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Model reduction for geometrically nonlinear elasticity

Motivation:

Physical experiments show that the frequently used linear
model for elastic deformation problems is only valid up to
a certain strain. The usage of nonlinear models coincide
also for larger strains better with these experimental results
and should hence be used in numerical simulations. But
also here a variety of nonlinear models are possible, e.g. a
Neo - Hooke model, a more general Mooney - Rivlin model
or even a more complex one.

Moreover, solving a nonlinear model needs in general more
effort than solving a linear model, e.g. due to lineariza-
tion techniques. The idea of model adaptivity is to use a
nonlinear model only in regions of the domain where it is
necessary and use the linear model on the other part.

Reduced mixed least squares method:

For the implementation of a model adaptivity technique
we use a mixed least squares finite element method and
choose a Neo - Hooke model with stored energy function

N (C) = %tr(C) + %detc - (g + 2) In(det C)

as nonlinear model.

We decompose a given body 2 C R" into a ,nonlin-
ear” subdomain ©Q; C Q and a , linear” subdomain Q5 =
Q\ Q;. For such an decomposition of Q we seek a mini-
mizer of a least squares functional of the form

-Fred(Pvu) = ”RNH(P)U)I@}(QI) + IIRlin(Pvu)”i2(Qz)~ (1)

Essential steps in the algorithm:

e Start with a full linear model in step i = 0, i. e.
0 = 09, ¥ = Q and solve (1) with solution

(Pfﬂ?dv 5«21) = (Plinaulin)-

. . . i+1
e Adapt the nonlinear subdomain by choosing Qg )

with the help of the nonlinear least squares functional
Fnu (P( D ) and a suitable marking strategy.
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Set Qé”l) =Q\ Qgiﬂ) and determine the solution
<P£221)7u£2;1)) of (1) on the new decomposition,
set ¢ =i 4+ 1 and continue in the same manner.

e Nonlinear elements in previous step remain nonlinear.

e Use Gauss- Newton method for nonlinear part in (
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Numerical results for model adaptivity (Cook’s mem-
brane in 2d)

Given:

u = 0 (left boundary), P - n = 0 (top/bottom boundary)
and P - n = (0,~4"°4)T" (right boundary) with load param-
eter fy'°ad = 0.25, Lamé constants: A =00, u =1

Below t.he decomposition of the domain € into the linear
part ) and the nonlinear part Q1 (left) and the distri-

bution Fn g (P( D oa® ) (right) is depicted:
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Benefits:

e Model adaptivity techniques, also in the context of
LSFEM, may help for speeding up an algorithm.

e Quadrature error for the reduced model in compari-
son to the nonlinear model becomes smaller.

e Combining model adaptivity and usual mesh refine-
ment is possible.
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