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Motivation

The motivation to study transport noise in fluid mechanics is
twofold:

® Holm et al. derived in [7] models with transport noise in fluid dynam-
ics from a physical perspective with the aim of modelling turbulent ef-
fects.

® [ransport noise can have regularisation effects as demonstrated in
[8] for the transport equation and very recently in [9] for the 3D In-
compressible Navier—Stokes equations.

The Mathematical Problem

We consider the stochastic isentropic Euler equations, de-
scribing the flow of a compressible fluid in a bounded domain
O cR’"inn=1,2,3 dimensions:
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The unknowns are the momentum m and the density 0. We

suppose the barotropic pressure law p = p(o) = Ma™2o”,

where Ma > 0 is the Mach-number and y > 1 the adiabatic

exponent.
We speak about transport noise if
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with given vector fields o, and stochastic differentials with re-

spect to independent Wiener process Wi in the Stratonovich
sense.
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Preliminary Work

In [4] the applicant initiated a systematic study of the com-
pressible Navier—Stokes system (the viscous counterpart of
the Euler system (1)) subject to stochastic forcing, where
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with a (possibly infinite-dimensional) Wiener process W and

an operator ® with appropriate growth assumptions.

@ This lead to the research monograph [3], which includes the exis-
tence of martingale solutions (see also [6, 5] for a result concerning
the system with transport noise) as well as stationary solutions.

@ For problems where uniqueness is not at hand, stationary solutions
are taken as a substitute for an invariant measure - a steady state of
the system which is believed to fully characterize the behaviour of tur-
bulent fluid flows.

® Eventually, we studied the existence of a Markov selection in [1]. This
means obtaining a solution for which the probability distribution of the
future only depends on the present state of the evolution and is inde-
pendent of the past.

The results on the Navier—Stokes system serve as a basis to
eventually study the Euler equations as inviscid limit.

O In [2] global-in-time weak solutions to (1) with stochastic forcing have
been constructed by the method of convex integration: In fact, there
exists infinitely many weak solutions with the same initial data. How-
ever, these solutions have yet two drawbacks: They only exists for
very smooth initial data and only up to a (possibly large) stopping
time .On the other hand, it is quite interesting to note that these solu-
tions are strong in the probabllistic sense.

Well/ill-posedness

We aim at a rather complete picture concerning the well-

posedness (and Ill-posedness) of the compressible Euler

equations (1) with transport noise ). In particular, we aim

at the following:

@ Developing a robust existence theory for (1) with transport noise (2).
To be more precise, we aim to prove the existence of measure-valued
martingale solutions satisfying some form of energy inequality.

@ Analysing further properties of the solutions constructed in 1. In par-
ticular, we will investigate the weak-strong uniqueness property as
well as the existence of Markov selections and stationary solutions.
This will heavily depend on the energy inequality derived in 1.

® Constructing pathwise weak solutions to (1) with transport noise (2)
which exist until a given deterministic existence time T > 0. Here we
intend to apply the method of convex integration and hence expect to
obtain infinitely many weak solutions for any given initial datum be-
longing to the energy class.

O Analysing possible regularisation effects for (1) by considering some
particular transport noise in the spirit of [9]. To be more precise, we
plan to prove that, for any given deterministic time T > 0, the solution
IS regular until time T with high probability.

The Project’s Research in the Context of SPP 2410

The isentropic Euler system (1) is an iconic example of a hy-
perbolic conservation law which is ubiquitous in many appli-
cations in physics and engineering. In turbulence theory one
Is often confronted with resolved large-scale, slow-varying
and unresolved small-scale, fast varying components of the
velocity field. This is typically modeled by random effects and
stochastic differential equations.

Planned cooperations within SPP 2410

® Project-<Barth>: Exchange on the impact of random
forcing in hyperbolic problems.

¢ Project-<Giesselmann-Offner>: Exchange on general-
ized solution concepts.

® Project-<Herty/Lukacovas>: Synergy effects with the
computational research: Discussion on regularizing ef-
fects and questions on the regularity of strong solutions.
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