steady state of
the system which is believed to fully characterize the behaviour of tur-
bulent fluid flows.

3 Eventually, we studied the existence of a Markov selection in [1]. This
means obtaining a solution for which the probability distribution of the
future only depends on the present state of the evolution and is inde-
pendent of the past.

The results on the Navier–Stokes system serve as a basis to
eventually study the Euler equations as inviscid limit.

4 In [2] global-in-time weak solutions to (1) with stochastic forcing have
been constructed by the method of convex integration: In fact, there
exists infinitely many weak solutions with the same initial data. How-
ever, these solutions have yet two drawbacks: They only exists for
very smooth initial data and only up to a (possibly large) stopping
time .On the other hand, it is quite interesting to note that these solu-
tions are strong in the probabilistic sense.

Well/ill-posedness

We aim at a rather complete picture concerning the well-
posedness (and ill-posedness) of the compressible Euler
equations (1) with transport noise (2). In particular, we aim
at the following:
1 Developing a robust existence theory for (1) with transport noise (2).

To be more precise, we aim to prove the existence of measure-valued
martingale solutions satisfying some form of energy inequality.

2 Analysing further properties of the solutions constructed in 1. In par-
ticular, we will investigate the weak-strong uniqueness property as
well as the existence of Markov selections and stationary solutions.
This will heavily depend on the energy inequality derived in 1.

3 Constructing pathwise weak solutions to (1) with transport noise (2)
which exist until a given deterministic existence time T > 0. Here we
intend to apply the method of convex integration and hence expect to
obtain infinitely many weak solutions for any given initial datum be-
longing to the energy class.

4 Analysing possible regularisation effects for (1) by considering some
particular transport noise in the spirit of [9]. To be more precise, we
plan to prove that, for any given deterministic time T > 0, the solution
is regular until time T with high probability.

The Project’s Research in the Context of SPP 2410

The isentropic Euler system (1) is an iconic example of a hy-
perbolic conservation law which is ubiquitous in many appli-
cations in physics and engineering. In turbulence theory one
is often confronted with resolved large-scale, slow-varying
and unresolved small-scale, fast varying components of the
velocity field. This is typically modeled by random effects and
stochastic differential equations.
Planned cooperations within SPP 2410

4 Project-<Barth>: Exchange on the impact of random
forcing in hyperbolic problems.

4 Project-<Giesselmann-Öffner>: Exchange on general-
ized solution concepts.

4 Project-<Herty/Lukáčová>: Synergy effects with the
computational research: Discussion on regularizing ef-
fects and questions on the regularity of strong solutions.
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