Nichtlineare Optimierung

Blatt 12

Aufgabe 1

Die Menge C sei gegeben durch $C=\{x\in\mathbb{R}^2: x_2=0\}$. Mit $h(x)=x_2$ und $\tilde{h}(x)=x_2^2$ ergeben sich die Darstellungen

$$C = \{x \in \mathbb{R}^2 : h(x) = 0\}, \quad \tilde{C} = \{x \in \mathbb{R}^2 : \tilde{h}(x) = 0\} \qquad (C = \tilde{C}).$$

Berechnen Sie T(C,x) und die Linearisierungskegel L(C,x) bzw. $L(\tilde{C},x)$. Welche Mengen stimmen überein und welche Inklusionen gelten dann?

Aufgabe 2

Betrachten Sie das Minimierungsproblem

$$\min_{x \in \mathbb{R}^2} -x_1$$

$$x_2 - (1 - x_1)^3 \le 0$$

$$x_1 > 0, \quad x_2 > 0.$$

- (a) Ermitteln Sie graphisch die Lösung x^* des Problems.
- (b) Ermitteln Sie den Tangentialkegel $T(C, x^*)$ sowie den Linearisierungskegel $L(C, x^*)$ für $x^* = (1, 0)$ und den Zulässigkeitsbereich C. Weisen Sie nach, dass x^* nicht regulär ist.

Aufgabe 3

Lösen Sie das folgende Optimierungsproblem mit Hilfe der Lagrangeschen Multiplikatorenregel. Untersuchen Sie notwendige und hinreichende Optimalitätsbedingungen.

$$\min(x-3) + y^2$$
$$x^2 - y \le 0$$

Aufgabe 4

Die Menge C_{α} , $\alpha \geq 0$ sei gegeben durch

$$C_{\alpha} = \{x \in \mathbb{R}^2 : |x_2| \le x_1 |x_1|^{\alpha} \}.$$

- (a) Skizzieren Sie C_{α} .
- (b) Berechnen Sie die Kegel $T(C_{\alpha}, x^*)$ und $L(C_{\alpha}, x^*)$ für $x^* = (0, 0)$. Für welche Werte von α ist x^* regulär?

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_WS1617.php

Termine und Räume:

		Zeit	Raum	
VL	Mo	10-12	WSC-N-U-4.03	Arnd Rösch
		_	WSC-S-U-4.02	
Üb	Do	14-16	WSC-S-U-4.02	Hendrik Feldhordt