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First-Order System Least-Squares for Second-Order Elliptic
Problems with Discontinuous Coefficients

Thomas A. Manteuffel Stephen F. McCormick Gerhard Starke*

Abstract

The first-order system least-squares methodology represents an alternative to stan-
dard mixed finite element methods. Among its advantages is the fact that the finite
element spaces approximating the pressure and flux variables are not restricted by the
inf-sup condition and that the least-squares functional itself serves as an appropiate er-
ror measure. This paper studies the first-order system least-squares approach for scalar
second-order elliptic boundary value problems with discontinuous coefficients. Elliptic-
ity of an appropriately scaled least-squares bilinear form is shown independently of the
size of the jumps in the coefficients leading to adequate finite element approximation
results. The occurrence of singularities at interface corners and cross-points is discussed,
and a weighted least-squares functional is introduced to handle such cases. Numerical
experiments are presented for two test problems to illustrate the performance of this
approach.

Introduction

The purpose of this paper is to apply the first-order system least-squares approach
developed in [4] and [5] to scalar second-order elliptic boundary value problems in two
dimensions with discontinuous coefficients. Such problems arise in various application
areas, including flow in heterogeneous porous media (see, e.g., [12]), neutron transport
(1], and biophysics [7). In many physical applications, one is interested not only in an
accurate approximation of the physical quantity that satisfies the scalar equation, but
also in certain of its derivatives. For example, fluid flow in a porous medium can be
modelled by the equation

-V -(aVp) = f 1)
for the pressure p, where the scalar function a may have large jump discontinuities across
interfaces. Of particular interest here is accurate approximation of the fluid velocity

u=aVp, (2)

a concern which led to the development of mixed finite element methods (see, e.g., [3,
Chapter 10]). In mixed methods, both p and u are approximated by not necessarily
identical finite elements and, roughly speaking, a Galerkin condition is imposed on the
first-order system resulting from (1) and (2). _

An alternative to mixed finite elements is the first-order system least-squares ap-
proach developed and analyzed, e.g., in (4], [5], [11], and [10]. This methodology re-
places the Galerkin condition by the minimization of a least-squares functional associ-
ated with a first-order system derived from (1) and (2). Augmenting the basic system
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with the curl-condition V x (u/a) = 0 (see [5], [10]) leads to ellipticity with respect
to the H1()) norm in the individual variables. Important practical advantages of this
least-squares approach over standard mixed methods are: (i) the finite element spaces
approximating the pressure and flux variables are not restricted by the inf-sup condition
of Ladyzhenskaya-Babuska-Brezzi (cf. [3, Section 10.5]) and (i1) the least-squares func-
tional serves as an appropriate error measure. Moreover, if the problem is sufficiently
regular (e.g., if a € C*}(Q) and  has certain properties (cf. [5])), then (iii) optimal
accuracy is guaranteed in each variable, including the velocities, in the H! norm and
(iv) optimal computational complexity for the solution of the resulting discrete systems
is achieved with standard multigrid methods (see [5]).

For problems with discontinuous coefficients, which is our focus in this paper, the
velocity components will, in general, not be in H*(£2). While the theory developed in [4]
and [5] already allows for discontinuous coefficients, special care must be taken in order
to prove ellipticity, in an appropriate norm, with constants independent of the size of
the jumps. For this purpose, an appropriate scaling of the least-squares functional that
depends on the size of a in different parts of the domain is introduced. This results
in ellipticity, independently of the size of coefficient jumps, and consequently in finite
element approximation results, with respect to a norm that is suitably scaled depending
on the size of a. This scaling is presented in the following section.

At interface corners and cross-points (i.e., where two smooth interface components
intersect), the components of u will, in general, be unbounded, and singularities natu-
rally arise (see, for example, Strang and Fix [14, Ch. 8]). The shape of these singularities
is determined by the angle at an interface corner (or between two intersecting interfaces)
and the jumps in the coefficients. We will show how the parameters describing these
singularities can be computed from the coefficient jumps and corner angles. We are par-
ticularly interested in the exponent associated with the singular function at a corner or
cross-points since this indicates how much we have to unweight the least-squares func-
tional in the neighborhood of such a point. The performance of this scaled least-squares
approach will be studied using bilinear finite elements for the pressure and fluxes (based
on the same grid) and a full multigrid algorithm for the solution of the resulting discrete
system. Finally, computational experiments for two test problems are presented.

Our restriction to two-dimensional problems is mainly for the purpose of exposition.
However, some technical complications arise for three-dimensional problems. For ex-
ample, two different types of singularities, associated with edges and with corners or
cross-points, arise in three dimensions. We do not examine this in the present paper.

The Least-Squares Functional

Consider the following prototype problem on a bounded domain 2 C R%:
-V (va) = f, in Q,
p = 0, onlp, (3)
n-Vp = 0, only,

where n denotes the outward unit vector normal to the boundary, f € L*(9), and
a(z1, ) is a scalar function that is uniformly positive and bounded in € but may have
large jumps across interfaces. We assume that I'p # 0, so that the Poincaré-Friedrichs
inequality

llpllo,2 < YIVPllo,n 4)
holds and (3) has a unique solution in H*(f). Following [5], we rewrite (3) as a first-
order system by introducing the flux variable u = aVp:

u—aVp = 0, in 2,

~V-u = f, in Q,
p = 0) OnFDy (5)

nu = 0, onTy.-
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Since u/a = Vp with p € H'(Q), then we have (cf. [6, Theorem 2.9])
V x (u/a) = 01 (uz/a) — 02(uifa) =0, in Q.

Moreover, the homogeneous Dirichlet boundary condition on I'p implies the tangential
flux condition
n x (u/a) = (nuz — nauy)/a=0, on I'p .

Adding these equations to first-order system (5) yields the augmented system

u—aVp = 0, in 2,

-V.a = f, in Q,

Vx(ufa) = 0, in Q,
p = 0, onTp, (6)

n-u = 0, only,

nx (ufa) = 0, onTlp.

In addition to L*(Q) and H'(Q) with the respective norms || - [|o,q and || - ||1,q, we will
need the spaces

H(div; Q) = {v € L}(Q) : V - vie L¥(Q)},
H(curla; Q) = {v € L3(Q)? : V x (v/a) € L3(Q)}

and
V={qeH'(Q):¢g=00nTp}, )
W={veH(div;Q)nH(curla;Q):n-v=0onTy,nx (v/a)=0onTp}.

Clearly, for the solution of (3), we have p € V and u € W, so it is appropriate to pose
(6) on these spaces.

As mentioned above, our main interest is in the solution of (3) when a(z;, z3) has
large jumps. Following Bramble, Pasciak, Wang, and Xu [2], we assume that

J
a=Ja
i=1
with {Q;} being mutually disjoint open polygonal regions; that the restriction of
a(zy, z2) to Q; is in C*(Q;); and that
cw; < a(:cl, 1‘2) < cyw; for (1,‘1, 1,‘2) € Q;

with constants c;, ¢z of order one and arbitrary positive constants w;. In other words,
a(zy, z3) is assumed to be of approximate size w; throughout €; for each i while large
variations in {w;} over ¢ are allowed. The bounds derived below will be independent of
this variation in {w;}, but the constants in these bounds will depend on the variation
within each Q;, that is, on ¢; and c3.

An appropriate scaling of the equations in (6) leads to the least-squares functional

G(u,p; f) = llu/va~vaVplli o + IV -u+ fllf o + lla V x (u/a)|§ o (8)

and associated bilinear form

F(u,p;v,0) = (u/va—/aVp,v/y/a—/aVa)oa ©)
+V-u,V-v)pa+(aVx (u/a),aV x (v/a))ogq.

Here, for the sake of notational simplicity, we agree that (-, -)o o is meant componentwise
for vector functions. That is, if w = (w1, wy) and z = (21, z2), then

(w,2z)o,0 = (w1, z1)0,0 + (w2, 22)0.0 -
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The solution of (5) will also solve the minimization problem

G(u,p; f) = (v,q?é%va(v’ % f) (10)

and, therefore, the variational problem
Flu,piv,q)= ~(f,V - v)oq forall (v,q) e W x V. (11)

Here we show that F(v,q;v,q) is uniformly equivalent to the scaled norm defined for
(v.q9) EW x V by

N = (17 VliG.a + 1aV x (v/a)llE g +[1v/Vall} g + [[VaVall2 o) /2 .

Theorem 1 Under the above assumptions, there exist constants v, and Y2, tndependent
of the size of the jumps in {w;}, such that

F(u,p;a,p) > nill|(w, p)||* for all (u,p) e W x V (12)

and
F(,p;v.9) < vlllta, p)II(v, 9| for all (u,p), Vvi)eWxV. (13

Proof. The proof is similar to the proof of (4, Theorem 3.1] (see also [10, Theorems
2.1 and 2.2]). We include it here because we must confirm that the constants 4; and 2
are independent of the jumps in @. The main part of the proof consists in showing that
the functionals

f(u,p;v, 7) = (u/+/a — /aVp, v/va - \/&Vq)o'n +(V-u, V. Voo

and
S(u,p;v,9) = (u/va,v/Va)oa + (vVaVp,/aVg)oa +(V-u,V . v)oa,
satisfy )
c18(u, p;u,p) < F(u,p;u, p) (14)
and ) ’
F(u,p;v,9) < e2(S(u, p;u, p)) XS (v, ¢; v, g)) /2 (15)

with constants ¢; and ¢, that are independent of the jumps in a.
For the proof of (14), we rewrite Poincaré-Friedrichs inequality (4) as

Ipll o < FlVavplj g - (16)

Note that %, and consequently the quantity v; in (12), depends on Minkeq a(x) > 0. It
does not introduce, however, any dependence of (12) and (13) on the size of the jumps
in a. Since on 9Q we either have p = 0 or n - u = 0, then integration by parts confirms
that

(a0, Vp)oa+ (V- u,plon=20.

For any 7 > 0, which we specify later, we have

F(u,p;u,p)
= (u/y/a,u//a)o,0 + (VaVp,/aVp)oa - 2u, Voo + (V- u, V - u)o,0
+2T(v $u, p)O,ﬂ + 27'(11, VP)O,Q e TZ(P: P)O,ﬂ - 7'2(17: P)O,Q
= (u/va+(r - 1)\/aVp,u/va+ (r - 1)/aVp)oq
HVut7p, Voutrpoqa - 73(p, plo + (27 — 72)(v/aVp, VaVplo,a
2 (21 = 7°)(v/aVp,\/aVp)oa — T3(p, p)o o
> (2 = (1+9)m)(IVavpli .
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Choosing 7 = 1/(1 + 7) leads to

F(u,p;u,p) > 7(VaVpll§ g -

We then also have

[/ vall} o < 2ju/va— Vavalls o + IIVaVplli o) < 21+ 1/7)F(u, p;u, p)

and, clearly, )
IV - ullf o < F(u,piu,p),

which completes the proof of (14).
Upper bound (15) follows from

F(u,p;v,q) < 2F(u,p;u, p)HF(v, g5 v, q))'/?

and

F(u,piu,p) =|lu/va-aVpl[io+1IV - ulhq

< 2(lju/vallg o + IVaVpll5 o + IV - ullf o) = S(u, p;u, p).

The proof of Theorem 1 is completed by adding the term [|aV x (u/a)||o,q to both
sides of the inequalities (14) and (17).

Theorem 1 states that ellipticity and continuity of the least-squares bilinear form
F(-,;-,)in terms of the norm |||(, -)|||is independent of the jumps in a. Note, however,
that the ellipticity constant 7, in (12) depends on the size of a, in particular, on the
positive constant mingeq a(x) through the Poincaré-Friedrichs inequality (16).

The scaling of the norm [[{(-, -)||| has the following physical interpretation. In areas
where a is relatively small, Vp is allowed to be relatively large, and one has to expect a
less accurate approximation there compared to areas where a is large and Vp is therefore
small. In contrast, the velocity u = aVp can be expected to be more accurate in areas
where a is small and less accurate, in general, where a is large. Ellipticity with constants
that are independent of the jumps in a asserts that the scaling in F(-,-;-, ) correctly
reflects these attributes.

(17)-

Singularities at Interface Corners and Cross-Points

This section is concerned with the behavior of p and u at or near the interface curve.
Most of what we present in this section is well-known; we refer to Strang and Fix [14,
Chapter 8] for further details.

Recall from the previous section that the solution of (6) satisfies u € H(div;2) N
H(curl ;). This implies that, at a point on a smooth segment of the interface
curve, the normal component n - u and the tangential component n x (u/e) must be
continuous. Assume that Q = 0" U0 with constant diffusion coefficients a* and a™,
respectively, and let ut = (uf,ug) and u™ = (uy, u; ) denote the solution restricted
to the respective subdomains (see Figure 1). Then u; and up must satisfy the jump
conditions

& % _ . uf o ug uy Uy
niuf + noud = nyuy +nouy and nza—+ s nla—+ = nZF - an . (18)

For example, consider the situation shown in Figure 1 (which we will encounter again as
Example 2 in the final section of this paper). Across the vertical part of the interface,
u; = n - u will be continuous while 23 = n x u has a jump factor of a*/a™. Similarly,
across the horizontal part of the interface, u; = —n x u has a jump factor of at/a~
while us = n-u is continuous. At the interface corner, both of these conditions must be
satisfied, i.e., u; and ug must jump by a factor a*/a~ and be continuous at the same
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Figure 1: Interface with corner

time. Obviously, there are only two ways for this to happen: either u = 0 or u = co at
the interface corner. In general, the latter case is encountered at interface corners—the
behavior of u is singular there.

Without loss of generality, assume that the singularity occurs at the origin, and
consider the polar coordinate representation

2 _ r cosf
ro /] T\ rsing
The solution of (3) then admits the representation

(r,6) = r®(Af cosal + A} sinad) + jt(r,0), in Qt,
PINTIZ r(07 cosad + A7 sinad) + 5= (r.0) in Q- .

where p* € H*(Q+),p~ € H*(Q") (cf. [14, Section 8.1]), a € (1/2,1), and AE A% are
constants. Using

01 cosf & —sing L 2
= = a X
v <8g> (siné(—;z;-i-cosﬁ;% (19)
leads to
_ [ aa*r®"(AF cos(a — 1)8 + A} sin(a — 1)6) + @ (r,8), in QF,
uil(rd) = { aa~r* (A7 cos(a — 1)8 + A sin(a — 08y +a7(r,0), in Q, 21
and
5 ) = aatr®= (=t sin(e — 1) + A cos(a — 1)6) + af(r,6), inQ*+, (21)
NHY = aa”r* (=7 sin(a — 1)0 + A] cos(a — 1)) + a3 (r,0), in Q-

with @}, i3 € HY(Q*) and 47,45 € H'(Q7). The parameters o, A}, A¥, A7, and Ay
are computed such that conditions (18) are fulfilled. Setting u = at/a~ leads to the
matrix equation ’

.03 3 o ™ +
—psmasmw pcosaim —sinal —cosay Al 0
—cosajm —sinajm  cosal —sinaf AP o

—cosam  —sinam  cosaw sin aw A1 |0
psinam  —pcosam —sinam  cosamw A 0
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For this homogeneous system of linear equations to have a nontrivial solution, its de-
terminant must vanish, which leads to

1 1
-2—(;1 + ;)(cos o — cos 2mer) + 2 — cos ma — cos 2w = 0. (22)

The exponent « that determines the degree of the singularity apparently dépends on the
size of the jump p. It can be shown that (22) always has a unique solution o € (1/2, 1).
For 4 — 1, i.e., as the jump disappears, we have @ — 1, i.e., the singularity disappears
as well. For g — 0 or g — o0, a tends to 2/3, which is exactly the value obtained for a
reentrant corner with exterior angle /2. It is straightforward to extend the procedure
outlined above to any number of adjoining subdomains and any size of angles (cf. [8]).
We therefore have a computational technique to compute the shape of the singularity
at interface corners and cross-points where two interfaces intersect. This technique will
be fundamental for the finite element approach described in the next section.

Finite Element Approximation

The minimum of G(u,p; f) is approximated using a Rayleigh-Ritz finite element
method. Let 7" be a triangulation of Q, which we assume to be quasi-uniform (cf.
[3, Chapter 4]), and let ' W”* and V* be appropriate finite-dimensional spaces. The
interface is required to be the union of edges of the triangulation. If the interface
is cutting through elements of the triangulation, then special techniques have to be
considered in order to average the parameters properly, which complicates the whole
approach. We do not address this task or the problems associated with it here, but
mstead assume that the interfaces are restricted to edges of the triangulation. For the
sake of exposition, we also assume that each segment of the interface curves is parallel to
one of the coordinate axes. It is easy to see that the following development of the finite
element approach can be generalized to isoparametric elements, where the interface
curves are logically aligned with coordinate axes.

It is desirable, in general, to use conforming finit¢ elements, where the finite-
dimensional spaces satisfy W* C W and V* C V. Along straight segments of the
interface curve, this can be accomplished by enforcing condition (18) on the finite ele-
ment basis functions. Using bilinear finite elements on rectangles, for example, a basis
function for u; at a node on a horizontal interface segment is continuous in the z;-
direction and has a jump of size a* /a~ in the z3-direction. Such a basis function for u;
at a node on a vertical interface segment is continuous (in both coordinate directions).
‘Under the assumption that all the interface curves are straight lines which do not in-
tersect each other (we will address the case of interface corners or cross-points later),
we can therefore construct piecewise bilinear finite element spaces:

V3 = {q € V : q|r bilinear on T for all T € T"}
W = {v € H(div,Q) N H(curl a, Q) : v;|7 bilinear on T for all T € T*} .

The finite element approximation (u®, p») € W x V" is then defined as the solution
of the minimization problem

G, " f) = G(v*,¢"; f). (23)

min
(vh,g")EWHR XV
One of the main practical advantages of the least-squares finite element approach over
other variational formulations consists in the fact that the minimum of the functional
constitutes an a posteriori error measure. This follows from the general relation between
the least-squares functional and corresponding bilinear form. The main point here is
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the fact that the least-squares functional is zero at the solution (u, p), which leads to

G(u”,p"; f)

G(u*, p*; f) — G(u,p; f)

F(u®, phiut, ph) 4+ 2(£,V - ut)o o — FH(u, p;u,p) - 2f,V - u)oq
Fru—ut,p—phiu—ut,p-ph).

munn

Under the above assumptions, we get the following convergence result for the finite
element approximation.

Theorem 2 Assume that for (u,p), the solution of (10), we have (u,p)la;, €
(HY™ ()3 for some § ¢ (0,1] and for i = 1,...,J. Let (u® p") € W x V* pe
the solution of (23). Then

J
[1(w, p) = (u", p")|]| < CA? Z (lallirsa, + IVoipllisse.) (24)

where the constant C is independent of h and of the size of the jumps in {w;}.

Proof. From Theorem 1 and Cea’s Lemma (see, for example, [3, Theorem 2.8.1]),
we obtain

li(w, p) - (", p")]|| < -j—(;gw l(w, ) = (v*, g™l

Moreover, for (v,q) € W x V, we have

v, DI =11V vl o + 12V x (/)3 o + [Iv/VallE o + IVaVall2

J
=2 IV VI, + 112V x (v/a)| o, + v/ Val3.q, + IVavall§ o,)
i=1

J
<er Y (IV-viBa, +1V x VI, +Iv/vall g, + IVaValZq,) -

i=1
Since by assumption ula, € H'(€) and, similarly, v"|q, € H!(;) for each v* € W*,
then for i = 1,...,J we have

IV (a = vl q, + IV x (w=v")|2 o, < calu—vH3 g .

This leads to

J
10w, p) =" g S €3y (la= VP, + 1= v*)/ V@i lloa. + Ve — ¢*)]l1.0,)

2=,

Standard interpolation properties of piecewise bilinear functions (see, for example, [3,

Theorems 12.3.3 and 12.3.12]) lead to

lu— vl q, < 64’1:||“||1+6,n.
lp = ¢*ll1.0, < esh?|lplli+5,0.

which completes the proof. |

If the interface curve is not a straight line, or, more generally, not sufficiently smooth,
then the finite element approximation becomes excessively more complicated. In the
preceding section we saw that, for the solution (u, p) of (10), u has the singular behavior
shown in (20) and (21). It is easy to see that this implies ulo, ¢ (H())? for all
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subregions Q; adjacent to the interface corner, and therefore the standard finite element
approximation results do not apply.

Moreover, in order to have u* € H(div, Q) N H(curla, ) in the neighborhood of
an Interface corner, it is necessary and sufficient to require u” to have the form of
(20) and (21). In other words, in order to have conforming finite elements, we must
include a singular basis function at each interface corner (or cross-point): The tools
developed in the previous section allow us, in principle, to compute the exact shape of
such a singularity. Multiplied by a standard piecewise bilinear function, such a singular
function could then serve as a basis function at that point. A procedure of this type
is described in [14, Section 8.2} along with special techniques to solve the resulting
discrete system. However, this approach requires special stencils for these singular
points, which complicates the overall finite element approach. Instead, we consider an
alternative nonconforming finite element method, based on simple basis functions like
bilinears on rectangles.

We construct W* observing the fact that, for the right-hand side in (11) to be
defined, we must have W* C H(div,Q). This implies that, for u» € W", n - u®
must be continuous across all interfaces. Now consider the bilinear finite element basis
function associated with the interface corner in Figure 1. For u® € W* ¢ H(div, Q),
we must require that u; is continuous in the z;-direction across the horizontal portion
of the interface; that us is continuous in the z,-direction across the vertical portion
of the interface; and that both u;,u; are continuous elsewhere. From (18) we see
that u € H(curla, () requires us to have a jump across the vertical portion of the
interface, while u; must have a jump across the horizontal portion. This causes a
conflict at the corner. The finite-dimensional space W will, therefore, not be contained
in H(curla,Q), in general, and W x V* ¢ W x V. In particular, the bilinear form
F(-,+;+,-)is not defined on W x V*. Foru,v € W+ W?" and p,q € V + V", we define
a modified least-squares bilinear form by

fh(u:p; v, q) = (u/\/_— \/Evp, V/\/_— \/&‘VQ)O,Q

25
HV -,V -V)oa+ 5, (V xu,V x v)oq, . (25)
On W x V, this bilinear form coincides with F(-,+;-,-). The least-squares functional
corresponding to FA(.,-;-, ) is
J
G*(u,p; ) = |[u/va — VaVplR o+ IV -u+ i o + SV xulid g, - (26)

i=1

Let (u,p) € W x V be the solution of (10), and let (u* p*) € W? x V* be defined

by
G ", 5% f = o pZn LG (27)

Recall that, at an interface corner, u has a singularity of the form given in (20) and
(21). This implies that we cannot expect to approximate u to the same accuracy by
standard finite elements near a singularity as elsewhere in Q. Moreover, since our finite
element subspace W’ x V" is not contained in the space W x V in which we have shown
ellipticity, the relatively large error near a singularity will deterioriate the finite element
approximation in the entire region. This phenomenon is reflected by the fact that,
in the presence of singularities, Gh(uh,ph; f) does not decrease as h is made smaller.
We will observe this behavior later in our computational experiments. It is therefore
necessary to introduce a weight function which decreases near the singular point. The
proper choice of weighting is motivated by the form of the singularity.

In particular, (19), (20), and (21) imply Vu ~ r*~2 in the neighborhood of the
singularity. If T" denotes an element of the triangulation 7? such that the interface
corner appears as one of its vertices, then

727V (uj ~ u})llo,rp = O(h?).
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If the right-—ha,l}_d side f and the restriction of a to Q; are sufficiently smooth, then we
know that u € (HZ (). ie.u e (H2(Q))? for any compact Q C ;. This implies
that v* € W/ exists such that

(I (u=¥")ly 4 = O(h?).

The other terms in (26) can be treated in a similar way. which motivates the definition
of the weiglted least-squares functional

G'ﬁ,(u.p;_f) = |ju/va - \/EVPIIg,h,l—a.Q

SIR) J 9 28
HIS gm0 S IV % WR 52, )

and corresponding bilinear form
Felw.piv.q) = (0/va - avp).v/va— VaSo)oni-an (29)

HY WY V)ohpa-an+ Zile(V xu). ¥ X V)opo-aq, -

The inner product (-.-)p.p. 3.0 is defined as

(v.w)onan = (u""jv. wIw)o g

with the weight function w”-® constructed in the following way: Consider a sequence of

triangulations {7" 1 =0,..., L}, with H = hg> h; > --- > h; = h. Let Qh denote
the union of of all elements T € T with the singular point as one of their vertices.
The weight function w”? is defined as

h¥ for x € QF
wh(x)= ¢ B forxe QM-\QM 1=1.....L, (30)
1 for x € Q\Qho .

Let (u”,pl) € W% x V"% be the solution of

1 . h
Gh(uy.plhi f) = NP A, GhL(v*.¢" p). (31)

In the final section of this paper we will demonstrate, by means of numerical results, that
the weighted functional G%(uf, p%; f) actually decreases regularly as the triangulation
is refined. Note, however, that this does not mean that the error u — u” is small
throughout the region Q. In particular, the pointwise accuracy usually deteriorates
near singularities. This suggests that the weighted functional should be combined with
local refinement techniques to guarantee satisfactory resolution in the entire region.
Multilevel refinement techniques are especially effective in this context.

Multilevel Algorithms

Consider the sequence of triangulations {7",1 = 0,..., L} introduced earlier. As-
sociated with each triangulation {7} is the finite element space W? x V"  which we
may also denote by W; x V;. This leads to a nested sequence of spaces

WoxVoCW x WV C---CWy xV,=Whxvh,
On each level I, 0 <1 < L, an operator F; : W; x 1} — W; x V] is defined by
((Fi(,p)i (v, ))) = F(u,p;v.q) for all (v,q) € W, x V7,
where the inner product {{-;-}) is given by

((u,p); (v, 9))) = (0, v)oa + (Vap,Vaqa.

544

4 RN TS R M =
TR e

¢
.




In terms of the operator 77, the discrete problem (23) can be written as
Filw,p) = Fy (32)

where the right-hand side is defined by {(F7, (v, ¢))) = —(¥, V-v)o,q forall (v,q) € W;x
Vi. For the solution of (32), it is natural to use an iterative method since this requires

only a computational procedure for the action of the operator F; for | = 0,...,L.
The cost for one call of such a procedure is proportional to the number of unknowns
N = O(h"z).

The conjugate gradient method (cf. [13, Section 8.7]) computes its iterates
(u;"),p§”)) € W; x Vj in the Krylov subspace

Kn(Fr, 1) = span{Fy, FiFy, ..., FP 1Y)
according to the minimization property

G, o™ 1) = G(vi, 15 ) -

min
Vi, EKXA(F,F)

Since the condition number of F; is proportional to O(hy?) (cf. [5, Theorem 3.2]), the
number of conjugate gradient iterations required to achieve a certain accuracy grows like
O(h;Y) (cf. [13, Section 8.7]). The overall computational complexity to solve a discrete
problem on 7™ using the conjugate gradient method therefore grows like O(h;3).
Optimal computational complexity, O(h;?), can be achieved, under certain assump-
tions on F((:, ); (*,-)), by a full multigrid algorithm. The basic ingredients for multilevel
methods are the projection operators P;, Qi : W* x V% — W, x V; which are given by

F(Pi(u,p); (v,9)) = F((u,p); (v,q)) for all (v,q) € W; x

and
((Qi(u,p); (v,9))) = ({(u,p); (v, q))) for all (v,q) € Wi x V;

and smoothing operators R; : W; x Vi — W x V; representing iterations on level 1.
With these tools, standard multilevel algorithms can be constructed (see [5, Section 4]
for further details). A detailed study of the convergence properties of multilevel methods
for first-order system least-squares applied to problems with discontinuous coefficients
will be given in [9].

Computational Experiments

In our examples, we consider (3) on the unit square Q = {(z1,22) € R? : 0 <
z1,%3 < 1}, with f =1 and I'p = Q. We show the results of two sets of experiments,
one with a smooth interface curve and the other with an interface corner causing a
-singularity in u.

Example 1. In this example, the interface curve is a straight line, so no singularity

occurs. We consider
at, 0<29<0.5,

a(zlle) = { a” § 0.5 < T2 < 1 3 (33)

with different choices for the values for a* and a~. The solution shown in Figure 3 was
obtained for a* = 10 and 2~ = 0.1.

The computational results shown in Table 1 indicate that the approximation of the
solution improves nicely as the triangulation is refined, independently of the size of the
jumps. The reduction factor displayed in parentheses is the ratio of the minimum values
on the current and next coarser level. Note that they do not quite reach 0.25, which is
due to the lack of regularity at the corners of the subdomains. In fact, due to the corners
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Table 1: Example 1: Minimum value (reduction factor) of the functional G*

at/a” 1 10 10° 10*
h
1/8 2.42-107° 3.50-1072 4.13-10°2 7.81-1072

1/16 | 7.18-1072 (0.30) 1.07-107%(0.31) 1.26-1072 (0.31) 2.30-10-2 (0.29)
1/32 | 2.08-107% (0.29) 3.14-1072 (0.29) 3.71-107% (0.29) 6.41-10~3 (0.28)
1/64 | 5.92-107*(0.28) 9.05-10~* (0.29) 1.07 10~ (0.29) 1.75-10~3 (0.27)

with interior angle 7/2, we have neither u € (H*(Q%))? nor u € (H?(Q27))?. Conse-
quently, the finite element approximation deteriorates near these corners. In contrast to
the situation at singularities, however, this behavior does not contaminate the solution
elsewhere since the basis functions corresponding to these points are conforming.
Example 2. This example shows results for a problem with a singularity in u. We

choose .
: _Jat, 0<e,20 <05,
a1, 50) = { a~, elsewhere (34)
(see Figure 1) with different choices for the values for a* and a~ (again with a* = 10
and a~ = 0.1 for the solution shown in Figure 4).

The exponents for this example with the three values for the coefficient jumps used
in Table 2 are given by a = 0.7317,0.6739, and 0.6667, respectively. Note that the last
number is very close to the value o = 2/3 that one gets for a reentrant corner with
interior angle 3/27. Using the weighting described earlier with H = 1/8 leads to the
results listed in Table 2. The modified least-squares functional is again reduced nicely
and regularly as the triangulation is refined. Note that using the weighted functional
means that the pointwise approximation deteriorates close to the singular point, where
local refinement can be used if a better pointwise resolution is needed.

Table 2: Example 2: Minimum value (reduction factor) of the weighted functional G?

at/a~ 1 10 107 107
h
1/8 | 2.42-107? 3.74-1072 5.17.1072 1.20. 10!

1/16 | 7.18-107%(0.30) 1.16-107%(0.31) 1.58-107*(0.31) 3.53-10~2 (0.29)
1/32 | 2.08-107%(0.29) 3.43-1072(0.30) 4.66 1073 (0.29) 9.84-10~3 (0.28)
1/64 |5.92-107*(0.28) 9.95 107 (0.29) 1.34.1073(0.29) 2.68-10~3 (0.27)

Table 3: Example 2: Minimum value of the functional G*
a*/a” 1 10 10° 10*

h

1/8 2.42.10"% 4.36.10"

1/16 | 7.18-1073 2.39.

1/32 | 2.08-1073 2.07-10"

1/64 | 5.92-107% 2.22.10~

7.50-10"% 1.62.10"!
5.49.10"2 9.89.102
5.35 - 8.86-1072
5.66-1072 9.33.10-2

—
o
|
—
[ww]
|
)

LI R S N

In order to illustrate the necessity of modifying the functional in the neighborhood
of a singular point, we also computed the results for the unmodified functional G*
instead of G%. The numbers in Table 3 show that this functional is not satisfactorily
reduced in the course of refining the triangulation. Our numerical tests have shown
that minimizing the unmodified functional leads to poor finite element approximations.
Figure 2 shows the error with respect to the exact solution for p for the weighted
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functional and for the unmodified functional. Obviously, for the unmodified functional,
the resulting error between the discrete and exact solution is relatively large in the entire
domain. This behavior seems to indicate that using the unmodified functional has the
effect of trying too hard to satisfy the first-order system (6) close to the singularity,
where it is impossible to get a good approximation with bilincar finite elements. For
the weighted functional, however, the error is smaller and mainly occurs in a rather
small neighborhood of the singular point.
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Figure 2: Example 2: Error in the pressure p for the weighted functional G2 (top) and the
unmodified functional G* (bottom)
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Figure 3: Example 1: Pressure p (top) and flux components u; and us
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Figure 4: Example 2: Pressure p (top) and flux components u; and ug
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