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Classical setting

X , Y separable Hilbert spaces,
F : X → Y .

Given observed data y ∈ Y find unknown u ∈ X , where

y = F (u) + η

with observational noise η ∈ Y .
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Bayesian approach

X , Y separable Hilbert spaces,
F : X → Y ,
probability measures μ0 on (X ,B(X )), Q0 on (Y ,B(Y )),
prior u ∼ μ0, noise η ∼ Q0, η independent of u and

y = F (u) + η.

Given observed data y ∈ Y find posterior distribution μy , the
conditional distribution of u|y .

Extract information out of μy in the form of estimators.
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Motivation

Bayesian inverse problems in function spaces:
Dashti, Law, Stuart and Voss have studied nonlinear inverse
problems with Gaussian prior and noise that satisfies certain
conditions. [Dashti et al 2013]
In this case, the MAP estimator can be described as the
minimiser of the Onsager-Machlup functional.
Dashti and Stuart have analysed the inverse heat equation with
Gaussian noise and different priors (i.a. Gaussian). [Dashti,
Stuart 2015]

Questions:
What happens if the prior is Gaussian but the noise is
non-Gaussian?
Does Laplacian noise lead to an `1-discrepancy term?
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Motivation

We study the inverse heat equation with Laplacian noise in
combination with a Gaussian prior.
Problem: Laplacian noise violates the conditions of [Dashti et
al 2013].
Existence of a solution?
Connection: MAP estimator – optimisation problem?
Does the MAP estimator converge towards the true solution, as
the variance of the noise tends to zero?
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The heat conduction equation

D ⊂ Rd bounded domain, ∂D ∈ C k for some k > 1,
A := –Δ defined on D(A) = H2(D) ∩ H1

0 (D).

For every u ∈ L2(D) there is a unique solution

v ∈ C ([0,∞), L2(D)) ∩ C 1((0,∞),D(A))

of the heat equation on D with Dirichlet boundary conditions,
dv
dt

(t) = –Av(t) for t > 0,

v(0) = u,

given by
v(t) = exp(–At)u for all t > 0.
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The inverse problem (outline)

Fix t = 1, i.e. F (u) = v(1) = e–Au.

Given temperature measurement y at time t = 1, find initial
temperature u ∈ L2(D) at time t = 0, where

y = e–Au + η.
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The Bayesian inverse problem (outline)

Given temperature measurement y at time t = 1, find conditional
distribution of the posterior u|y , where

y = e–Au + η.

We assume that
–A is a Laplace-like operator,
the noise η has a centred Laplacian distribution with
covariance operator As–β , and
the prior u has a centred Gaussian distribution with
covariance operator A–τ.
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Laplace-like operators

We assume that the operator A in L2(D) satisfies the following
properties:

1 The eigenvectors {ϕk}k∈N of A form an orthonormal basis of
L2(D).

2 The respective eigenvalues α1 > α2 > · · · > 0 of A satisfy

1
CA

k
2
d 6 αk 6 CAk

2
d for all k ∈ N

and a constant CA > 1.
3 A is densely defined and surjective.
4 A is self-adjoint.
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Hilbert scales

A induces a Hilbert scale {Hs}s∈R, where

Hs := A–s(L2(D)) =
{

u ∈ L2(D) :
∞∑

k=1

α
2s
k |(u,ϕk)L2 |

2 <∞}
for all s > 0, equipped with

‖u‖Hs := ‖A
s
2 u‖L2 and (u, v)Hs := (A

s
2 u,A

s
2 v)L2 .

Now we set X := L2(D) = H0 and Y := Hs with s > 0, i.e.,

u ∈ L2(D) and η, y ∈ Hs .
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Standard Laplacian measure on R
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Laplacian measure on R

For a ∈ R and λ > 0 define probability measure La,λ on (R,B(R))
by

La,λ(B) =
1√
2λ

∫
B

e–
√
2|x–a|√
λ dx for all B ∈ B(R).

Then La,λ has mean a and variance λ, i.e.,∫
R

xLa,λ(dx) = a,
∫
R

(x – a)2La,λ(dx) = λ.
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Infinite-dimensional product measure

H separable real Hilbert space.
For every compact self-adjoint operator Q on H there is an
orthonormal basis {ek}k∈N of H consisting of eigenvectors of Q.
Identify H with `2 by means of x 7→ {(x , ek)H}k∈N.

Idea: For any a ∈ H and any positive definite trace class operator
Q ∈ L(H) define Laplacian measure La,Q on (`2,B(`2)) as the
product measure

La,Q =
∞⊗

k=1

Lak ,λk ,

with ak := (a, ek)H and λk := (Qek , ek)H for all k ∈ N.

Caution: This definition depends on the choice of the basis {ek}k∈N.
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Basic properties

This way, La,Q has mean a and covariance operator Q, i.e.,∫
H
(x , y)HLa,Q(dx) = (a, y)H for all y ∈ H,∫

H
(x – a, y)H(x – a, z)HLa,Q(dx) = (Qy , z)H for all y , z ∈ H.

In case a = 0 we write LQ := L0,Q .
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The Bayesian inverse problem

Given y ∈ Y , find conditional distribution of u|y on X , where
noise η ∼ LAs–β with Laplacian measure LAs–β on Y := Hs

using basis ek := α–
s
2

k ϕk and 0 6 s < β – d
2 ,

prior u ∼ NA–τ independent from η with Gaussian measure
NA–τ on X := L2(D) = H0 and τ > d

2 ,
y = e–Au + η.

Idea: Use Bayes’ Theorem to obtain posterior distribution.
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Bayes’ Theorem

(X ,A), (Y ,B) measurable spaces,
ν, ν0 probability measures on X × Y , such that ν� ν0, i.e., ν
is absolutely continuous with respect to ν0.
Then ν has a density f = dν

dν0
with respect to ν0, i.e., ν = f ν0.

Theorem (Bayes)

Assume that the conditional random variable x |y exists under ν0
with probability distribution νy0 on X . Then the conditional random
variable x |y exists under ν with probability distribution νy on X , and
ν
y � νy0 . If additionally, Z (y) :=

∫
X

dν
dν0

(x , y)νy0(dx) > 0, then

dνy

dνy0
(x) =

1
Z (y)

dν
dν0

(x , y).
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Posterior distribution

In our case, (u, η) ∼ ν0 and (u, y) ∼ ν on X × Y = L2(D)×Hs .
In order for ν� ν0 to hold, we require Le–Au,As–β � LAs–β for
all u ∈ X .
Then by Bayes’ Theorem, the posterior measure μy of u|y is
absolutely continuous with respect to the prior measure NA–τ

with the density

dμy

dNA–τ
(u) =

1
Z (y)

exp(–Φ(u, y)) ν0-a.e.,

Φ(u, y) =
√
2
∞∑

k=1

α

β

2
k (|yk – e–αkuk | – |yk |) ,

where yk := (y ,ϕk)X , uk := (u,ϕk)X .
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Admissible shifts

H separable Hilbert space, Q ∈ L(H) positive definite trace
class operator.

Theorem

1 If a /∈ Q
1
2 (H) then La,Q and LQ are singular.

2 If a ∈ Q
1
2 (H) then La,Q and LQ are equivalent (La,Q � LQ

and LQ � La,Q) and

dLa,Q

dLQ
(y) = exp

(
–
√
2
∞∑

k=1

|yk – ak | – |yk |√
λk

)
LQ -a.e.,

where yk := (y , ek)H , ak := (a, ek)H and λk = (Qek , ek)H .

Idea of proof: Apply Kakutani’s Theorem.
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Maximum a posteriori estimators

Let μ be a probability measure on a separable Hilbert space X and
define

Mε := sup
u∈X
μ(Bε(u)) for all ε > 0.

Any point û ∈ X satisfying

lim
ε→0

μ(Bε(û))
Mε

= 1

is called a maximum a posteriori estimator for μ.
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Onsager-Machlup functional

I : E → R is called Onsager-Machlup functional for μ, if

lim
ε→0

μ(Bε(u))
μ(Bε(v))

= exp(I (v) – I (u))

for all u, v ∈ E , where E ⊆ X denotes the space of all admissible
shifts that yield an equivalent measure.

For a centered Gaussian measure NQ on X , E = Q
1
2 (X ) and

I (u) =
1
2
‖Q– 1

2 u‖2X for all u ∈ E
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Characterisation of MAP estimators

μ0 centred Gaussian measure on X , μy posterior measure
on X with dμy

dμ0
(u) = exp(–Φ(u)) μ0-a.e., Φ: X → R,

X separable Banach space, E ⊆ X space of admissible shifts for
μ0, μy that yield an equivalent measure.

Theorem [Dashti et al 2013]

Assume that
1 Φ is bounded from below,
2 Φ is locally bounded from above,
3 Φ is locally Lipschitz continuous.

Then u ∈ E is a MAP estimator for μy if and only if it minimises the
Onsager-Machlup functional I for μy .
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Onsager-Machlup functional (2)

For μ0 = NA–τ and μy , the space of admissible shifts is given by

E = A– τ2 (L2(D)) = Hτ.

In our case, Onsager-Machlup functional I : Hτ → R for μy ,

I (u) := Φ(u) +
1
2
‖u‖2Hτ

=
√
2
∞∑

k=1

α

β

2
k (|yk – e–αkuk | – |yk |) +

1
2

∞∑
k=1

α
τ

k |uk |
2,

where uk := (u,ϕk)L2 and yk := (y ,ϕk)L2 .
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Characterisation of MAP estimators (2)

Theorem [Dashti et al 2013]

Assume that
1 Φ is bounded from below,
2 Φ is locally bounded from above,
3 Φ is locally Lipschitz continuous.

Then u ∈ E is a MAP estimator for μy if and only if it minimises the
Onsager-Machlup functional I for μy .

Problem: For Laplacian noise, Φ is not bounded from below.
Upside: Φ is globally Lipschitz continuous.
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Characterisation of MAP estimators (3)

μ0 centred Gaussian measure on X , μy posterior measure
on X with dμy

dμ0
(u) = exp(–Φ(u)) μ0-a.e., Φ: X → R,

X separable Hilbert space, E ⊆ X space of admissible shifts for
μ0, μy that yield an equivalent measure.

Theorem

Assume that
1 Φ is globally Lipschitz continuous,
2 Φ(0) = 0.

Then u ∈ E is a MAP estimator for μy if and only if it minimises the
Onsager-Machlup functional I for μy .
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Characterisation of MAP estimators (4)

Idea of proof:
Show that {uε}ε>0,

uε := argmax
u∈X

μ
y (Bε(u)),

contains a subsequence {uεn}n∈N that converges in X and its
limit u0 ∈ E is both a MAP estimator for μy and a minimiser of
I .
Show that every MAP estimator û ∈ X also minimises I .
Show that every minimiser ū ∈ E of I also is a MAP estimator.
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Consistency of the MAP estimator

Does the MAP estimator converge towards the true solution, as
the variance of the noise tends to zero?
How to choose the variance of the prior appropriately?
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Scaled distributions

Noise distribution Lb2As–β , b > 0
prior distribution Nr2A–τ , r > 0.
Associated Onsager-Machlup functional I : Hτ → R for y ∈ Hs ,

I (u) =
1
b
Φ(u) +

1
2r2
‖u‖2Hτ .

By the previous theorem, every minimiser ū(y) of I is a MAP
estimator for μy .
Its components are

(ū(y),ϕk)L2 = max
{
–
r2

b
ck , min

{
eαkyk ,

r2

b
ck

}}
,

where yk = (y ,ϕk)L2 , ck :=
√
2α

β

2 –τ
k e–αk .
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Frequentist consistency

True solution u† ∈ L2(D) (fixed, no prior),
positive sequences {bn}n∈N, {rn}n∈N with bn → 0,
Laplacian noise ηn ∈ Hs with ηn ∼ Lb2nAs–β and

yn = e–Au† + ηn.

Let un denote the respective minimisers of In: Hτ → R,

In(u) :=
1
bn
Φ(u, yn) +

1
2r2n
‖u‖2Hτ .
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Convergence in mean square

Theorem

If a w ∈ H2τ–β ∩ L2(D) with ‖w‖H2τ–β 6 ρ exists, such that

u† = e–Aw ,

and if C > 0 and N ∈ N exist, such that

ρ
1
2 b

1
2
n 6 rn 6 C

1
2 b

1
2
n for all n > N,

then

E

[
‖un – u†‖2L2

]
6 2C TrA–τbn for all n > N.
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Conclusion

Bayesian inverse heat equation with Laplacian noise:
The posterior distribution exists.
Every minimiser of the Onsager-Machlup functional is a MAP
estimator.
The MAP estimator is consistent in a frequentist sense.

Outlook:
Conditional mean estimator in explicit form
Direct posterior sampling
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