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Plates versus shells

Almost all results so far are concerned with a simplified geometrical set-up, where the
domain Q is given by a rectangle and the flexible part of the boundary is flat (see Figure
1); this is the case of elastic plates. We aim to study general geometries (see Figure 2)
Including cylinders or sphere; this is the case of elastic shells.
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Figure 1: Domain transformation in the simplified set-up.
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Figure 2: Domain transformation in the general set-up.

The Mathematical Problem

We are interested in the case, where a viscous fluid interacts with a flexi-
ble shell which is located at a part of the boundary (or even describes the
complete boundary) of the underlying domain Q c R? denoted by w. The
shell, described by a functionn : (0, T) Xxw — R for some T > 0, reacts to
the surface forces induced by the fluid and deforms the domain Q to ),
where the function ¢, describes the coordinate transform (see Figures
1 and 2 above) and n,,y is the normal at the deformed boundary.

The motion of the fluid is governed by the Navier—Stokes equations

o(du+ (u-Vyu) = uAu - Vp+ of, 90+ Div(pu) =0, (1)

in the moving domain Q, where u : (0, T) x Q, — R is the velocity field
and p : (0, 7) xQ, — R is the pressure function. The equations are
supplemented with initial conditions and the boundary condition uo ¢, =
omn at the flexible part of the boundary with normal n. There exist various
models in the literature to model the behaviour of the shell and a typical
example is given by

81?77 — yOitAyn + cyA}Z,n =g-ntogpn,det(Vey,) (2)

on w supplemented with initial and boundary conditions. Here T denotes
the Cauchy stress of the fluid given by Newton’s rheological law, that is

T = /.t(VU + VUT) + v DivUlzy3 — pPl3ys.
The energy of the shell is given by

1 f Py +2 / A m[2dy.

We are interested in the well-posedness of the system (1)—(2), that is, ex-
iIstence and uniqueness of strong solutions (at least locally in time) as well
as conditional regularity of weak solutions (under which assumptions is a
weak solution a strong one?).

Incompressible fluids

In the case of a homogeneous incompressible fluid the density o is a
positive constant. The second equation of (1) reduces to Divu = 0 and the
pressure function p is an unknown.

® There exists several results concerning the existence of local-in-time
strong solutions. In the 2D case these solutions exist globally in time,
ct. [6]. The study of well-posedness for fluid-structure interactions
with general reference geometries as in Figure 2 (the case of elas-
tic shells) has already been started very recently. The existence of
strong solutions to (1)—(2) has been shown in [1] (in 2D, globally in
time) and [4] (in 3D, locally in time).

® Recently we proved in [4] a version of the classical Ladyzhenskaya-
Prodi-Serrin condition for (1)—(2): under additional integrability condi-
tions on the velocity field, the weak solution must be regular as well
as unigue in the class of weak solutions. This is a consequence of an
acceleration estimate and a weak-strong unigueness result for (1)—(2).

Isentropic compressible fluids

In the isentropic compressible Navier—Stokes equations the density o :
(0, T) xQ, — [0, 00) is an unknown function and the pressure relates to it
via the adiabatic law

p=p(0) = 20"
where Ma > 0 Iis the Mach-number and v > 1 is the adiabatic exponent.
® [he existence of weak solutions to (1)—(2) in this case was shown
In [2] (In the case of a general reference geometry as in Figure 2).
These solutions satisfy an energy inequality, where the energy of the
fluid system (1) is given by

1 2 1
= dx + Ydx.
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The result from [2] gives a counterpart to the celebrated theory by Li-
ons and Feireisl.

® The local-well-posedness in the case of elastic plates is studied in [8]
for the flat reference geometry and a weak-strong unigueness theo-
rem in that case can be found in [9].

® \Well-posedness results for the interaction of compressible fluids with
elastic shells are completely missing.

Heat-conducting compressible fluids

The motion of a general compressible and heat-conducting fluid is de-
scribed by the Navier—Stokes—Fourier equations. In addition to the veloc-
ity field u and density o, the absolute temperature ¢ : (0, T) x€Q, — [0, co)
IS an unknown. In the case of an ideal gas the pressure law is given by

p = p(o, ) = ov.
The internal energy balance is given by
Cv(9:(0?) + Div(odu)) + Div(kV¥) = 7 : Vu, (3)

where ¢, = Jj with the adiabatic exponent y > 1 and x = «(9) is the
heat-conductivity.

® [he existence of weak solutions to (1)—(3) is shown in [3] (in the case
of a general reference geometry as in Figure 2). These solutions sat-
Isfy an energy equality, where the energy of the fluid system (1), (3) is

given by
%/ g|u|2dx+/ 0C,UdX.
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® Further results can be found in [7] and [10], where the possibility of
heat-transfer through the shell is included.

® The local well-posedness of (1)—(3) in the case of elastic plates is
studied in [8].

® Results regarding conditional regularity and weak-strong uniqueness
seem to be missing completely.
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