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Outline

1 Inverse heat equation and Laplacian measures
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Classical setting

m X, Y separable Hilbert spaces,
B X—>Y.

Given observed data y € Y find unknown u € X, where
y=F(u)+n

with observational noise n€ Y.
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Bayesian approach

X, Y separable Hilbert spaces,

F-X—=Y,

probability measures py on (X, B(X)), Qo on (Y, B(Y)),
prior u ~ g, noise n~ Qg, n independent of v and

y = F(u)+n

Given observed data y € Y find posterior distribution u, the
conditional distribution of uly.

m Extract information out of w” in the form of estimators.
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Motivation

Bayesian inverse problems in function spaces:

m Dashti, Law, Stuart and Voss have studied nonlinear inverse
problems with Gaussian prior and noise that satisfies certain
conditions. [Dashti et al 2013]

m In this case, the MAP estimator can be described as the
minimiser of the Onsager-Machlup functional.

m Dashti and Stuart have analysed the inverse heat equation with
Gaussian noise and different priors (i.a. Gaussian). [Dashti,
Stuart 2015]
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Motivation

inded

Bayesian inverse problems in function spaces:

m Dashti, Law, Stuart and Voss have studied nonlinear inverse
problems with Gaussian prior and noise that satisfies certain
conditions. [Dashti et al 2013]

m In this case, the MAP estimator can be described as the
minimiser of the Onsager-Machlup functional.

m Dashti and Stuart have analysed the inverse heat equation with
Gaussian noise and different priors (i.a. Gaussian). [Dashti,
Stuart 2015]

Questions:

m What happens if the prior is Gaussian but the noise is
non-Gaussian?

m Does Laplacian noise lead to an {!-discrepancy term?
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Motivation

finded

We study the inverse heat equation with Laplacian noise in
combination with a Gaussian prior.

Problem: Laplacian noise violates the conditions of [Dashti et
al 2013].

Existence of a solution?
Connection: MAP estimator — optimisation problem?

Does the MAP estimator converge towards the true solution, as
the variance of the noise tends to zero?
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The heat conduction equation

m D C RY bounded domain, 3D € C* for some k > 1,
m A :=-A defined on D(A) = H?(D) N H}(D).

For every u € L2(D) there is a unique solution
v e C([0,00), L3(D)) N CY((0, ), D(A))

of the heat equation on D with Dirichlet boundary conditions,

dv
E(t)

—-Av(t) for t >0,

given by
v(t) = exp(-At)u for all t > 0.
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The inverse problem (outline)

mFixt=1,ie F(u)=v(l) =e"u

Given temperature measurement y at time t = 1, find initial
temperature u € L2(D) at time t = 0, where

y= eAu+ .
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The Bayesian inverse problem (outline)

Given temperature measurement y at time t = 1, find conditional
distribution of the posterior u|y, where

y= eAu+ 1.

We assume that
m —A is a Laplace-like operator,

m the noise 7 has a centred Laplacian distribution with
covariance operator A5#, and

m the prior v has a centred Gaussian distribution with
covariance operator A™".
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Laplace-like operators

We assume that the operator A in L?(D) satisfies the following
properties:
1 The eigenvectors { @ ke of A form an orthonormal basis of
L?(D).

2 The respective eigenvalues a; > ap > --- > 0 of A satisfy

L i ca < Cukd forallkeN
Ca

and a constant C4 > 1.
3 A is densely defined and surjective.

4 Ais self-adjoint.
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Hilbert scales

A induces a Hilbert scale {H°}scRr, where

56 = AS(L3(D)) = {u e (D) : Y a¥ |(w, o) 2P < o0}
k=1

for all s > 0, equipped with
lullges = [A3ull 2 and  (u, v)ges 1= (A3 U, A3V) 2.
Now we set X := L2(D) = H° and Y := H* with s > 0, i.e.,

ve 2(D) and nye K.
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Standard Laplacian measure on R
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Laplacian measure on R

For a € R and A > 0 define probability measure £, » on (IR, B(IR))
by

1 _V2|x-a|

L,2(B) = T JB e V2 dx for all B € B(R).

Then £, ) has mean a and variance J, i.e.,

J xL,(dx) = a, J (x—a)?L,a(dx) = A.
R R
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Infinite-dimensional product measure

m H separable real Hilbert space.

m For every compact self-adjoint operator @ on H there is an
orthonormal basis {ex}xem of H consisting of eigenvectors of Q.

m Identify H with €2 by means of x — {(x, ex)y }xen-

Idea: For any a € H and any positive definite trace class operator
Q € L(H) define Laplacian measure £, g on (€2, B(?)) as the
product measure

[ee]
£‘a,Q = ®Lak,)\kr
k=1

with ay := (a, ex)y and A := (Qey, ex)y for all k € IN.
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Infinite-dimensional product measure

m H separable real Hilbert space.

m For every compact self-adjoint operator @ on H there is an
orthonormal basis {ex}xem of H consisting of eigenvectors of Q.

m Identify H with €2 by means of x — {(x, ex)y }xen-

Idea: For any a € H and any positive definite trace class operator
Q € L(H) define Laplacian measure £, g on (€2, B(?)) as the
product measure

[ee]
£‘a,Q = ®Lak,)\kr
k=1

with ay := (a, ex)y and A := (Qey, ex)y for all k € IN.

Caution: This definition depends on the choice of the basis {ex}xen-
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Basic properties

This way, £, o has mean a and covariance operator Q, i.e.,

[, cntaol@) =@y forally e,
JH(x— a,y)y(x—a z)yLso(dx) = (Qy, z)y forall y,z € H.

In case a = 0 we write Lo = Lo .
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The Bayesian inverse problem

Given y € Y, find conditional distribution of uly on X, where
m noise n~ £ 4sp with Laplacian measure £ .5 on Y = H*®
using basis e = a;%(pk and0<s<f- %,
m prior u ~ Na- independent from n with Gaussian measure
Na-ron X :=L2(D)=H and T> ¢,
my= eAu+ .
Idea: Use Bayes' Theorem to obtain posterior distribution.
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Outline

2 Bayesian inversion
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Bayes’ Theorem

m (X, A), (Y, B) measurable spaces,

m v, vy probability measures on X x Y, such that v< vy, i.e., v
is absolutely continuous with respect to v.

m Then v has a density f = W|th respect to vg, i.e., v= f.

Theorem (Bayes)

Assume that the conditional random variable x|y exists under vy
with probability distribution v on X. Then the conditional random
variable x|y exists under v with probability distribution v on X, and
VW < . If additionally, Z(y) == [ (fT‘;(x,y)vg(dx) > 0, then

dvy 1 dv
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Posterior distribution

m In our case, (u, 1) ~ v and (u,y) ~von X x Y = [2(D) x H".

m In order for v < v to hold, we require £ -a, ps-p < L ps-p for
all v € X.

m Then by Bayes' Theorem, the posterior measure u” of uly is
absolutely continuous with respect to the prior measure Ny
with the density

du” 1
M(u) = m exp(—P(u, y)) Vp-a.e.,
S(u,y) = \/52 0-;% (Iyk — € % ug| - lyal) s

k=1

where yi = (y, 9x)x, uk = (U, 9k)x-
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Admissible shifts

m H separable Hilbert space, Q € £L(H) positive definite trace
class operator.

Theorem

1 Ifa¢ Q%(H) then £, @ and Lq are singular.

2 If a€ Qz(H) then £, ¢ and Lg are equivalent (£, o < Lo
and Lo < £, ) and

dLaQ |}/k ak| |}/k|
Zal)y = - 22 Bos Gl BAS) £ o-a.e.
] (v) exp( \/_k 1 i Q-a.e.,

where yi = (y, ex)y, ak = (a, ex)y and A = (Qey, ex) -

Idea of proof: Apply Kakutani's Theorem.
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Outline

3 Maximum a posteriori estimators
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Maximum a posteriori estimators

Let u be a probability measure on a separable Hilbert space X and

define

Mg = sup u(Be(u))  forall e > 0.
ueX

Any point U € X satisfying

- p(Be(u)
slT;o M, =1

is called a maximum a posteriori estimator for .
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Onsager-Machlup functional

I: E — R is called Onsager-Machlup functional for y, if

lim H(Be(u) = exp(/(v) - I(u))

e=0 u(Be(v))

for all u, v € E, where E C X denotes the space of all admissible
shifts that yield an equivalent measure.
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Onsager-Machlup functional

I: E — R is called Onsager-Machlup functional for y, if

o (Bw)
e=0 u(Be(v))

for all u, v € E, where E C X denotes the space of all admissible
shifts that yield an equivalent measure.

= exp(/(v) = 1(u))

m For a centered Gaussian measure Ng on X, E = Q%(X) and

1
I(u) = EHQ-%uHE( forall ue E
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Characterisation of MAP estimators

m g centred Gaussian measure on X, u” posterior measure
. duY .
on X with §f-(u) = exp(-®(v)) po-a.e., ®: X = R,
m X separable Banach space, E C X space of admissible shifts for
o, 1Y that yield an equivalent measure.

Theorem [Dashti et al 2013]

Assume that
1 ® is bounded from below,
2 @ is locally bounded from above,
3 @ is locally Lipschitz continuous.

Then u € E is a MAP estimator for w” if and only if it minimises the
Onsager-Machlup functional / for u”.
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Onsager-Machlup functional (2)

m For ug = Ny and ', the space of admissible shifts is given by
E = A3(L%(D)) = H".

m In our case, Onsager-Machlup functional /: H® — R for u”,

I(u) = ®(u) + ||U||9cr
o0 1 oo
g - 2
= E ,f (lyx — € upl = lyil) + 5; aglul®

where uy == (u, 9«2 and yx = (¥, ©k),2
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Characterisation of MAP estimators (2)

Theorem [Dashti et al 2013]

Assume that
1 ® is bounded from below,
2 @ is locally bounded from above,
3 @ is locally Lipschitz continuous.

Then u € E is a MAP estimator for w” if and only if it minimises the
Onsager-Machlup functional / for .

Problem: For Laplacian noise, ® is not bounded from below.

Upside: ¢ is globally Lipschitz continuous.
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Characterisation of MAP estimators (3)

m g centred Gaussian measure on X, u” posterior measure
on X with %(u) = exp(—®(v)) po-a.e., P: X = R,

m X separable Hilbert space, E C X space of admissible shifts for
Ko, 1Y that yield an equivalent measure.

Theorem

Assume that

1 & is globally Lipschitz continuous,

2 (0)=0.
Then u € E is a MAP estimator for ¥ if and only if it minimises the
Onsager-Machlup functional / for u”.
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Characterisation of MAP estimators (4)

Idea of proof:
m Show that {ue}eso,

ue = argmax u”' (B (u)),
ueX

contains a subsequence {u;, }nen that converges in X and its

limit up € E is both a MAP estimator for u¥ and a minimiser of
/.

m Show that every MAP estimator u € X also minimises /.

m Show that every minimiser o € E of | also is a MAP estimator.
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Consistency of the MAP estimator

m Does the MAP estimator converge towards the true solution, as
the variance of the noise tends to zero?

m How to choose the variance of the prior appropriately?
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Scaled distributions

m Noise distribution L2458, b > 0
m prior distribution N,2 -z, r > 0.
m Associated Onsager-Machlup functional /: H* — IR for y € H?®,

1 1
(1) = £ 0(u) + 5 5 ullfee.
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Scaled distributions

m Noise distribution L2458, b > 0
m prior distribution N,2 -z, r > 0.
m Associated Onsager-Machlup functional /: H* — IR for y € H?®,

1 1
(1) = £ 0(u) + 5 5 ullfee.

m By the previous theorem, every minimiser u(y) of / is a MAP
estimator for u”.

m |ts components are

2

_ r _ " r?
(a(y), k)2 = max {_Eck' min {e 7 Fck}} ,

B_
where y, = (v, 9k) 12, ok = V2a? feok,
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Frequentist consistency

m True solution u' € L2(D) (fixed, no prior),
m positive sequences {bp}nein, {rn}nemn with b, — 0,
m Laplacian noise 1" € H* with " ~ L2 ps-8 and

yn — e—AuT + nn.

m Let u" denote the respective minimisers of /,: H®* — R,

1 o
In(u) = b—¢(va )+ ﬁ”“”?}ﬁ-

n
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Convergence in mean square

Theorem
If a w € H%*F N [2(D) with ||w||ge2ep < p exists, such that

and if C > 0 and N € IN exist, such that

1 1
<rp,<C2ph? forall n > N,

=INT

b

NI

o

then
IE [Hu"— UTHizi| <2CTrA b, forall n > N.
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Conclusion

linded

Bayesian inverse heat equation with Laplacian noise:
m The posterior distribution exists.

m Every minimiser of the Onsager-Machlup functional is a MAP
estimator.

m The MAP estimator is consistent in a frequentist sense.

Outlook:
m Conditional mean estimator in explicit form

m Direct posterior sampling
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