Nichtlineare Optimierung

Blatt 3

Aufgabe 1

Seien $C \subset \mathbb{R}^n$ offen und konvex und $f: C \to \mathbb{R}$ konvex. Man zeige, dass für $x, y \in C$ und $\lambda \in \mathbb{R} \setminus \{[0, 1]\}$ mit $\lambda x + (1 - \lambda)y \in C$ gilt:

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

Aufgabe 2

Zeigen Sie, dass für konvexes $f \in C^1(\mathbb{R}^n)$ gilt

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0 \quad \forall x, y \in \mathbb{R}^n$$

Aufgabe 3

Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig. Für $d \in \mathbb{R}^n$ bezeichne $f'_d(x)$ die Richtungsableitung von f in $x \in \mathbb{R}^n$ in Richtung d (falls sie existiert). Man zeige:

- (a) Ist \overline{x} lokales Minimum von f, so gilt $f'_d(\overline{x}) \geq 0$ für alle $d \in \mathbb{R}^n$, für die die Richtungsableitung existiert.
- (b) Für ein $\overline{x} \in \mathbb{R}^n$ sei f in \overline{x} richtungsdifferenzierbar mit $f'_d(\overline{x}) > 0$ für alle $d \in \mathbb{R}^n$. Dann ist \overline{x} striktes lokales Minimum von f.
- (c) Sei $f(x) := \ln(1+|x|)$, $x \in \mathbb{R}$. Dann ist f richtingsdifferenzierbar in allen Punkten $x \in \mathbb{R}$ in alle Richtungen $d \in \mathbb{R}$. Wo hat f lokale Extremstellen?

Aufgabe 4

Für ein $w \in \mathbb{R}^n$ sei die Funktion $f \in C^1(\mathbb{R}^n)$ auf der Niveaumenge N(f, f(w)) gleichmäßig konvex. Zeigen Sie, dass f dann genau ein globales Minimum besitzt. Gilt die Aussage auch, wenn f nur streng konvex ist?

Aufgabe 5

Seien $H \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit und $b \in \mathbb{R}^n$. Für $w \in \mathbb{R}^n$ betrachten wir die quadratischen Optimierungsprobleme

(a)
$$\min_{x \in \mathbb{R}^n} f(w, x) = \frac{1}{2} x^T H x + b^T (x + w).$$

(b)
$$\min_{x \in \mathbb{R}^n} f(w, x) = \frac{1}{2} x^T H x + (b + w)^T x.$$

(c)
$$\min_{x \in \mathbb{R}^n} f(w, x) = \frac{1}{2} x^T (H + W) x + b^T x$$
, $(W = diag(w))$.

Wie hängen die Lösungen vom Parameter w ab?

Aufgabe 6

Wir betrachten noch einmal ein parametrisches Optimierungsproblem

$$\min_{x \in \mathbb{R}^n} f(x, p),$$

wobei $p \in \mathbb{R}$ ist und $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ die spezielle Form

$$f(x,p) = g(x) + pb^T x$$

hat. Dabei ist $b \in \mathbb{R}^n$ und $g : \mathbb{R}^n \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion, deren Hessematrix g''(x) für jedes x gleichmäßig positiv definit ist. Zeigen Sie, dass das Problem für jedes $p \in \mathbb{R}$ genau eine Lösung x(p) hat und berechnen Sie die Ableitung der Abbildung $x : \mathbb{R} \to \mathbb{R}^n$, $p \mapsto x(p)$ (Tipp: Verwenden Sie den Satz über implizite Funktionen).

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_WS1617.php

Termine und Räume:

		Zeit	Raum	
\overline{VL}	Mo	10-12	WSC-N-U-4.03	Arnd Rösch
		-	WSC-S-U-4.02	
Üb	Do	14-16	WSC-S-U-4.02	Hendrik Feldhordt