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Motivation:
The finite element method is an important tool for the
simulation of elasticity problems in solid mechanics. It is
well known that the linear elastic theory does not cover
arising real life problems. Physically more realistic models
lead to nonlinear partial differential equations. The least
squares finite element method is until now only rarely in-
vestigated for nonlinear deformation processes despite its
advantages, e.g. providing a candidate for a - posteriori
error estimation and not being restricted to certain finite
element spaces (inf - sup condition).

Problem description:
Possible forces are volume forces, acting on the whole
body Ω, and surface forces, acting on the Neu-
mann boundary ΓN . Applied forces on an unloaded
body lead to a deformation ϕ and related stresses.
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The balance of momentum and the (nonlinear) constitutive
equation are basic ingredients for modelling deformation
processes mathematically.
We use a homogeneous isotropic hyperelastic material of
Neo - Hookean type with stored energy function
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and Lamé constants λ, µ for minimizing the nonlinear least
squares functional

F(P,u) = ω2
1‖div P + f‖2 + ω2

2‖A(PF(u)T )−B(u)‖2

in appropriate function spaces. Here P = ∂Fψ(C) denotes
the first Piola - Kirchhoff stress tensor, u the pointwise dis-
placement, ω1 and ω2 suitable weighting parameters and
f the acting volume force.

Algorithmic implementation:

• Gauss - Newton method for minimization of F(P,u)

• Raviart - Thomas elements RT 1 for each row of
P and continuous piecewise quadratic elements for
each component of u

• backtracking line search as damping strategy

Numerical results for the incompressible case:
1. Detection of critical load values:
Given: Ω = (−1, 1)× (−1, 1), f = (0, γ)T with γ ∈ R,
u ·n = 0 and (P ·n) ·t = 0 (left, bottom, right boundary),
P · n = 0 (top boundary)
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2. Adaptivity for a plane strain model (Cook’s mem-
brane in 2d):

Given: f = 0, u = 0 (left boundary), P · n = 0
(top/bottom boundary) and P ·n = (0, γ)T (right bound-
ary) with load parameter γ = 0.1
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131 1.27 · 10−1 8.2461

192 5.89 · 10−2 (2.02) 8.4005

271 2.85 · 10−2 (2.11) 8.4638

400 1.38 · 10−2 (1.87) 8.4932

593 6.43 · 10−3 (1.94) 8.5077

868 2.90 · 10−3 (2.09) 8.5139

1267 1.24 · 10−3 (2.25) 8.5168

1893 5.09 · 10−4 (2.22) 8.5178

3. Cook’s membrane in 3d:
Given: f = 0, u = 0 (left boundary), P · n = (0, γ, 0)T

(right boundary) with load parameter γ = 0.1, P · n = 0
(other four boundaries)
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Plot of the normal components of the stress tensor on the left clamped boundary   

Conclusion:
Our least squares finite element approach has an essen-
tial advantage compared to other methods, namely the
full stress tensor is approximated next to the displacement.
Our approach is suitable for the incompressible limit and
provides good results for 2d and 3d simulations. The least
squares functional as error estimator tends to identify the
regions of interest in our considered numerical experiments.
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