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The Mathematical Problem Note that the upper threshold a < 7 in (4) arises from the limited time reg-

We consider the stochastic Navier—Stokes equations, describing the flow
of a viscous incompressible fluid in a bounded domain O c R3:

U+ U-Vyu=Au-Vp+mn, dvu) =0, (1)

where we put the physical constants density and viscosity to 1 for simplic-
ity. The unknowns are the velocity field u and the pressure p. The noise
term 5 can depend on the solution u itself. In the following we describe
different scenarios concerning their role.

Deterministic case. In the deterministic case (thatisn = 0ornp = f
deterministic) it is well-known that unigue smooth solutions exist locally in
time. It is, however, still one of the biggest open problems in analysis if
solutions can develop singularities in finite time.

Stochastic forcing. We speak about stochastic forcing if
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with a (possibly infinite-dimensional) Wiener process W and an operator
® with appropriate growth assumptions. A simple example is given by
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with three independent Wiener processes W', W? and W?3. If @ is inde-
pendent of u we speak of additive noise. A particular instance of relevance

IS given by
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with a possibly infinite sum, smooth solenoidal vector fields e, and inde-
pendent Wiener processes Wy. Explicit relations for the e, s are given in
[1], where the stochastic Navier—Stokes equation are used to derive the
Kolmogorov—Obukhov Statistical Theory of Turbulence.

As in the deterministic case smooth solutions to (1) with stochastic forcing
exist locally in time (here the existence time is a random variable which is
almost surely positive).

Transport noise. We speak about transport noise if
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or n= Z curl™! ((ok - V)curlu) o —k, (3)
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with given vector fields o, and stochastic differentials with respect to inde-
pendent Wiener process W in the Stratonovich sense (an infinite sum is
possible too). Note that in the first case, the noise is energy conservative.
Hence stochasticity does not enter as an external force but as an intrinsic
property of the system.

Numerical approximation in 2D

it is shown in [2], [8] (space-periodic problem) and [5] (Dirichlet problem)
that forany & > 0

maxm || U(tm) = Unml%, + S 7lIV U(tm) = V Upml13,

P h213+7'2“ =>¢E1 >0 4
as h,tr — 0 (where a < % and B < 1 are arbitrary). Here u is the so-
lution to (1) with stochastic forcing and up ,, the approximation of u(t;)
with discretisation parameters r = T /M (in time, by semi-implicit Euler-
Maruyama) and h (in space, by finite elements). The relation (4) tells us
that the convergence in probability is of order (almost) 1/2 in time and 1 In
space. It seems to be an intrinsic feature of stochastic partial differential
equations (SPDEs) with general non-Lipschitz nonlinearities such as (1)
that the more common concept of a pathwise error (an error measured Iin
[2(Q)) is too strong. Hence (4) is the best result we can hope for in the
general case.

ularity of the solution which is inherited from the driving Wiener process.
If the stochastic forcing is additive and sufficiently smooth in space this
can be improved to a < 1, cf. [4]. This is based on a transformation to a
random PDE which is not available for multiplicative noise.

The only available result on (1) with transport noise is the recent paper
[6] concerning the temporal discretisation. Working with a structure pre-
serving scheme, which is in line with the Stratonovich noise, it is shown
that the pathwise error is of order % The improvement compared to (4) is
due to (higher order) pathwise energy estimates independent of the noise.
The result is, however, limited to constant vector fields o in (2) and peri-
odic boundary conditions.

Numerical approximation in 3D

A counterpart of (4) is shown in [3] for the space-periodic problem. It holds
locally in time, that is as long as ty is below the hypothetical blow-up time
of the solution (about which we only know that it is almost surely positive).
The only other result concerning the 3D case is [7], where the consistency
with a weak solution to (1) (which exists globally in time) is shown.

Objectives

The aim is to study the space-time discretisation of (1) (locally in time)

with different types of noise, as explained above, and to prove optimal

convergence rates (with respect to the error in probability, cf. (4)) and
to confirm them by numerical simulations. In particular, we aim at the
following work packages:

@ Multiplicative stochastic forcing. Here we aim to extend the result
from [3] (convergence of order 1 in space and 1/2 in time) in two di-
rections: from periodic to Dirichlet boundary conditions and to con-
sider further spatial discretisations in addition to finite element meth-
ods such as discontinuous Galerkin (DG) methods.

@ Additive stochastic forcing. In this case we hope to improve the tem-
poral convergence rate from the first working package to order 1.

This would provide a counterpart of the two-dimensional result of [4].
Again, we plan to also include DG methods.

® Transport noise. We aim to analyse both cases (2) and (3) and to
analyse the error with respect to space and time. So far, even in the
2D case only the temporal error has been studied. Moreover, we will
include boundary effects as well as DG.

O In a final working package we are concerned with the implementation
of the discretisation of (1). Here we plan to confirm the results from
the previous work packages by simulations (this is a very expansive
task and must be performed on a compute cluster). Also, it would be
interesting to see if one can verify the regularisation effect observed
in [9] if the noise from (3) Is considered.
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