
Faculty of Mathematics

Work group: Numerische Mathematik

Dr. Benjamin Müller, Prof. Dr. Gerhard Starke

Model reduction for geometrically nonlinear elasticity

Motivation:
Physical experiments show that the frequently used linear
model for elastic deformation problems is only valid up to
a certain strain. The usage of nonlinear models coincide
also for larger strains better with these experimental results
and should hence be used in numerical simulations. But
also here a variety of nonlinear models are possible, e.g. a
Neo - Hooke model, a more general Mooney - Rivlin model
or even a more complex one.
Moreover, solving a nonlinear model needs in general more
effort than solving a linear model, e.g. due to lineariza-
tion techniques. The idea of model adaptivity is to use a
nonlinear model only in regions of the domain where it is
necessary and use the linear model on the other part.

Reduced mixed least squares method:
For the implementation of a model adaptivity technique
we use a mixed least squares finite element method and
choose a Neo - Hooke model with stored energy function
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as nonlinear model.
We decompose a given body Ω ⊂ Rn into a

”
nonlin-

ear“ subdomain Ω1 ⊆ Ω and a
”
linear“ subdomain Ω2 =

Ω \ Ω1. For such an decomposition of Ω we seek a mini-
mizer of a least squares functional of the form

Fred(P,u) = ‖RNH(P,u)‖2
L2(Ω1)

+ ‖Rlin(P,u)‖2L2(Ω2)
. (1)

Essential steps in the algorithm:

• Start with a full linear model in step i = 0, i. e.
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• Adapt the nonlinear subdomain by choosing Ω
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with the help of the nonlinear least squares functional
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and a suitable marking strategy.

Set Ω
(i+1)
2 = Ω \ Ω

(i+1)
1 and determine the solution(
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of (1) on the new decomposition,

set i = i+ 1 and continue in the same manner.

• Nonlinear elements in previous step remain nonlinear.

• Use Gauss - Newton method for nonlinear part in (1).
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Numerical results for model adaptivity (Cook’s mem-
brane in 2d)
Given:
u = 0 (left boundary), P · n = 0 (top/bottom boundary)
and P · n = (0, γ load)T (right boundary) with load param-
eter γ load = 0.25, Lamé constants: λ =∞, µ = 1
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(right) is depicted:
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Benefits:

• Model adaptivity techniques, also in the context of
LSFEM, may help for speeding up an algorithm.

• Quadrature error for the reduced model in compari-
son to the nonlinear model becomes smaller.

• Combining model adaptivity and usual mesh refine-
ment is possible.
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