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Plates versus shells

Almost all results so far are concerned with a simplified geometrical set-up, where the
domain Ω is given by a rectangle and the flexible part of the boundary is flat (see Figure
1); this is the case of elastic plates. We aim to study general geometries (see Figure 2)
including cylinders or sphere; this is the case of elastic shells.
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Figure 1: Domain transformation in the simplified set-up.
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Figure 2: Domain transformation in the general set-up.

The Mathematical Problem

We are interested in the case, where a viscous fluid interacts with a flexi-
ble shell which is located at a part of the boundary (or even describes the
complete boundary) of the underlying domain Ω ⊂ R3 denoted by 𝜔. The
shell, described by a function 𝜂 : (0,T ) ×𝜔 → R for some T > 0, reacts to
the surface forces induced by the fluid and deforms the domain Ω to Ω𝜂(t),
where the function 𝝋𝜂(t) describes the coordinate transform (see Figures
1 and 2 above) and n𝜂(t) is the normal at the deformed boundary.
The motion of the fluid is governed by the Navier–Stokes equations

𝜚
(
𝜕tu + (u · ∇)u

)
= 𝜇Δu − ∇p + 𝜚f, 𝜕t 𝜚 + Div(𝜚u) = 0, (1)

in the moving domain Ω𝜂 where u : (0,T ) × Ω𝜂 → R3 is the velocity field
and p : (0,T ) × Ω𝜂 → R is the pressure function. The equations are
supplemented with initial conditions and the boundary condition u ◦ 𝝋𝜂 =

𝜕t𝜂n at the flexible part of the boundary with normal n. There exist various
models in the literature to model the behaviour of the shell and a typical
example is given by

𝜕2
t 𝜂 − 𝛾𝜕tΔy𝜂 + 𝛼Δ2

y𝜂 = g − n𝝉 ◦ 𝝋𝜂n𝜂 det(∇𝝋𝜂) (2)

on 𝜔 supplemented with initial and boundary conditions. Here 𝝉 denotes
the Cauchy stress of the fluid given by Newton’s rheological law, that is

𝝉 = 𝜇
(
∇u + ∇u⊤) + 𝜈Divu I3×3 − pI3×3.

The energy of the shell is given by

1
2

∫
𝜔

|𝜕t𝜂 |2dy + 𝛼
2

∫
𝜔

|Δy𝜂 |2dy .

We are interested in the well-posedness of the system (1)–(2), that is, ex-
istence and uniqueness of strong solutions (at least locally in time) as well
as conditional regularity of weak solutions (under which assumptions is a
weak solution a strong one?).

Incompressible fluids

In the case of a homogeneous incompressible fluid the density 𝜚 is a
positive constant. The second equation of (1) reduces to Divu = 0 and the
pressure function p is an unknown.

0 There exists several results concerning the existence of local-in-time
strong solutions. In the 2D case these solutions exist globally in time,
cf. [6]. The study of well-posedness for fluid-structure interactions
with general reference geometries as in Figure 2 (the case of elas-
tic shells) has already been started very recently. The existence of
strong solutions to (1)–(2) has been shown in [1] (in 2D, globally in
time) and [4] (in 3D, locally in time).

0 Recently we proved in [4] a version of the classical Ladyzhenskaya-
Prodi-Serrin condition for (1)–(2): under additional integrability condi-
tions on the velocity field, the weak solution must be regular as well
as unique in the class of weak solutions. This is a consequence of an
acceleration estimate and a weak-strong uniqueness result for (1)–(2).

Isentropic compressible fluids

In the isentropic compressible Navier–Stokes equations the density 𝜚 :
(0,T ) ×Ω𝜂 → [0,∞) is an unknown function and the pressure relates to it
via the adiabatic law

p = p(𝜚) = 1
Ma

2𝜚
𝛾,

where Ma > 0 is the Mach-number and 𝛾 > 1 is the adiabatic exponent.
0 The existence of weak solutions to (1)–(2) in this case was shown

in [2] (in the case of a general reference geometry as in Figure 2).
These solutions satisfy an energy inequality, where the energy of the
fluid system (1) is given by

1
2

∫
Ω𝜂

𝜚 |u|2dx + 1
(𝛾−1)Ma2

∫
Ω𝜂

𝜚𝛾dx .

The result from [2] gives a counterpart to the celebrated theory by Li-
ons and Feireisl.

0 The local-well-posedness in the case of elastic plates is studied in [8]
for the flat reference geometry and a weak-strong uniqueness theo-
rem in that case can be found in [9].

0 Well-posedness results for the interaction of compressible fluids with
elastic shells are completely missing.

Heat-conducting compressible fluids

The motion of a general compressible and heat-conducting fluid is de-
scribed by the Navier–Stokes–Fourier equations. In addition to the veloc-
ity field u and density 𝜚, the absolute temperature 𝜗 : (0,T ) ×Ω𝜂 → [0,∞)
is an unknown. In the case of an ideal gas the pressure law is given by

p = p(𝜚, 𝜗) = 𝜚𝜗.

The internal energy balance is given by

cv
(
𝜕t (𝜚𝜗) + Div(𝜚𝜗u)

)
+ Div(𝜅∇𝜗) = 𝝉 : ∇u, (3)

where cv = 1
𝛾−1 with the adiabatic exponent 𝛾 > 1 and 𝜅 = 𝜅(𝜗) is the

heat-conductivity.
0 The existence of weak solutions to (1)–(3) is shown in [3] (in the case

of a general reference geometry as in Figure 2). These solutions sat-
isfy an energy equality, where the energy of the fluid system (1), (3) is
given by

1
2

∫
Ω𝜂

𝜚 |u|2dx +
∫
Ω𝜂

𝜚cv𝜗dx .

0 Further results can be found in [7] and [10], where the possibility of
heat-transfer through the shell is included.

0 The local well-posedness of (1)–(3) in the case of elastic plates is
studied in [8].

0 Results regarding conditional regularity and weak-strong uniqueness
seem to be missing completely.
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