

Generalised Modes in Bayesian Inverse Problems

Christian Clason¹ Tapio Helin² Remo Kretschmann¹ Petteri Piiroinen²

¹Faculty of Mathematics, University Duisburg-Essen

²Department of Mathematics and Statistics, University of Helsinki

Chemnitz Symposium on Inverse Problems 2018 Chemnitz, 27 Sept 2018

Outline

1 Introduction

2 Generalised modes

3 Variational characterisation of generalised MAP estimates

Problem setting

Bayesian statistical inverse problem

Assumptions:

- Probability distribution μ_0 of unknown x (prior distribution)
- Conditional probability distribution of data y given unknown x

Given:

Observed data y

Find:

■ Conditional probability distribution μ^y of x|y (posterior distribution)

MAP estimate: Use mode of posterior distribution μ^y as point estimate for posterior x|y.

Modes in finite-dimensional setting

Continuous random variables:

- Posterior x|y has density w.r.t. Lebesgue measure.
- Modes of posterior distribution μ^y given by maximisers of posterior density, or, equivalently, by minimisers of negative logarithmic posterior density.

Problem: There is no Lebesgue measure on **infinite-dimensional** separable Banach spaces.

Modes in infinite-dimensional setting

Let μ be a probability measure on a **separable Banach space** X and let $B^{\delta}(x) \subset X$ denote the open ball centred at $x \in X$ with radius δ .

Definition

A point $\hat{x} \in X$ is called a **(strong) mode** of μ if

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(\hat{x}))}{\sup_{x \in X} \mu(B^{\delta}(x))} = 1.$$

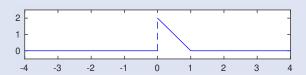
[Dashti et al 2013]: In case of Gaussian prior and under certain conditions, modes of posterior distribution μ^y are precisely minimisers of a suitable objective functional.

Problems with this definition

Example

Consider probability measure μ on IR with Lebesgue density

$$p(x) = \begin{cases} 2(1-x), & \text{if } x \in [0,1], \\ 0, & \text{otherwise.} \end{cases}$$



Then μ does not have a mode in 0, because

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\sup_{x \in X} \mu(B^{\delta}(x))} = \frac{1}{2}.$$

Strict bounds

- There are applications where strict bounds on the admissible values of the unknown x emerge in a natural way, e.g., X-ray imaging, electrical impedance tomography.
- Question: How to generalise the notion of a mode in such a way that it covers what we would intuitively consider a mode in those cases?

Outline

1 Introduction

2 Generalised modes

3 Variational characterisation of generalised MAP estimates

Definition of generalised mode

Let μ be a probability measure on a separable Banach space X.

Definition

A point $\hat{x} \in X$ is called a **generalised mode** of μ if for every sequence $\{\delta_n\}_{n\in\mathbb{N}}\subset(0,\infty)$ with $\delta_n\to 0$ there exists a **qualifying sequence** $\{w_n\}_{n\in\mathbb{N}}\subset X$ with $w_n\to\hat{x}$ in X and

$$\lim_{n\to\infty} \frac{\mu(B^{\delta_n}(w_n))}{\sup_{x\in X} \mu(B^{\delta_n}(x))} = 1.$$

- Every strong mode is a generalised mode.
- In the previous example 0 is a generalised mode with $w_n := \delta_n$.
- For Gaussian measures the strong mode is the only generalised mode.

Relation between modes and g-modes

Criteria for coincidence of strong and generalised modes:

- 1 Convergence rate of the qualifying sequence w_n and equicontinuity condition.
- 2 Convergence of qualifying sequence w_n in subspace topology and equicontinuity condition.

Outline

1 Introduction

2 Generalised modes

3 Variational characterisation of generalised MAP estimates

Uniform prior measure

Set

$$X := c_0 := \{ \{x_k\}_{k \in \mathbb{N}} \in \ell^{\infty} : \lim_{k \to \infty} x_k = 0 \}$$

and $\|\cdot\|_X := \|\cdot\|_{\infty}$. Define the X-valued random variable

$$\xi:=\sum_{k=1}^{\infty}\gamma_k\xi_ke_k,$$

where

- $\{\xi_k\}_{k\in\mathbb{N}}$ are i.i.d. **uniformly distributed** on [-1,1],
- $ightharpoonup \gamma_k\geqslant 0$ for all $k\in {\sf IN}$ and $\gamma_k\rightarrow 0$,
- $\{e_k\}_i = 1$ for j = k and 0 otherwise.

Now define probability measure μ_{γ} on $(X, \mathcal{B}(X))$ by

$$\mu_{\gamma}(A) := \mathbb{P}\left[\xi \in A\right] \quad \text{for all } A \in \mathfrak{B}(X).$$

Bayesian inv. probl. with uniform prior

Assumptions:

- Uniform prior distribution $\mu_0 := \mu_{\gamma}$ on $X := c_0$ as defined before for non-negative weights $\{\gamma_k\}_{k \in \mathbb{N}}$ with $\gamma_k \to 0$.
- For given data y in separable Hilbert space Y, the **posterior** distribution μ^y is absolutely continuous w.r.t. μ_0 and

$$\mu^{y}(A) = \frac{1}{Z(y)} \int_{A} \exp(-\Phi(x; y)) \mu_{0}(dx)$$

for all $A \in \mathcal{B}(X)$, where $Z(y) := \int_X \exp(-\Phi(x;y)) \mu_0(\mathrm{d}x)$ and $\Phi: X \times Y \to \mathbb{R}$.

- $0 < Z(y) < \infty.$
- The **negative log-likelihood** $\Phi(\cdot; y)$ is Lipschitz continuous on bounded sets.

Generalised MAP estimates

Set $E_{\gamma} := \{x \in X : |x_k| \leq \gamma_k \text{ for all } k \in \mathbb{N}\}$ and define the functional $I^{\gamma} : X \to \mathbb{R} \cup \{\infty\}$,

$$I^{y}(x) := \Phi(x; y) + \iota_{E_{\gamma}}(x),$$

where

$$\iota_{E_{\gamma}}(x) = \begin{cases} 0, & \text{if } x \in E_{\gamma}, \\ \infty, & \text{otherwise.} \end{cases}$$

Theorem

A point $\hat{x} \in X$ is a **generalised mode** of μ^y if and only if it is a **minimiser** of I^y .

Generalised MAP estimation corresponds to Ivanov regularisation with the compact set E_{γ} .

Idea of proof

- 1 For every $\delta > 0$ let x^{δ} be a **maximiser** of $\mu^{y}(B^{\delta}(\cdot))$ in X.
- 2 The family $\{x^{\delta}\}_{\delta>0}$ contains a **convergent subsequence** and the **limit** of every convergent subsequence **minimises** I^{γ} .
- 3 Every minimiser of I^y is a generalised mode of μ^y and vice versa.

Conclusion

- We have conditions for the **coincidence** of strong modes and generalised modes.
- In case of a uniform prior, generalised MAP estimates can be characterised as the minimisers of a suitable objective functional.

References:

C. Clason, T. Helin, R. Kretschmann, and P. Piiroinen. Generalized modes in Bayesian inverse problems. Submitted, 2018. arXiv:1806.00519.

M. Dashti, K. J. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric inverse problems.

Inverse Problems, 29(9):095017, 2013.