

# Error-Controlled Shape Optimization by Constrained First-Order System Least Squares-Gerhard Starke

Fakultät für Mathematik, Universität Duisburg-Essen





EUCCO 2023 Universität Heidelberg

September 27, 2023

### Overview

Shape Optimality As L<sup>p</sup> Best Approximation

Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

Error Analysis

GS: Shape Optimization by Constrained First-Order System Least Mean Approximation arXiv: 2309.13595



Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

**Error Analysis** 

$$J(\Omega) = \int_{\Omega} j(u_{\Omega}) \ dx \longrightarrow \min!$$

subject to PDE constraint:

$$\begin{split} u_{\Omega} &\in H_0^1(\Omega): \quad (\nabla u_{\Omega}, \nabla v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \text{ for all } v \in H_0^1(\Omega) \\ \text{Shape derivative (under certain assumptions on } \Omega, \ f \ \text{and} \ j(\cdot)): \ ^1 \\ J'(\Omega)[\chi] &= \left( \left( (\operatorname{div} \chi) \ I - \left( \nabla \chi + (\nabla \chi)^T \right) \right) \nabla u_{\Omega}, \nabla y_{\Omega} \right) \\ &+ (f \ \nabla y_{\Omega}, \chi) + (j(u_{\Omega}), \operatorname{div} \chi) \ , \end{split}$$

 $y_{\Omega} \in H^1_0(\Omega)$ : solution of the adjoint problem

$$(
abla y_\Omega, 
abla z) = -(j'(u_\Omega), z)$$
 for all  $z \in H^1_0(\Omega)$ 

Error-Controlled Shape Optimization

<sup>&</sup>lt;sup>1</sup>G. Allaire, C. Dapogny, F. Jouve: Handbook Numer. Anal. 22 (2021)

### Shape Optimality As $L^p$ Best Approximation

Shape derivative in volume expression:

$$J'(\Omega)[\chi] = \left( \left( (\operatorname{div} \chi) I - \left( \nabla \chi + (\nabla \chi)^T \right) \right) \nabla u_{\Omega}, \nabla y_{\Omega} \right) \\ + \left( f \nabla y_{\Omega}, \chi \right) + \left( j(u_{\Omega}), \operatorname{div} \chi \right) \,,$$

studied and used a lot recently, e.g.  $^{1\ 2\ 3\ 4\ 5\ 6\ 7}$ 

Advantages (compared to surface expression): Less demands on regularity, less danger of mesh deterioration

#### Error-Controlled Shape Optimization

<sup>&</sup>lt;sup>1</sup>K. Deckelnick, P. J. Herbert, M. Hinze: ESAIM Control Optim. Calc. Var. 28 (2022)

<sup>&</sup>lt;sup>2</sup>S. Bartels, G. Wachsmuth: SIAM J. Sci. Comput. 42 (2020)

 $<sup>^{3}\</sup>mathsf{T}.$  Etling, R. Herzog, E. Loayza, G. Wachsmuth: SIAM J. Sci. Comput. 42 (2020)

<sup>&</sup>lt;sup>4</sup>M. Eigel, K. Sturm: Optim. Methods Softw. 33 (2018)

<sup>&</sup>lt;sup>5</sup>V. Schulz, M. Siebenborn, K. Welker: SIAM J. Optim. 26 (2016)

<sup>&</sup>lt;sup>6</sup>A. Laurain, K. Sturm: ESAIM Math. Model. Numer. Anal. 50 (2016)

<sup>&</sup>lt;sup>7</sup>R. Hiptmair, A. Paganini, S. Sargheini: BIT 55 (2015)

Shape derivative in volume expression:

$$J'(\Omega)[\chi] = \left( \left( (\operatorname{div} \chi) I - \left( \nabla \chi + (\nabla \chi)^T \right) \right) \nabla u_{\Omega}, \nabla y_{\Omega} \right) \\ + \left( f \nabla y_{\Omega}, \chi \right) + \left( j(u_{\Omega}), \operatorname{div} \chi \right) ,$$

Tensor representation:<sup>1</sup>

$$J'(\Omega)[\chi] = (K(u_{\Omega}, y_{\Omega}), \nabla\chi) + (f \nabla y_{\Omega}, \chi) + (j(u_{\Omega}), \operatorname{div} \chi)$$
  
with  $K(u_{\Omega}, y_{\Omega}) = (\nabla u_{\Omega} \cdot \nabla y_{\Omega}) I - \nabla y_{\Omega} \otimes \nabla u_{\Omega} - \nabla u_{\Omega} \otimes \nabla y_{\Omega}$ 

Follows basically from (for  $x, y \in \mathbb{R}^d, A \in \mathbb{R}^{d \times d}$ ):  $y \cdot (Ax) = tr(y^T A x) = tr(xy^T A) = A : (y \otimes x)$ 

Tensor representation available for many shape optimiz. problems<sup>2</sup>

Error-Controlled Shape Optimization

<sup>&</sup>lt;sup>1</sup>A. Laurain, K. Sturm: ESAIM Math. Model. Numer. Anal. 50 (2016)

<sup>&</sup>lt;sup>2</sup>A. Laurain: J. Math. Pures Appl. 134 (2020)

Shape Optimality As  $L^p$  Best Approximation

Stationarity: Find  $\Omega \in S = \{\Omega = (\mathrm{id} + \theta)\Omega_0 : \theta, (\mathrm{id} + \theta)^{-1} - \mathrm{id} \in W^{1,\infty}(\Omega; \mathbb{R}^d)\} \text{ s.t.}$   $J'(\Omega)[\chi] = (K(u_\Omega, y_\Omega), \nabla\chi) + (f \nabla y_\Omega, \chi) + (j(u_\Omega), \operatorname{div} \chi) = 0$ for all  $\chi \in W^{1,\infty}(\Omega; \mathbb{R}^d)$ 

$$\begin{array}{l} \longleftrightarrow \\ (\operatorname{div} \mathcal{K}(u_{\Omega}, y_{\Omega}), \chi) = (f \nabla y_{\Omega}, \chi) - (j(u_{\Omega}), \operatorname{div} \chi) \, \forall \chi \\ \langle \mathcal{K}(u_{\Omega}, y_{\Omega}) \cdot n, \chi|_{\partial\Omega} \rangle_{\partial\Omega} = 0 \qquad \qquad \forall \, \chi|_{\partial\Omega} \\ \Leftrightarrow \\ \exists S \in \Sigma^{1} := \{ T \in L^{1}(\Omega; \mathbb{R}^{d \times d}) : \operatorname{div} T \in L^{1}(\Omega; \mathbb{R}^{d}) \} \text{ s.t.} \\ (\operatorname{div} S, \chi) = (f \nabla y_{\Omega}, \chi) + (j(u_{\Omega}), \operatorname{div} \chi) \, \forall \chi \\ \langle S \cdot n, \chi|_{\partial\Omega} \rangle = 0 \qquad \qquad \forall \, \chi|_{\partial\Omega} \\ S - \mathcal{K}(u_{\Omega}, y_{\Omega}) = 0 \end{array}$$

Error-Controlled Shape Optimization

# Shape Optimality As $L^p$ Best Approximation $p > 1: S \in \Sigma^p := \{T \in L^p(\Omega; \mathbb{R}^{d \times d}) : \text{div } T \in L^p(\Omega; \mathbb{R}^d)\}$ s.t. $(\text{div } S, \chi) = (f \nabla y_\Omega, \chi) + (j(u_\Omega), \text{div } \chi) \forall \chi$ $\langle S \cdot n, \chi|_{\partial\Omega} \rangle = 0 \qquad \forall \chi|_{\partial\Omega}$ $S - K(u_\Omega, y_\Omega) = 0$ $\eta_p(\Omega) = \inf\{\|T - K(u_\Omega, y_\Omega)\|_{L^p(\Omega)} : T \in \Sigma^p \text{ satisfying}$

$$(\operatorname{div} T, \chi) = (f \nabla y_{\Omega}, \chi) + (j(u_{\Omega}), \operatorname{div} \chi) \forall \chi \in W^{1,p^*}(\Omega; \mathbb{R}^d)$$
$$\langle T \cdot n, \chi|_{\partial\Omega} \rangle = 0 \forall \chi|_{\partial\Omega} \} \qquad (\frac{1}{p} + \frac{1}{p^*} = 1, p \in (1,\infty))$$

In words:  $\eta_p(\Omega)$  is the  $L^p(\Omega; \mathbb{R}^{d \times d})$ -mean approximation to the Laurain-Sturm shape tensor  $K(u_{\Omega}, y_{\Omega})$  out of the affine space

$$\Sigma^{p}_{\mathrm{adm}} = \{ T \in \Sigma^{p} : (\mathsf{div} \ T, \chi) = (f \ \nabla y_{\Omega}, \chi) + (j(u_{\Omega}), \mathsf{div} \ \chi) \ \forall \chi \}$$

Wellposedness ( $p \in (1, 2]$ ): Assume the compatibility condition  $(f \nabla y_{\Omega}, e) = 0 \forall e \in \mathbb{R}^{d}$  to hold, then there is a unique  $S \in \Sigma^{p}$  s.t.

$$\eta_p(\Omega) = \|S - K(u_\Omega, y_\Omega)\|_{L^p(\Omega)}$$

Existence:  $\Sigma^{p}_{adm} \neq \emptyset$  since it contains  $\overline{S} = \nabla \psi$  where  $\psi \in H^{1}(\Omega; \mathbb{R}^{d})$  solves  $(\nabla \psi, \nabla \chi) = -(f \nabla y_{\Omega}, \chi) - (j(u_{\Omega}), \operatorname{div} \chi) \forall \chi \in H^{1}(\Omega; \mathbb{R}^{d})$ Uniqueness:  $L^{p}(\Omega; \mathbb{R}^{d \times d})$  is strictly normed for 1

Geometric meaning of compatibility condition: 0 known barycenter



### Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

**Error Analysis** 

Structure of the Least Mean Approximation Problem

$$\begin{split} S \in \Sigma^{p,0} &:= \{ T \in \Sigma^p : \langle T \cdot n, \chi |_{\partial \Omega} \rangle = 0 \text{ for all } \chi \in W^{1,p^*}(\Omega; \mathbb{R}^d) \} \\ \text{Optimality system:} \\ (|S - K(u_\Omega, y_\Omega)|^{p-2} (S - K(u_\Omega, y_\Omega)), T) + (\text{div } T, \theta) = 0 \ \forall T \in \Sigma^{p,0} \\ (\text{div } S, \chi) &= (f \ \nabla y_\Omega, \chi) + (j(u_\Omega), \text{div } \chi) \quad \forall \chi \in W^{1,p^*} \end{split}$$

Lagrange multiplier by Helmholtz decomposition in  $L^{p^*}(\Omega; \mathbb{R}^{d \times d})$ :<sup>1</sup>  $|S - K(u_\Omega, y_\Omega)|^{p-2}(S - K(u_\Omega, y_\Omega)) = \nabla \theta$ 

The above optimality system has a solution  $(S, heta) \in \Sigma^{p,0} imes \mathcal{W}^{1,p^*}(\Omega; {\rm I\!R}^d)$ 

which is unique up to additive constant vectors for  $\boldsymbol{\theta}$ 

Error-Controlled Shape Optimization

<sup>&</sup>lt;sup>1</sup>D. Fujiwara, H. Morimoto: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977)

### Structure of the Least Mean Approximation Problem

### Main Theorem:

Let  $p \in (1, \infty)$  and assume that  $K(u_{\Omega}, y_{\Omega}) \in L^{p}(\Omega; \mathbb{R}^{d \times d})$ ,  $f \in L^{\infty}(\Omega), j(u_{\Omega}) \in L^{2}(\Omega)$  and that the compatibility condition  $(f \nabla y_{\Omega}, e) = 0$  for all constant  $e \in \mathbb{R}^{d}$  hold. Then, the Lagrange multiplier  $\theta \in W^{1,p^{*}}(\Omega; \mathbb{R}^{d})$  satisfies

$$-\frac{J'(\Omega)[\theta]}{\|\nabla\theta\|_{L^{p^*}(\Omega;\mathrm{R}^{d\times d})}} = \sup_{\chi\in W^{1,p^*}(\Omega;\mathrm{R}^d)} \frac{J'(\Omega)[\chi]}{\|\nabla\chi\|_{L^{p^*}(\Omega;\mathrm{R}^{d\times d})}} = \eta_p(\Omega)$$

This provides an alternative route to  $W^{1,p^*}$  shape gradients<sup>2 3</sup> *Sketch of Proof:* 

$$J'(\Omega)[\chi] = (K(u_{\Omega}, y_{\Omega}), \nabla \chi) + (j(u_{\Omega}), \operatorname{div} \chi) + (f \nabla y_{\Omega}, \chi)$$
  
=  $(K(u_{\Omega}, y_{\Omega}), \nabla \chi) + (\operatorname{div} S, \chi)$   
=  $(K(u_{\Omega}, y_{\Omega}) - S, \nabla \chi) + \langle S \cdot n, \chi \rangle = -(S - K(u_{\Omega}, y_{\Omega}), \nabla \chi)$ 

<sup>2</sup>K. Deckelnick, P. J. Herbert, M. Hinze: ESAIM Control Optim. Calc. Var. 28 (2022)

<sup>3</sup>K. Deckelnick, P. J. Herbert, M. Hinze: arXiv:2301.08690 (2023)

#### Error-Controlled Shape Optimization

### Structure of the Least Mean Approximation Problem Sketch of Proof (continued):

Insert Lagrange multipl.  $\theta$  into  $J'(\Omega)[\chi] = -(S - K(u_{\Omega}, y_{\Omega}), \nabla \chi)$ :

$$J'(\Omega)[\theta] = -(S - K(u_{\Omega}, y_{\Omega}), |S - K(u_{\Omega}, y_{\Omega})|^{p-2}(S - K(u_{\Omega}, y_{\Omega})))$$
  
= -||S - K(u\_{\Omega}, y\_{\Omega})||^{p}\_{L^{p}(\Omega; \mathbf{R}^{d \times d})}

Observe that  $\|\nabla \theta\|_{L^{p^*}(\Omega; \mathbb{R}^d)} = \|S - K(u_\Omega, y_\Omega)\|_{L^p(\Omega; \mathbb{R}^d \times d)}^{p-1}$ 

Combine this to

$$\begin{aligned} &-\frac{J'(\Omega)[\theta]}{\|\nabla\theta\|_{L^{p^*}(\Omega;\mathbf{R}^{d\times d})}} = \|S - K(u_{\Omega}, y_{\Omega})\|_{L^{p}(\Omega;\mathbf{R}^{d\times d})} \\ &\geq \sup_{\chi \in W^{1,p^*}(\Omega;\mathbf{R}^{d})} \frac{(S - K(u_{\Omega}, y_{\Omega}), \nabla\chi)}{\|\nabla\chi\|_{L^{p^*}(\Omega;\mathbf{R}^{d\times d})}} \\ &= \sup_{\chi \in W^{1,p^*}(\Omega;\mathbf{R}^{d})} \frac{J'(\Omega)[\chi]}{\|\nabla\chi\|_{L^{p^*}(\Omega;\mathbf{R}^{d\times d})}} \geq -\frac{J'(\Omega)[\theta]}{\|\nabla\theta\|_{L^{p^*}(\Omega;\mathbf{R}^{d\times d})}} \qquad \Box \end{aligned}$$



Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

**Error Analysis** 

### Discretization by Finite Elements

Triangulation  $\mathcal{T}_h$ : Polygonal approximation  $\Omega_h$  to  $\Omega$ Approximation space  $\Sigma_h^p$  for S: (Lowest-order) Raviart-Thomas Approximation space  $\Theta_h^p$  for  $\theta$ : Piecewise constant functions

$$\eta_{p,h}(\Omega_h) = \|S_h - K(u_{\Omega,h}, y_{\Omega,h})\|_{L^p(\Omega_h)}$$

Find  $S_h \in \Sigma_h^p$ ,  $\theta_h \in \Theta_h$ ,  $\theta_{b,h} \in \Theta_{b,h}$  such that

$$\begin{aligned} (|S_h - \mathcal{K}(u_{\Omega,h}, y_{\Omega,h})|^{p-2}(S_h - \mathcal{K}(u_{\Omega,h}, y_{\Omega,h})), T_h) + (\operatorname{div} T_h, \theta_h) \\ + \langle T_h \cdot n, \theta_{b,h} \rangle &= 0 \\ (\operatorname{div} S_h, \chi_h) - (f \nabla y_{\Omega,h}, \chi_h) + (\nabla j(u_{\Omega,h}), \chi_h) &= 0 \\ \langle S_h \cdot n, \chi_{b,h} \rangle - \langle j(u_{\Omega,h}), \chi_{b,h} \cdot n \rangle &= 0 \end{aligned}$$

holds for all  $T_h \in \Sigma_h^p$ ,  $\chi_h \in \Theta_h$ ,  $\chi_{b,h} \in \Theta_{b,h}$ 

Approximation space  $\Theta_{b,h}^{p}$ : Piecewise constant on  $\partial \Omega$ 

## Discretization by Finite Elements

Example 1  $f \equiv 1/2 - \mathbf{1}_D$ , D unit disk  $j(u_{\Omega}) = u_{\Omega}/2$ Optimal shape:  $\{x \in \mathbb{R}^2 : |x| < \sqrt{2}\}$ 10<sup>-1</sup> 10 10-2 10-2 10<sup>-3</sup> 10-3 102 104 10<sup>6</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>5</sup> 10<sup>6</sup>  $\eta_p(\Omega_h)$  vs. number of degrees of freedom for p = 2 (left) and p = 1.1 (right)

#### Error-Controlled Shape Optimization

### Overview

Shape Optimality As L<sup>p</sup> Best Approximation

Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

**Error Analysis** 

## Shape Gradient Iteration

Aim:

Continuous deformation  $\theta_h^{\diamond} \in W^{1,p^*}(\Omega; \mathbb{R}^d)$  from  $\theta_h \in L^{p^*}(\Omega; \mathbb{R}^d)$ 

Local potential reconstruction procedure:<sup>1</sup> 1. Compute, for each element  $\tau \in \mathcal{T}_h$ ,  $\nabla \theta_h^{\Box}|_{\tau} \in \mathbb{R}^{d \times d}$  such that

$$\|\nabla \theta_h^{\Box} - |S_h - K(u_{\Omega,h}, y_{\Omega,h})|^{p-2} (S_h - K(u_{\Omega,h}, y_{\Omega,h}))\|_{L^{p^*}(\tau)} \longrightarrow \min!$$

2. Compute, for each  $\tau \in \mathcal{T}_h$ ,  $\theta_h^{\Box}$  with  $\nabla \theta_h^{\Box} |_{\tau}$  given by 1. such that

$$\|\theta_h^{\Box} - \theta_h\|_{L^{p^*}(\tau)} \longrightarrow \min!$$

3. Compute  $\theta_h^\diamond$  pcw. linear, contin., by averaging at the vertices:

$$heta_h^{\diamond}(
u) = rac{1}{|\{ au \in \mathcal{T}_h : 
u \in au \}|} \sum_{ au \in \mathcal{T}_h : 
u \in au} heta_h^{\Box}(
u|_{ au}) \,.$$

<sup>1</sup>R. Stenberg: RAIRO Modél. Math. Anal. Numér. 25 (1991)

## Shape Gradient Iteration



Final iterate for  $p(=p^*) = 2$  on the left and p = 1.1 ( $p^* = 11$ ) on the right

<sup>1</sup>S. Bartels, G. Wachsmuth: SIAM J. Sci. Comput. **42** (2020)

Error-Controlled Shape Optimization

## Shape Gradient Iteration

Example 2

p = 2: shape iteration terminates due to degenerate mesh

| $ \mathcal{T}_h $               | 2048        | 8192        | 32768       | 131072      |
|---------------------------------|-------------|-------------|-------------|-------------|
| $J(\Omega_h^\diamond)$          | -0.01457574 | -0.01490224 | -0.01495978 | -0.01496720 |
| $\eta_{2,h}(\Omega_h^\diamond)$ | 2.6914e-3   | 1.7784e-3   | 6.0273e-4   | 3.0347e-4   |
| iterations                      | 69          | 46          | 59          | 66          |

p = 1.1: shape iteration converges

|                                   |             | -           |             |             |
|-----------------------------------|-------------|-------------|-------------|-------------|
| $ \mathcal{T}_h $                 | 2048        | 8192        | 32768       | 131072      |
| $J(\Omega_h^\diamond)$            | -0.01485067 | -0.01493147 | -0.01495993 | -0.01496731 |
| $\eta_{1.1,h}(\Omega_h^\diamond)$ | 2.6551e-3   | 1.4609e-3   | 7.4356e-4   | 3.7225e-4   |
| iterations                        | 42          | 86          | 62          | 59          |

Observation:  $\eta_{p,h} = O(h)$ 

### Overview

Shape Optimality As L<sup>p</sup> Best Approximation

Structure of the Least Mean Approximation Problem

Discretization by Finite Elements

Shape Gradient Iteration

Error Analysis

### **Error Analysis**

We have shown that  $\eta_p(\Omega)$  indicates how close to stationarity  $\Omega$  is.

But we can only compute  $\eta_{p,h}(\Omega)$  (based on  $u_{\Omega,h}, y_{\Omega,h}$  and  $S_h$ )!

Are they close to each other?

### Theorem:

For  $p \in (1, 2]$ , assume that  $\Omega$  is such that  $\{u_{\Omega}, y_{\Omega}\} \subset H^{2}(\Omega) \cap W^{1,q}(\Omega) \text{ (with } q = 2p/(2-p)).$ Then, if  $f \in H^{1}(\Omega) \cap L^{q}(\Omega)$  and  $j'(u_{\Omega}) \in H^{1}(\Omega) \cap L^{q}(\Omega)$ ,

$$|\eta_p(\Omega) - \eta_{p,h}(\Omega)| \leq Ch$$

holds with a constant C (independently of h).

### **Error Analysis**

**Proof Ingredients:** 

$$\begin{split} \| \mathcal{K}(u_{\Omega},y_{\Omega}) - \mathcal{K}(u_{\Omega,h},y_{\Omega,h}) \|_{L^{p}(\Omega)} \\ & \leq (2d)^{1/2} \left( \| \nabla u_{\Omega} \|_{L^{q}(\Omega)} \| \nabla (y_{\Omega} - y_{\Omega,h}) \|_{L^{2}(\Omega)} \\ & + \| \nabla y_{\Omega} \|_{L^{q}(\Omega)} \| \nabla (u_{\Omega} - u_{\Omega,h}) \|_{L^{2}(\Omega)} \right) \end{split}$$

$$\begin{split} S: \ L^p \ \text{projection of } & \mathcal{K}(u_\Omega, y_\Omega) \ \text{onto } \Sigma^p_{\mathrm{adm}} \\ S_h: \ L^p \ \text{projection of } & \mathcal{K}(u_{\Omega,h}, y_{\Omega,h}) \ \text{onto} \\ \\ \Sigma^p_{\mathrm{adm},h} = \left\{ T_h \in \Sigma^p_h: \text{div } T = P_h^0 f \ \nabla y_{\Omega,h} - P_h^0 j'(u_{\Omega,h}) \ \nabla j(u_{\Omega,h}) \ , \\ & T_h \cdot n|_{\partial\Omega} = \left. P_h^{0,b} j(u_{\Omega,h}) \ n \right|_{\partial\Omega} \right\} \\ \\ \text{gives } \|S - S_h\|_{L^p(\Omega)} \leq \|\mathcal{K}(u_\Omega, y_\Omega) - \mathcal{K}(u_{\Omega,h}, y_{\Omega,h})\|_{L^p(\Omega)} + C \ h \end{split}$$

 $|\eta_{p}(\Omega) - \eta_{p,h}(\Omega)| \leq \|S - S_{h}\|_{L^{p}(\Omega)} + \|K(u_{\Omega}, y_{\Omega}) - K(u_{\Omega,h}, y_{\Omega,h})\|_{L^{p}(\Omega)}$ 

#### Error-Controlled Shape Optimization

## Conclusions and Outlook

GS: Shape Optimization by Constrained First-Order System Least Mean Approximation arXiv: 2309.13595

Two main messages of this contribution:

1.  $\eta_{p,h}(\Omega) = \|S_h - K(u_{\Omega,h}, y_{\Omega,h})\|_{L^p(\Omega_h)}$  provides a computable way of estimating the "closeness to stationarity" of  $\Omega$ 

2. Lagrange multiplier  $\theta_h$  can be reconstructed to steepest descent deformation  $\theta^{\diamond}$  w.r.t.  $W^{1,p^*}(p^* > 2)$ 

Two (of the many) things to do next:

- 1. Combine this with adaptive techniques (for computing  $u_{\Omega_h}$ ,  $y_{\Omega_h}$  and  $S_h$ )
- 2. Incorporate constraints (prescribed volume, prescribed perimeter etc.)