Nichtlineare Optimierung

Blatt 2

Aufgabe 1

Verwenden Sie die Lagrangesche Multiplikatorenregel zur Lösung von

$$y = \min!$$
$$x^6 - z = 0$$
$$y^3 - z = 0$$

Wo liegt das Problem?

Aufgabe 2

Seien $\|\cdot\|$ eine Norm auf \mathbb{R}^n und $y \in \mathbb{R}^n$. Zeigen Sie, dass die Funktion $f(x) := \|x - y\|$ konvex ist. Ist f auch strikt konvex?

Aufgabe 3

Sei $H \in \mathbb{R}^{n \times n}$. Zeigen Sie: H ist positiv definit genau dann, wenn es ein $\alpha > 0$ so gibt, dass gilt $x^T H x \ge \alpha ||x||_2^2$ für alle $x \in \mathbb{R}^n$.

Aufgabe 4

Wir betrachten die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := 12x^4 - 7x^2y + y^2$. Man zeige, dass f im Nullpunkt entlang jeder Geraden durch Null ein lokales Minimum besitzt. Besitzt auch f selbst in 0 ein lokales Minimum? (Tipp: Wie verhält sich f entlang einer Parabel?)

Aufgabe 5

- (a) Berechnen Sie den Gradienten und die Hesse-Matrix der Funktion $f(x) = \frac{1}{2}x^T H x + b^T x + c$ für allgemeine $H \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$ und für ein symmetrisches H.
- (b) Schreiben Sie die Funktion

$$f(x_1, x_2) = 5x_1^2 + 5x_2^2 + 8x_1x_2 - 4x_1 - 2x_2 + 3$$

in der obigen Form mit symmetrischem H. Ist H positiv definit? Berechnen Sie das globale Minimum von f.

Aufgabe 6

Seien $A \in \mathbb{R}^{m \times n}$ eine Rechteckmatrix, $b \in \mathbb{R}^m$ und

$$f: \mathbb{R}^n \to \mathbb{R}, \quad f(x) = \frac{1}{2} ||Ax - b||_2^2.$$

Berechnen Sie den Gradienten und die Hessematrix. Zeigen Sie, dass die Hesse-Matrix positiv semidefinit ist, und genau dann positiv definit ist, wenn A injektiv ist.

Homepage der Veranstaltung ist:

 $\verb|http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_WS1617.php|$

Termine und Räume:

		Zeit	Raum	
VL	Mo	10-12	WSC-N-U-4.03	Arnd Rösch
		_	WSC-S-U-4.02	
Üb	Do	14-16	WSC-S-U-4.02	Hendrik Feldhordt