

Bayesian inverse problems with Laplacian noise

Remo Kretschmann

Faculty of Mathematics, University of Duisburg-Essen

Applied Inverse Problems 2017, M27
Hangzhou, 1 June 2017

1 Inverse heat equation and Laplacian measures

2 Bayesian inversion

3 Maximum a posteriori estimators

- X, Y separable Hilbert spaces,
- $F: X \rightarrow Y$.

Given **observed data** $y \in Y$ find **unknown** $u \in X$, where

$$y = F(u) + \eta$$

with **observational noise** $\eta \in Y$.

Bayesian approach

- X, Y separable Hilbert spaces,
- $F: X \rightarrow Y$,
- probability measures μ_0 on $(X, \mathcal{B}(X))$, \mathbb{Q}_0 on $(Y, \mathcal{B}(Y))$,
- **prior** $u \sim \mu_0$, **noise** $\eta \sim \mathbb{Q}_0$, η independent of u and

$$y = F(u) + \eta.$$

Given **observed data** $y \in Y$ find **posterior distribution** μ^y , the conditional distribution of $u|y$.

- Extract information out of μ^y in the form of estimators.

Motivation

Bayesian inverse problems in function spaces:

- Dashti, Law, Stuart and Voss have studied nonlinear inverse problems with Gaussian prior and noise that satisfies certain conditions. [Dashti et al 2013]
- In this case, the MAP estimator can be described as the minimiser of the Onsager-Machlup functional.
- Dashti and Stuart have analysed the inverse heat equation with Gaussian noise and different priors (i.a. Gaussian). [Dashti, Stuart 2015]

Motivation

Bayesian inverse problems in function spaces:

- Dashti, Law, Stuart and Voss have studied nonlinear inverse problems with Gaussian prior and noise that satisfies certain conditions. [Dashti et al 2013]
- In this case, the MAP estimator can be described as the minimiser of the Onsager-Machlup functional.
- Dashti and Stuart have analysed the inverse heat equation with Gaussian noise and different priors (i.a. Gaussian). [Dashti, Stuart 2015]

Questions:

- What happens if the prior is Gaussian but the noise is non-Gaussian?
- Does Laplacian noise lead to an ℓ^1 -discrepancy term?

Motivation

- We study the **inverse heat equation** with **Laplacian noise** in combination with a **Gaussian prior**.
- **Problem:** Laplacian noise violates the conditions of [Dashti et al 2013].
- Existence of a solution?
- Connection: MAP estimator – optimisation problem?
- Does the MAP estimator converge towards the true solution, as the variance of the noise tends to zero?

The heat conduction equation

- $D \subset \mathbb{R}^d$ bounded domain, $\partial D \in C^k$ for some $k \geq 1$,
- $A := -\Delta$ defined on $\mathcal{D}(A) = H^2(D) \cap H_0^1(D)$.

For every $u \in L^2(D)$ there is a unique solution

$$v \in C([0, \infty), L^2(D)) \cap C^1((0, \infty), \mathcal{D}(A))$$

of the heat equation on D with Dirichlet boundary conditions,

$$\begin{cases} \frac{dv}{dt}(t) = -Av(t) & \text{for } t > 0, \\ v(0) = u, \end{cases}$$

given by

$$v(t) = \exp(-At)u \quad \text{for all } t \geq 0.$$

The inverse problem (outline)

- Fix $t = 1$, i.e. $F(u) = v(1) = e^{-A}u$.

Given temperature measurement y at time $t = 1$, find initial temperature $u \in L^2(D)$ at time $t = 0$, where

$$y = e^{-A}u + \eta.$$

The Bayesian inverse problem (outline)

Given temperature measurement y at time $t = 1$, find conditional distribution of the **posterior** $u|y$, where

$$y = e^{-A}u + \eta.$$

We assume that

- $-A$ is a Laplace-like operator,
- the **noise** η has a **centred Laplacian distribution** with covariance operator $A^{s-\beta}$, and
- the **prior** u has a **centred Gaussian distribution** with covariance operator $A^{-\tau}$.

Laplace-like operators

We assume that the operator A in $L^2(D)$ satisfies the following properties:

- 1 The eigenvectors $\{\varphi_k\}_{k \in \mathbb{N}}$ of A form an orthonormal basis of $L^2(D)$.
- 2 The respective eigenvalues $\alpha_1 \geq \alpha_2 \geq \dots > 0$ of A satisfy

$$\frac{1}{C_A} k^{\frac{2}{d}} \leq \alpha_k \leq C_A k^{\frac{2}{d}} \quad \text{for all } k \in \mathbb{N}$$

and a constant $C_A > 1$.

- 3 A is densely defined and surjective.
- 4 A is self-adjoint.

Hilbert scales

A induces a **Hilbert scale** $\{\mathcal{H}^s\}_{s \in \mathbb{R}}$, where

$$\mathcal{H}^s := A^{-s}(L^2(D)) = \left\{ u \in L^2(D) : \sum_{k=1}^{\infty} \alpha_k^{2s} |(u, \varphi_k)_{L^2}|^2 < \infty \right\}$$

for all $s \geq 0$, equipped with

$$\|u\|_{\mathcal{H}^s} := \|A^{\frac{s}{2}} u\|_{L^2} \quad \text{and} \quad (u, v)_{\mathcal{H}^s} := (A^{\frac{s}{2}} u, A^{\frac{s}{2}} v)_{L^2}.$$

Now we set $X := L^2(D) = \mathcal{H}^0$ and $Y := \mathcal{H}^s$ with $s \geq 0$, i.e.,

$$u \in L^2(D) \quad \text{and} \quad \eta, y \in \mathcal{H}^s.$$

Standard Laplacian measure on \mathbb{R}



Laplacian measure on \mathbb{R}

For $a \in \mathbb{R}$ and $\lambda > 0$ define probability measure $\mathcal{L}_{a,\lambda}$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by

$$\mathcal{L}_{a,\lambda}(B) = \frac{1}{\sqrt{2\lambda}} \int_B e^{-\frac{\sqrt{2}|x-a|}{\sqrt{\lambda}}} dx \quad \text{for all } B \in \mathcal{B}(\mathbb{R}).$$

Then $\mathcal{L}_{a,\lambda}$ has **mean** a and **variance** λ , i.e.,

$$\int_{\mathbb{R}} x \mathcal{L}_{a,\lambda}(dx) = a, \quad \int_{\mathbb{R}} (x - a)^2 \mathcal{L}_{a,\lambda}(dx) = \lambda.$$

Infinite-dimensional product measure

- H separable real Hilbert space.
- For every compact self-adjoint operator Q on H there is an orthonormal basis $\{e_k\}_{k \in \mathbb{N}}$ of H consisting of eigenvectors of Q .
- Identify H with ℓ^2 by means of $x \mapsto \{(x, e_k)_H\}_{k \in \mathbb{N}}$.

Idea: For any $a \in H$ and any positive definite trace class operator $Q \in \mathcal{L}(H)$ define **Laplacian measure** $\mathcal{L}_{a,Q}$ on $(\ell^2, \mathcal{B}(\ell^2))$ as the product measure

$$\mathcal{L}_{a,Q} = \bigotimes_{k=1}^{\infty} \mathcal{L}_{a_k, \lambda_k},$$

with $a_k := (a, e_k)_H$ and $\lambda_k := (Qe_k, e_k)_H$ for all $k \in \mathbb{N}$.

Infinite-dimensional product measure

- H separable real Hilbert space.
- For every compact self-adjoint operator Q on H there is an orthonormal basis $\{e_k\}_{k \in \mathbb{N}}$ of H consisting of eigenvectors of Q .
- Identify H with ℓ^2 by means of $x \mapsto \{(x, e_k)_H\}_{k \in \mathbb{N}}$.

Idea: For any $a \in H$ and any positive definite trace class operator $Q \in \mathcal{L}(H)$ define **Laplacian measure** $\mathcal{L}_{a,Q}$ on $(\ell^2, \mathcal{B}(\ell^2))$ as the product measure

$$\mathcal{L}_{a,Q} = \bigotimes_{k=1}^{\infty} \mathcal{L}_{a_k, \lambda_k},$$

with $a_k := (a, e_k)_H$ and $\lambda_k := (Qe_k, e_k)_H$ for all $k \in \mathbb{N}$.

Caution: This definition depends on the choice of the basis $\{e_k\}_{k \in \mathbb{N}}$.

Basic properties

This way, $\mathcal{L}_{a,Q}$ has **mean a** and **covariance operator Q** , i.e.,

$$\int_H (x, y)_H \mathcal{L}_{a,Q}(dx) = (a, y)_H \quad \text{for all } y \in H,$$

$$\int_H (x - a, y)_H (x - a, z)_H \mathcal{L}_{a,Q}(dx) = (Qy, z)_H \quad \text{for all } y, z \in H.$$

In case $a = 0$ we write $\mathcal{L}_Q := \mathcal{L}_{0,Q}$.

The Bayesian inverse problem

Given $y \in Y$, find conditional distribution of $u|y$ on X , where

- **noise** $\eta \sim \mathcal{L}_{A^{s-\beta}}$ with **Laplacian measure** $\mathcal{L}_{A^{s-\beta}}$ on $Y := \mathcal{H}^s$ using basis $e_k := a_k^{-\frac{s}{2}} \varphi_k$ and $0 \leq s < \beta - \frac{d}{2}$,
- **prior** $u \sim \mathcal{N}_{A^{-\tau}}$ independent from η with **Gaussian measure** $\mathcal{N}_{A^{-\tau}}$ on $X := L^2(D) = \mathcal{H}^0$ and $\tau > \frac{d}{2}$,
- $y = e^{-A}u + \eta$.

Idea: Use Bayes' Theorem to obtain posterior distribution.

1 Inverse heat equation and Laplacian measures

2 Bayesian inversion

3 Maximum a posteriori estimators

Bayes' Theorem

- (X, A) , (Y, B) measurable spaces,
- ν, ν_0 probability measures on $X \times Y$, such that $\nu \ll \nu_0$, i.e., ν is **absolutely continuous with respect to ν_0** .
- Then ν has a density $f = \frac{d\nu}{d\nu_0}$ with respect to ν_0 , i.e., $\nu = f \nu_0$.

Theorem (Bayes)

Assume that the conditional random variable $x|y$ exists under ν_0 with probability distribution ν_0^y on X . Then the conditional random variable $x|y$ exists under ν with probability distribution ν^y on X , and $\nu^y \ll \nu_0^y$. If additionally, $Z(y) := \int_X \frac{d\nu}{d\nu_0}(x, y) \nu_0^y(dx) > 0$, then

$$\frac{d\nu^y}{d\nu_0^y}(x) = \frac{1}{Z(y)} \frac{d\nu}{d\nu_0}(x, y).$$

Posterior distribution

- In our case, $(u, \eta) \sim \nu_0$ and $(u, y) \sim \nu$ on $X \times Y = L^2(D) \times \mathcal{H}^s$.
- In order for $\nu \ll \nu_0$ to hold, we require $\mathcal{L}_{e^{-A}u, A^{s-\beta}} \ll \mathcal{L}_{A^{s-\beta}}$ for all $u \in X$.
- Then by Bayes' Theorem, the **posterior measure** μ^y of $u|y$ is absolutely continuous with respect to the prior measure $\mathcal{N}_{A^{-\tau}}$ with the density

$$\frac{d\mu^y}{d\mathcal{N}_{A^{-\tau}}}(u) = \frac{1}{Z(y)} \exp(-\Phi(u, y)) \quad \nu_0\text{-a.e.},$$

$$\Phi(u, y) = \sqrt{2} \sum_{k=1}^{\infty} \alpha_k^{\frac{\beta}{2}} (|y_k - e^{-\alpha_k} u_k| - |y_k|),$$

where $y_k := (y, \varphi_k)_X$, $u_k := (u, \varphi_k)_X$.

Admissible shifts

- H separable Hilbert space, $Q \in \mathcal{L}(H)$ positive definite trace class operator.

Theorem

- 1 If $a \notin Q^{\frac{1}{2}}(H)$ then $\mathcal{L}_{a,Q}$ and \mathcal{L}_Q are singular.
- 2 If $a \in Q^{\frac{1}{2}}(H)$ then $\mathcal{L}_{a,Q}$ and \mathcal{L}_Q are equivalent ($\mathcal{L}_{a,Q} \ll \mathcal{L}_Q$ and $\mathcal{L}_Q \ll \mathcal{L}_{a,Q}$) and

$$\frac{d\mathcal{L}_{a,Q}}{d\mathcal{L}_Q}(y) = \exp\left(-\sqrt{2} \sum_{k=1}^{\infty} \frac{|y_k - a_k| - |y_k|}{\sqrt{\lambda_k}}\right) \quad \mathcal{L}_Q\text{-a.e.},$$

where $y_k := (y, e_k)_H$, $a_k := (a, e_k)_H$ and $\lambda_k = (Q e_k, e_k)_H$.

Idea of proof: Apply Kakutani's Theorem.

1 Inverse heat equation and Laplacian measures

2 Bayesian inversion

3 Maximum a posteriori estimators

Maximum a posteriori estimators

Let μ be a probability measure on a separable Hilbert space X and define

$$M_\varepsilon := \sup_{u \in X} \mu(B_\varepsilon(u)) \quad \text{for all } \varepsilon > 0.$$

Any point $\hat{u} \in X$ satisfying

$$\lim_{\varepsilon \rightarrow 0} \frac{\mu(B_\varepsilon(\hat{u}))}{M_\varepsilon} = 1$$

is called a **maximum a posteriori estimator** for μ .

Onsager-Machlup functional

$I: E \rightarrow \mathbb{R}$ is called **Onsager-Machlup functional** for μ , if

$$\lim_{\varepsilon \rightarrow 0} \frac{\mu(B_\varepsilon(u))}{\mu(B_\varepsilon(v))} = \exp(I(v) - I(u))$$

for all $u, v \in E$, where $E \subseteq X$ denotes the space of all admissible shifts that yield an equivalent measure.

Onsager-Machlup functional

$I: E \rightarrow \mathbb{R}$ is called **Onsager-Machlup functional** for μ , if

$$\lim_{\varepsilon \rightarrow 0} \frac{\mu(B_\varepsilon(u))}{\mu(B_\varepsilon(v))} = \exp(I(v) - I(u))$$

for all $u, v \in E$, where $E \subseteq X$ denotes the space of all admissible shifts that yield an equivalent measure.

- For a centered Gaussian measure \mathcal{N}_Q on X , $E = Q^{\frac{1}{2}}(X)$ and

$$I(u) = \frac{1}{2} \|Q^{-\frac{1}{2}}u\|_X^2 \quad \text{for all } u \in E$$

Characterisation of MAP estimators

- μ_0 centred Gaussian measure on X , μ^y posterior measure on X with $\frac{d\mu^y}{d\mu_0}(u) = \exp(-\Phi(u))$ μ_0 -a.e., $\Phi: X \rightarrow \mathbb{R}$,
- X separable Banach space, $E \subseteq X$ space of admissible shifts for μ_0 , μ^y that yield an equivalent measure.

Theorem [Dashti et al 2013]

Assume that

- 1 Φ is bounded from below,
- 2 Φ is locally bounded from above,
- 3 Φ is locally Lipschitz continuous.

Then $u \in E$ is a MAP estimator for μ^y if and only if it minimises the Onsager-Machlup functional I for μ^y .

Onsager-Machlup functional (2)

- For $\mu_0 = \mathcal{N}_{A^{-\tau}}$ and μ^y , the space of admissible shifts is given by

$$E = A^{-\frac{\tau}{2}}(L^2(D)) = \mathcal{H}^\tau.$$

- In our case, Onsager-Machlup functional $I: \mathcal{H}^\tau \rightarrow \mathbb{R}$ for μ^y ,

$$\begin{aligned} I(u) &:= \Phi(u) + \frac{1}{2} \|u\|_{\mathcal{H}^\tau}^2 \\ &= \sqrt{2} \sum_{k=1}^{\infty} \alpha_k^{\frac{\beta}{2}} (|y_k - e^{-\alpha_k} u_k| - |y_k|) + \frac{1}{2} \sum_{k=1}^{\infty} \alpha_k^\tau |u_k|^2, \end{aligned}$$

where $u_k := (u, \varphi_k)_{L^2}$ and $y_k := (y, \varphi_k)_{L^2}$.

Theorem [Dashti et al 2013]

Assume that

- 1 Φ is bounded from below,
- 2 Φ is locally bounded from above,
- 3 Φ is locally Lipschitz continuous.

Then $u \in E$ is a MAP estimator for μ^y if and only if it minimises the Onsager-Machlup functional I for μ^y .

Problem: For Laplacian noise, Φ is **not** bounded from below.

Upside: Φ is **globally** Lipschitz continuous.

- μ_0 centred Gaussian measure on X , μ^y posterior measure on X with $\frac{d\mu^y}{d\mu_0}(u) = \exp(-\Phi(u))$ μ_0 -a.e., $\Phi: X \rightarrow \mathbb{R}$,
- X separable Hilbert space, $E \subseteq X$ space of admissible shifts for μ_0, μ^y that yield an equivalent measure.

Theorem

Assume that

- 1 Φ is globally Lipschitz continuous,
- 2 $\Phi(0) = 0$.

Then $u \in E$ is a MAP estimator for μ^y if and only if it minimises the Onsager-Machlup functional I for μ^y .

Characterisation of MAP estimators (4)

Idea of proof:

- Show that $\{u_\varepsilon\}_{\varepsilon>0}$,

$$u_\varepsilon := \arg \max_{u \in X} \mu^y(B_\varepsilon(u)),$$

contains a subsequence $\{u_{\varepsilon_n}\}_{n \in \mathbb{N}}$ that converges in X and its limit $u_0 \in E$ is both a MAP estimator for μ^y and a minimiser of I .

- Show that every MAP estimator $\hat{u} \in X$ also minimises I .
- Show that every minimiser $\bar{u} \in E$ of I also is a MAP estimator.

- Does the MAP estimator converge towards the true solution, as the variance of the noise tends to zero?
- How to choose the variance of the prior appropriately?

Scaled distributions

- Noise distribution $\mathcal{L}_{b^2 A^{s-\beta}}$, $b > 0$
- prior distribution $\mathcal{N}_{r^2 A^{-\tau}}$, $r > 0$.
- Associated Onsager-Machlup functional $I: \mathcal{H}^\tau \rightarrow \mathbb{R}$ for $y \in \mathcal{H}^s$,

$$I(u) = \frac{1}{b} \Phi(u) + \frac{1}{2r^2} \|u\|_{\mathcal{H}^\tau}^2.$$

Scaled distributions

- Noise distribution $\mathcal{L}_{b^2 A^{s-\beta}}$, $b > 0$
- prior distribution $\mathcal{N}_{r^2 A^{-\tau}}$, $r > 0$.
- Associated Onsager-Machlup functional $I: \mathcal{H}^\tau \rightarrow \mathbb{R}$ for $y \in \mathcal{H}^s$,

$$I(u) = \frac{1}{b} \Phi(u) + \frac{1}{2r^2} \|u\|_{\mathcal{H}^\tau}^2.$$

- By the previous theorem, every minimiser $\bar{u}(y)$ of I is a MAP estimator for μ^y .
- Its components are

$$(\bar{u}(y), \varphi_k)_{L^2} = \max \left\{ -\frac{r^2}{b} c_k, \min \left\{ e^{\alpha_k} y_k, \frac{r^2}{b} c_k \right\} \right\},$$

where $y_k = (y, \varphi_k)_{L^2}$, $c_k := \sqrt{2} \alpha_k^{\frac{\beta}{2} - \tau} e^{-\alpha_k}$.

Frequentist consistency

- True solution $u^\dagger \in L^2(D)$ (fixed, no prior),
- positive sequences $\{b_n\}_{n \in \mathbb{N}}, \{r_n\}_{n \in \mathbb{N}}$ with $b_n \rightarrow 0$,
- Laplacian noise $\eta^n \in \mathcal{H}^s$ with $\eta^n \sim \mathcal{L}_{b_n^2 A^{s-\beta}}$ and

$$y^n = e^{-A} u^\dagger + \eta^n.$$

- Let u^n denote the respective minimisers of $I_n: \mathcal{H}^\tau \rightarrow \mathbb{R}$,

$$I_n(u) := \frac{1}{b_n} \Phi(u, y^n) + \frac{1}{2r_n^2} \|u\|_{\mathcal{H}^\tau}^2.$$

Convergence in mean square

Theorem

If a $w \in \mathcal{H}^{2\tau-\beta} \cap L^2(D)$ with $\|w\|_{\mathcal{H}^{2\tau-\beta}} \leq \rho$ exists, such that

$$u^\dagger = e^{-A} w,$$

and if $C > 0$ and $N \in \mathbb{N}$ exist, such that

$$\rho^{\frac{1}{2}} b_n^{\frac{1}{2}} \leq r_n \leq C^{\frac{1}{2}} b_n^{\frac{1}{2}} \quad \text{for all } n \geq N,$$

then

$$\mathbb{E} \left[\|u^n - u^\dagger\|_{L^2}^2 \right] \leq 2C \operatorname{Tr} A^{-\tau} b_n \quad \text{for all } n \geq N.$$

Bayesian inverse heat equation with Laplacian noise:

- The posterior distribution exists.
- Every minimiser of the Onsager-Machlup functional is a MAP estimator.
- The MAP estimator is consistent in a frequentist sense.

Outlook:

- Conditional mean estimator in explicit form
- Direct posterior sampling