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Abstract

An inverse problem of reconstructing the magnetic reluctivity in a quasilinear
magnetostatic Maxwell system is studied. To overcome the ill-posedness of the in-
verse problem, we propose and investigate two regularisations posed as constrained
minimisation problems. The first uses the total variation (perimeter) regularisation,
and the second makes use of the phase field regularisation. Existence of minimisers,
sequential stability with respect to data perturbation, and consistency as the regu-
larisation parameters tending to zero are rigorously analysed. Under some regularity
assumption, we infer a relation between the regularisation parameters that allows one
to recover a solution to the original inverse problem from the phase field regularised
problem. The second focus of the paper is set on the first-order analysis of both reg-
ularisation approaches. For the phase field approach, two types of optimality systems
are derived through a weak directional differentiability result and the domain varia-
tion technique of shape calculus. As a final result, we show the convergence of the
optimality conditions obtained from shape calculus, leading to a necessary optimality
system for the total variation inverse problem.

Key words. Inverse problem, quasilinear magnetostatic Maxwell equations, total vari-
ation, phase field regularisation, optimality conditions, Γ-convergence.

AMS subject classification. 35R35, 35Q60, 35J62, 35R30

1 Introduction

Let Ω ⊂ R3 be a bounded domain with a connected Lipschitz boundary containing two
different types of materials. The first is a ferromagnetic material (iron, nickel, cobalt, etc.)
which responses strongly to an external magnetic field, and the second is a nonmagnetic
material (copper, aluminium, silver etc.) which is significantly less responsive to the
magnetic field. Denoting the region occupied by the nonmagnetic material as Ω0 and the
complement region occupied by the ferromagnetic material as Ω1, so that Ω = Ω0 ∪Ω1 and
Ω0 ∩Ω1 = ∅, our interest lies in solving the inverse problem of determining the location of
Ω1 based on measurements of certain quantities.

Electromagnetic phenomena can be well-described with the help of Maxwell’s equa-
tions. In this paper, we focus on the magnetostatic setting, for which the governing partial
differential equations (PDEs) derived from Maxwell’s equations reduce to

curlH = J , H = νB, divB = 0. (1.1)
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Here, H, B and J denote the magnetic field, the magnetic induction, and the applied
current density, respectively. The magnetic reluctivity ν is the reciprocal of the magnetic
permeability µ, so that the second equation in (1.1) can be equivalently expressed as the
more standard form B = µH.

Denoting by ν0 as the vacuum magnetic reluctivity, for nonmagnetic materials under
consideration, we assume that the corresponding magnetic reluctivity is equal to ν0. This
is reasonable as many nonmagnetic materials exhibit a permeability close to the vacuum
permeability µ0 = 1/ν0. On the other hand, for the ferromagnetic material, the reluctivity
ν highly depends on the magnitude of the magnetic induction B, i.e., ν = ν1(∣B∣) for some
strictly positive function ν1 ∈ C1(R). We refer to Kaltenbacher et al. [28] concerning the
identification of the nonlinear reluctivity ν1(∣B∣) based on magnetic induction measure-
ments and its numerical realisation. Introducing the overall reluctivity as the function
ν ∶ [0,1] ×R→ [0,∞) defined by

ν(u, s) = ν0(1 − u) + ν1(s)u,

and using the classical magnetic vector potential formulation allows us to reformulate (1.1)
into:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curl (ν(u(x), ∣curly(x)∣) curly(x)) = J(x) in Ω,

divy = 0 in Ω,

y ×n = 0 on ∂Ω.

(1.2)

Notice that the forward system (1.2) makes use of the perfectly conducting electric (PEC)
boundary condition with n denoting the outer unit normal on ∂Ω. Moreover, the magnetic
vector potential y satisfies

curly =B in Ω, (1.3)

and if u(x) ∈ {0,1} a.e. in Ω, then

ν(u, ∣B∣) =
⎧⎪⎪⎨⎪⎪⎩

ν0 in {u = 0},
ν1(∣B∣) in {u = 1}.

(1.4)

In essence, complete knowledge of u in Ω allows us to determine the location of Ω0 and
Ω1 as the sets {u = 0} and {u = 1}, respectively. Therefore, the function u plays the role
of the solution to the inverse problem we introduce below.

The equation (1.2) gives rise to a quasilinear saddle point structure. Under appropriate
assumptions for the magnetic reluctivity, the well-posedness of (1.2) can be deduced. This
leads to the solution operator S ∶ u ↦ y assigning every function u taking values in [0,1]
to the magnetic vector potential y posed on Ω. For the moment, let Z denote the solution
space in which y belongs to (see (2.3) for its precise definition). Furthermore, let ym ∈ O
denote a measurement of the vector potential y, where O is a Hilbert space with norm
∥⋅∥O, and G ∶ Z → O a bounded continuous operator. Then, our inverse problem read as:

Find u ∈ L1(Ω), u(x) ∈ {0,1} a.e. in Ω s.t. G ○S(u) = ym in O. (1.5)

The prototype setting for this paper is O = L2(D) and G(y) = y∣D where D ⊂ Ω is an
open subset, and ym is a measurement of the magnetic vector potential in D induced by
the applied current density J . Both ym ∈ O and J ∈ L2(Ω) are given data for the inverse
problem (1.5). Under stronger assumptions such as ∂Ω is of class C1,1 or ∂Ω is convex, one
may even consider ym to be a boundary measurement with O = L2(Σ) and G(y) = y∣Σ,
where Σ can be a part of the boundary (Σ ⊂ ∂Ω) or the entire boundary (Σ = ∂Ω).
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Due to the compactness of the embedding Z ⊂⊂ L2(Ω) (see (2.5)), the inverse problem
(1.5) is ill-posed. The standard approach to tackle the ill-posedness is to employ the
Tikhonov regularisation [16, 39]. From a theoretical point of view, perhaps the most
intuitive is to penalise the perimeter of Ω1 = {u = 1}, leading to the total variation inverse
problem (TVIP):

Find uα = argmin
v∈BV (Ω,{0,1})

(1

2
∥G ○S(v) − ym∥2

O + αTV (v)).

Here, α > 0 is a regularisation parameter, TV (⋅) denotes the total variation functional
and BV (Ω,{0,1}) is the set of functions of bounded variations with values in {0,1} (see
Section 2.2 for more details). On the other hand, for numerical purposes, the non-convexity
of BV (Ω,{0,1}) introduces challenging issues for implementation. One remedy is to
rephrase TVIP as a shape optimization problem and derive optimality conditions using
shape calculus [24, 25, 27]. The second is to consider a further regularisation in which
the total variation functional TV (⋅) is approximated by the Ginzburg–Landau functional
Eε(⋅), where ε > 0 is a small parameter. This has been employed to great effect in various
shape and topology optimisation problems, see [4–7, 21, 22, 25] and the references cited
therein. In our present setting, it leads to the phase field inverse problem (PFIP):

Find uαε = argmin
v∈K

(1

2
∥G ○S(v) − ym∥2

O + αEε(v)), Eε(v) ∶= ∫
Ω

ε

2
∣∇v∣2 + 1

ε
Ψ(v),

with a double well potential Ψ(s) and a nonempty closed convex set K ⊂ H1(Ω) (see
(5.2)–(5.3) for their definitions).

The goal of this paper is to examine the mathematical analysis of both regularisation
approaches TVIP and PFIP. More precisely, we show the existence of minimisers and
investigate desirable properties such as the sequential stability with respect to perturba-
tions in the data ym, and asymptotic limits α → 0 and ε→ 0. To the best of the authors’
knowledge, this paper is the first contribution towards TVIP and PFIP for the quasilinear
Maxwell system (1.2) with two main novelties: The first is the convergence analysis for
PFIP involving their respective minimisers and optimality conditions (Theorems 5.2 and
6.11). Here, two types of optimality systems for PFIP (Theorems 6.6 and 6.10) are es-
tablished based on a weak directional differentiability result (Lemma 6.3) and the domain
variation technique of shape calculus (Lemma 6.9). Based on the latter technique, we
prove the convergence of the optimality conditions for PFIP as ε → 0, leading to an opti-
mality system for TVIP. The second main novelty, which seems not to have received much
attention in the literature, is the convergence of solutions for PFIP to a solution of the
original inverse problem (Theorem 5.3), and inferring (under ideal conditions) a relation
of the form α = O(εd) with d < 2 (see (5.11)) between parameters α and ε that could serve
as a useful guideline for numerical implementations. Let us mention that there are several
possible numerical strategies to solve the phase field optimality conditions to numerically
realise our solution, namely a parabolic variational inequality approach [4–6, 14] or the
VMPT method [7, 8]. The analysis of these strategies, together with a finite element ap-
proximation of the forward model and adjoint system in a fashion similar to [43], would
be the next step of our investigation. However, due to the length of the paper, we choose
to defer the numerical investigations of the inverse problem (1.5) and its regularisations
to future work.

Identification problems of material parameters in linear Maxwell’s equations have been
extensively investigated in many contributions, including [19, 29, 33, 35, 41]. On the other
hand, the mathematical analysis for inverse problems governed by nonlinear Maxwell’s
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equations is still in the early stages of development. In the context of the optimal control,
stationary and evolutionary nonlinear Maxwell’s equations were investigated in [32,42–44].
More recently, [12] analysed ill-posed backward nonlinear Maxwell’s equations and derived
a variational source condition for the convergence rate of the corresponding Tikhonov
regularisation. We believe that our present results may lead to further progresses in the
mathematical analysis of nonlinear electromagnetic inverse problems.

The paper is structured as follows: In Section 2 we introduce several useful auxiliary
results and preliminaries. In Section 3 we prove the well-posedness of (1.2) and continuity
properties of the solution operator S. The existence of minimisers, sequential stability with
respect to data perturbation, and asymptotic behaviour as α → 0 and ε→ 0 are discussed in
Sections 4 and 5, respectively. In Section 6 the first-order necessary optimality conditions
are derived, and we discuss the convergence of the phase field optimality conditions to the
total variation optimality conditions. In the appendix we state a useful result involving
the Γ-convergence of functionals.

2 Preliminaries

2.1 Function spaces for electromagnetic problems

For any open set Ω ⊂ R3, the Hilbert spaces

H(curl) ∶= {f ∈ L2(Ω) ∶ curlf ∈ L2(Ω)}, H(div) ∶= {f ∈ L2(Ω) ∶ divf ∈ L2(Ω)}

are equipped with the norms

∥f∥H(curl) ∶= ( ∥f∥2
L2(Ω) + ∥curlf∥2

L2(Ω) )
1
2 , ∥f∥H(div) ∶= ( ∥f∥2

L2(Ω) + ∥divf∥2
L2(Ω) )

1
2 ,

(2.1)

where curlf and divf are to be understood as the weak curl and weak divergence of
f ∈ L2(Ω), respectively. We define the subspace H0(curl) ⊂H(curl) as the completion of
C∞
c (Ω;R3) with respect to the H(curl)-topology, which admits the following characteri-

sation (cf. e.g. [45, Appendix A])

H0(curl) = {f ∈H(curl) ∶ (curlf ,g)L2(Ω) = (f , curlg)L2(Ω) ∀g ∈H(curl)}. (2.2)

Our solution space, consisting of divergence-free H0(curl) functions, is denoted as

Z ∶= {f ∈H0(curl) ∶ (f ,∇ψ)L2(Ω) = 0 ∀ψ ∈H1
0(Ω)}, (2.3)

and is equipped with the H(curl)-norm (2.1). We now state several well-known results:

• The continuous embedding

H0(curl) ∩H(div) ⊂H
1
2
+σc(Ω), σc =

⎧⎪⎪⎨⎪⎪⎩

0 if Ω is Lipschitz,

1/2 if Ω is convex/of class C1,1.
(2.4)

We refer to [13, Thm. 2] for the first case and to [2, Thms. 2.12 and 2.17] for the
second case.

• An immediate consequence is the Maxwell compactness property first attributed to
Weck [40]

H0(curl) ∩H(div) ⊂⊂ L2(Ω). (2.5)
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• The Poincaré–Friedrich-type inequality: There exists a positive constant C such that

∥f∥2
L2(Ω) ≤ C( ∥divf∥2

L2 + ∥curlf∥2
L2 ) ∀f ∈H0(curl) ∩H(div), (2.6)

which also implies there exists a positive constant c̃ such that

∥f∥H(curl) ≤ c̃ ∥curlf∥L2 ∀f ∈ Z. (2.7)

For a domain Ω with connected boundary ∂Ω, it holds that

{y ∈H0(curl) ∩H(div) ∶ curly = 0, divy = 0 in Ω} = {0}, (2.8)

see for example [34, Thm. 1] or [2, equ. (3.23) and Prop. 3.18]. Then, (2.6) can be
established with (2.5) and (2.8) using a contradiction argument akin to the usual
proof of the Poincaré inequality, cf. [17, §5.8, Thm. 1].

2.2 Functions of bounded variations

We review basic properties for functions of bounded variations that are sufficient for our
analysis. For a more detailed introduction we point to [1, 18,23].

We say that u ∈ L1(Ω) is a function of bounded variation in Ω if its distributional
gradient Du is a finite Radon measure. The space of all such functions is denoted as
BV (Ω) and is endowed with the norm ∥⋅∥BV (Ω) = ∥⋅∥L1(Ω) + TV (⋅), where for u ∈ BV (Ω),
the total variation TV (u) is defined as

TV (u) ∶= ∣Du∣ (Ω) ∶= sup{∫
Ω
udivφdx s.t. φ ∈ C1

0(Ω;R3), ∥φ∥∞ ≤ 1}.

The space BV (Ω,{0,1}) denotes the space of all BV (Ω) functions taking values in {0,1}.
We say that a set E ⊂ Ω is a set of finite perimeter if χE ∈ BV (Ω,{0,1}), where for a set
A, χA(x) = 1 if x ∈ A and χA(x) = 0 if x ∉ A. Furthermore, if u ∈ BV (Ω,{0,1}) is not
constant, then there exists a measurable set of finite perimeter Eu defined as

Eu ∶= {x ∈ Ω ∶ lim
δ→0

1

∣Bδ(x)∣ ∫Bδ(x)
u(y)dy = 1},

such that χEu(x) = u(x) a.e. in Ω, where Bδ(x) denotes the ball centred at x with radius
δ, and ∣Bδ(x)∣ its Lebesgue measure. The perimeter of a subset E ⊂ Ω of finite perimeter
is defined as PΩ(E) = ∣DχE ∣(Ω). We say that a sequence (uk)k∈N ⊂ BV (Ω) converges to
u ∈ BV (Ω) in the sense of intermediate convergence (or strict convergence) if

uk → u in L1(Ω) and TV (uk) → TV (u) in R. (2.9)

Furthermore, if (uk)k∈N ⊂ BV (Ω) is a bounded sequence, then there exists a subse-
quence (kn)n∈N and a limit u ∈ BV (Ω) such that ukn → u in L1(Ω) and TV (u) ≤
lim infn→∞ TV (ukn).

2.3 Saddle point problems

The following is a simplified version of the result due to Scheurer [36, Props. 2.3 and 2.4]
for nonlinear saddle point problems.

Lemma 2.1. Let V and W be two reflexive Banach spaces with dual spaces V ∗ and W ∗,
respectively. Let A ∶ V → V ∗ be a nonlinear operator, b ∶ V ×W → R be a bilinear form
with a continuous and linear operator B ∶ V →W ∗ defined as ⟨Bv,w⟩W = b(v,w), with B′

denoting the adjoint of B. Furthermore, suppose the following hold:
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(i) A ∶ V → V ∗ is hemicontinuous, i.e., limt→0⟨A(x + ty), z⟩V = ⟨A(x), z⟩∀x, y, z ∈ V .

(ii) ∃β > 0 s.t. ⟨A(u) −A(v), u − v⟩ ≥ β ∥u − v∥2
V ∀u, v ∈ Vg = {v ∈ V ∶ Bv = g}.

(iii) ∃γ > 0 s.t. ∥A(u) −A(v)∥V ∗ ≤ γ ∥u − v∥V ∀u, v ∈ V .

(iv) ∃k > 0 s.t. ∥B′q∥V ∗ ≥ k ∥q∥W and V admits a direct decomposition with V0 ∶= KerB
and V ⊥0 .

Then, for any (f, g) ∈ V ∗ ×W ∗, the nonlinear saddle point problem

⎧⎪⎪⎨⎪⎪⎩

⟨A(u), v⟩V + b(v, φ) = ⟨f, v⟩V ∀v ∈ V,
b(u,ψ) = ⟨g,ψ⟩W ∀ψ ∈W

(2.10)

admits a unique solution (u,φ) ∈ V ×W such that

∥u∥V + ∥φ∥W ≤ C( ∥f∥V ∗ + ∥g∥W ∗ )

for some positive constant C = C(γ, β, k). Furthermore, let (ū, φ̄) ∈ V ×W denote the
unique solution to (2.10) with data (f̄ , ḡ) ∈ V ∗ ×W ∗. Then, it holds that

∥u − ū∥V + ∥φ − φ̄∥
W

≤ C( ∥f − f̄∥
V ∗

+ ∥g − ḡ∥W ∗ )

for some positive constant C = C(γ, β, k).

3 Analysis of the forward model

For a fixed function u ∶ Ω → [0,1], we define the operator Au ∶H0(curl) →H0(curl)∗ and
the bilinear form b ∶H0(curl) ×H1

0(Ω) → R as

⟨Au(y),v⟩ ∶= ∫
Ω
(ν0(1 − u) + ν1(∣curly∣)u)curly ⋅ curlv dx ∀y,v ∈H0(curl),

b(y, ψ) ∶= ∫
Ω
y ⋅ ∇ψ dx ∀y ∈H0(curl), ψ ∈H1

0(Ω).
(3.1)

Then, a mixed formulation of (1.2) reads as

⎧⎪⎪⎨⎪⎪⎩

⟨Au(y),v⟩ + b(v, φ) = (J ,v)L2(Ω) ∀v ∈H0(curl),
b(y, ψ) = 0 ∀ψ ∈H1

0(Ω).
(3.2)

The function φ is referred to as the Lagrange multiplier associated with (1.2). If

divJ = 0 in Ω ⇔ (J ,∇ψ)L2(Ω) = 0 ∀ψ ∈H1
0(Ω) (3.3)

holds, then choosing v = ∇ψ in the first equality yields b(∇ψ,φ) = 0 for all ψ ∈ H1
0(Ω),

i.e., φ is a weak solution to the homogeneous Dirichlet Laplace problem, hence φ = 0.
To analyse the forward model (3.1), we make the following assumptions (cf. [28] for

their physical justification), which we assume to hold throughout the rest of the paper.

Assumption 3.1. Let ν0 > 0 denote the vacuum magnetic reluctivity. We assume that

(A1) ν1 ∶ [0,∞) → [0,∞) is a continuous function.

(A2) There exists a constant ν ∈ (0, ν0) such that for all s ∈ [0,∞),

ν ≤ ν1(s) ≤ ν0, lim
s→∞

ν1(s) = ν0.
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(A3) There exists a constant ν ∈ [ν0,∞) such that the mapping s↦ ν1(s)s satisfies

(ν1(s)s − ν1(ŝ)ŝ)(s − ŝ) ≥ ν ∣s − ŝ∣2 , (3.4)

∣ν1(s)s − ν1(ŝ)ŝ∣ ≤ ν ∣s − ŝ∣ ,

for all s, ŝ ∈ [0,∞).

(A4) The observation operator G ∶ Z → O is bounded and continuous.

By [43, Lem. 2.2] we obtain the following inequalities: For all v, v̂ ∈ R3, it holds that

(ν1(∣v∣)v − ν1(∣v̂∣)v̂) ⋅ (v − v̂) ≥ ν ∣v − v̂∣2 , (3.5)

∣ν1(∣v∣)v − ν1(∣v̂∣)v̂∣ ≤ (2ν0 + ν) ∣v − v̂∣ . (3.6)

As a consequence of the definition of Au, the fact ν ≤ ν0 and (2.7), we can verify

⟨Au(y) −Au(ŷ),y − ŷ⟩ ≥ ĉ ∥y − ŷ∥2
H(curl) ∀y, ŷ ∈ Z, (3.7)

∣⟨Au(y) −Au(ŷ),v⟩∣ ≤ C∗ ∥y − ŷ∥H(curl) ∥v∥H(curl) ∀y, ŷ,v ∈H0(curl), (3.8)

where C∗ = 2ν0 + ν̄ and ĉ depends only on ν and the constant c̃ in (2.7). In particular,
conditions (i), (ii) and (iii) of Lemma 2.1 are fulfilled with β = ĉ and γ = 2ν0 + ν̄ for the
choice of function spaces V =H0(curl), W =H1

0(Ω) and V0 = KerB = Z.
Meanwhile, following [43, equ. (3.11)], the bilinear from b ∶ H0(curl) × H1

0(Ω) → R
satisfies the Ladyzhenskaya–Babuška–Brezzi (LBB) condition:

sup
y∈H0(curl)

∣b(y, ψ)∣
∥y∥H(curl)

≥ ∣b(∇ψ,ψ)∣
∥∇ψ∥L2(Ω)

= ∥∇ψ∥L2(Ω) ≥ c̃ ∥ψ∥H1(Ω) ∀ψ ∈H1
0(Ω), (3.9)

with a positive constant c̃ depending only on Ω. Standard results, e.g. [11, Thm. 0.1]
yields that the LBB condition is equivalent to condition (iv) in Lemma 2.1. Hence, the
well-posedness of (3.2) follows from Lemma 2.1.

Theorem 3.1. For J ∈ L2(Ω) and u ∈ L1(Ω; [0,1]) ∶= {f ∈ L1(Ω) ∶ 0 ≤ f(x) ≤
1 a.e. in Ω}, there exists a unique solution pair (y, φ) ∈ Z ×H1

0(Ω) to (3.2). If J sat-
isfies (3.3) then φ ≡ 0. Furthermore, there exists a positive constant C depending only on
ν0, ν, ν̄ and Ω such that

∥y∥H(curl) + ∥φ∥H1
0(Ω) ≤ C ∥J∥L2(Ω) . (3.10)

We stress that the above estimate is independent of u ∈ L1(Ω; [0,1]) thanks to (3.7).
The well-posedness of (3.2) allows us to define a solution operator

S ∶ L1(Ω; [0,1]) → Z, u↦ y,

and the next result shows a continuity property.

Theorem 3.2. Let J ∈ L2(Ω) and (uk)k∈N ⊂ L1(Ω; [0,1]) denote a sequence converging
strongly to some u ∈ L1(Ω; [0,1]). Let (yk, φk)k∈N ⊂ Z ×H1

0(Ω) denote the corresponding
solutions to (3.2) with data (uk,J)k∈N. Then, it holds that

yk → y in Z, φk ⇀ φ in H1
0(Ω),

where the limiting pair (y, φ) ∈ Z ×H1
0(Ω) is the unique solution to (3.2) with data (u,J).
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Proof. Let (uk)k∈N be a sequence satisfying the hypothesis. From the estimate stated in
Theorem 3.1, we can extract a non-relabelled subsequence and limit functions (y, φ) ∈
Z ×H1

0(Ω) such that

yk ⇀ y in H(curl), φk ⇀ φ in H1(Ω). (3.11)

Setting ŷk = yk − y as the difference, and upon subtracting the term ∫Ω[ν0(1 − uk) +
ν1(∣curly∣)uk]curly ⋅ curlv dx from both sides of (3.2) leads to

∫
Ω
ν0(1 − uk)curl ŷk ⋅ curlv + uk[ν1(∣curlyk∣)curlyk − ν1(∣curly∣)curly] ⋅ curlv dx

= ∫
Ω
Jv − [ν0(1 − uk) + ν1(∣curly∣)uk]curly ⋅ curlv dx − b(v, φk) ∀v ∈ Z.

Substituting v = ŷk ∈ Z and employing the bounds ν ≤ ν1(⋅) ≤ ν0, the strong monotonicity
(3.5), the facts 0 ≤ uk ≤ 1 a.e. in Ω and b(ŷk, φk) = 0 gives

ν ∥curl ŷk∥2
L2 ≤ ∫

Ω
Jŷk − [ν0(1 − uk) + ν1(∣curly∣)uk]curly ⋅ curl ŷk dx . (3.12)

The right-hand side of (3.12) converges to zero thanks to the L2(Ω)-weak convergences
ŷk ⇀ 0, curl ŷk ⇀ 0 and the L2(Ω)-strong convergence νi uk curly → νi u curly for i = 0,1.
Then, (2.5) and (2.7) imply

yk → y in H0(curl). (3.13)

Thus, after extracting a non-relabelled subsequence we obtain due to (A1)–(A2) that
ν1(∣curlyk(x)∣) → ν1(∣curly(x)∣) a.e. in Ω and

ν1(∣curlyk∣)curlv → ν1(∣curly∣)curlv in L2(Ω) ∀v ∈H0(curl).

In conjunction with uk curlyk → u curly in L2(Ω) derived from the generalized dominating
convergence theorem and the facts uk curlyk → u curly a.e. in Ω, ∣uk curlyk∣ ≤ ∣curlyk∣ and
(3.13), it follows that

∫
Ω
uk ν1(∣curlyk∣)curlyk ⋅ curlv dx → ∫

Ω
uν1(∣curly∣)curly ⋅ curlv dx ∀v ∈H0(curl).

Hence, passing to the limit k → ∞ in (3.2) for (yk, φk) with data (uk,J) shows that the
limiting pair (y, φ) satisfies (3.2) with data (u,J). Now, since the unique solution of (3.2)
with data (u,J) is independent of the choice of the extracted subsequence (yk, φk)k∈N,
classical arguments yield that the convergence properties (3.11) and (3.13) hold true for
the whole sequence. This completes the proof.

Theorem 3.3. Given J ∈ L2(Ω) and u, ū ∈ L1(Ω; [0,1]), let (y, φ) and (ȳ, φ̄) denote the
corresponding unique solutions to (3.2) with data (u,J) and (ū,J), respectively. Then,
there exists a positive constant C depending only on ν0, ν and Ω such that

∥y − ȳ∥H(curl) ≤ C ∥(u − ū)curl ȳ∥L2(Ω) . (3.14)

Proof. Let us write ν1(y) = ν1(∣curly∣) for convenience. Then, subtracting (3.2) for (y, φ)
from the same equalities for (ȳ, φ̄) leads to

∫
Ω
v ⋅ ∇(φ − φ̄) + [ν0(1 − u)curl (y − ȳ) + u(ν1(y)curly − ν1(ȳ)curl ȳ)] ⋅ curlv dx

= ∫
Ω
(u − ū)[ν0 − ν1(ȳ)]curl ȳ ⋅ curlv dx ∀v ∈H0(curl),

∫
Ω
(y − ȳ) ⋅ ∇ψ dx = 0 ∀ψ ∈H1

0(Ω).
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Choosing v = y − ȳ and ψ = φ − φ̄, keeping in mind that ν1 ≥ ν, u ∈ [0,1] and (3.5) yields
the inequality

ν ∥curl (y − ȳ)∥2
L2(Ω) ≤ ∫

Ω
[ν0 − ν1(ȳ)](u − ū)curl ȳ ⋅ curl (y − ȳ)dx .

Hence, in view of (A2),

∥curl (y − ȳ)∥L2(Ω) ≤ ν−1ν0 ∥(u − ū)curl ȳ∥L2(Ω) .

In conclusion, the desired assertion comes from application of (2.7).

4 Total variation inverse problem

Throughout this section let J ∈ L2(Ω), ym ∈ O and α > 0 be fixed. The total variation
regularised inverse problem (TVIP) reads as

min
v∈BV (Ω,{0,1})

J(v) ∶= Jf(v) + αTV (v), Jf(v) ∶=
1

2
∥G ○S(v) − ym∥2

O . (4.1)

The following theorem shows that (4.1) exhibits desirable properties, such as existence of a
solution and being (sequentially) stable with respect to data perturbations. Furthermore,
under suitable conditions, a minimum-variation solution to the original inverse problem
(1.5) can be obtained (provided the solution set is non-empty) from (4.1) as α → 0.

Theorem 4.1. The following assertions hold:

• There exists at least one solution uα ∈ BV (Ω,{0,1}) to (4.1).

• If (ynm)n∈N ⊂ O is a sequence such that ynm → ym in O, and uαn denotes a solution to
(4.1) with data ynm, then along a non-relabelled subsequence it holds that uαn converges
to a solution uα to (4.1) with data ym in the sense of intermediate convergence (2.9).

Assume now that the inverse problem (1.5) has a solution in BV (Ω,{0,1}). For any δ > 0,

let (αδ)δ>0 be a positive null sequence such that δ2

αδ
→ 0 as δ → 0. Let uαδδ be a solution to

min
v∈BV (Ω,{0,1})

Jδ(v) ∶=
1

2
∥G ○S(v) − yδm∥2

O
+ αδTV (v),

where yδm satisfies ∥yδm − ym∥
O

≤ δ. Then, there exists a non-relabelled subsequence of
(uαδδ )δ>0 and a solution u ∈ BV (Ω,{0,1}) to the inverse problem (1.5) such that

uαδδ → u in L1(Ω), uαδδ ⇀ u in BV (Ω).

Furthermore, u satisfies TV (u) ≤ TV (w) for every solution w ∈ BV (Ω,{0,1}) to the
inverse problem (1.5), i.e., the limit u is a minimum-variation solution to (1.5).

The proof of Theorem 4.1 follows along similar lines of argument as in the proof
of [5, Props. 2.2, 2.3, 2.4], compare also [16, Thms. 10.2, 10.3]. Although our present
setting allows for a more abstract measurement space O and measurement operator G,
we mention that, for uαn → uα in L1(Ω), Theorem 3.2 together with the boundedness and
continuity of G implies

G ○S(uαn) →G ○S(uα) in O,

which yields Jf(uαn) → Jf(uα). These observations, in conjunction with the arguments
in [5] are sufficient to infer the assertions of Theorem 4.1. Hence, we omit the proof.

9



5 Phase field inverse problem

In all what follows, let J ∈ L2(Ω), ym ∈ O and α, ε > 0 be fixed. The phase field regularised
inverse problem (PFIP) reads as

min
v∈K

Jε(v) ∶= Jf(v) + αEε(v), Eε(v) ∶= ∫
Ω

γε

2
∣∇v∣2 + γ

ε
Ψ(v)dx . (5.1)

In the setting of (5.1), Ψ is a nonnegative double well potential with minima at 0 and
1, while γ is a constant depending only on Ψ. It is clear from the definition that for Eε
to be well-defined, we must expand the solution space K from BV (Ω,{0,1}) to subsets
of H1(Ω). If Ψ is defined everywhere on R, such as the smooth double well potential
Ψ(s) = s2(1− s)2, we may choose K as the whole of H1(Ω). Alternatively we can consider
the double obstacle potential [9]

Ψ(s) =
⎧⎪⎪⎨⎪⎪⎩

1
2s(1 − s) if s ∈ [0,1],
+∞ otherwise,

(5.2)

that is only finite over the interval [0,1], so that the solution space for PFIP can be taken
to be the following closed and convex set

K ∶= {f ∈H1(Ω) ∶ 0 ≤ f ≤ 1 a.e. in Ω}. (5.3)

In this setting, γ−1 = ∫ 1
0

√
2Ψ(y)dy = ∫ 1

0

√
y(1 − y)dy = π

8 , then by minor modifications
of [9, Thm. 3.7] detailed in Appendix A, we find that the following extended functionals

Eε(v) =
⎧⎪⎪⎨⎪⎪⎩

Eε(v), v ∈ K,
+∞, v ∉ K,

E0(v) =
⎧⎪⎪⎨⎪⎪⎩

TV (v), v ∈ BV (Ω,{0,1}),
+∞, v ∉ BV (Ω,{0,1})

satisfy Eε(v)
ΓÐ→ E0(v) in X, where

ΓÐ→ denotes Gamma convergence. Furthermore, from
the continuity of G ○ S ∶ L1(Ω; [0,1]) → O and the property that Gamma convergence is
stable under continuous perturbations [10, Rmk. 1.7], we have

Jε(v) = Jf(v) + αEε(v)
ΓÐ→ Jf(v) + αE0(v) = J(v) as ε→ 0, (5.4)

which motivates the investigation of (5.1). For the rest of the paper, we consider K as
defined in (5.3) and take Ψ as the double obstacle potential (5.2) with γ = 8

π .

5.1 Properties of solutions

Theorem 5.1. The following assertions hold:

• There exists at least one solution uαε ∈ K to (5.1).

• If (ynm)n∈N ⊂ O is a sequence such that ynm → ym in O, and uαε,n ∈ K denotes a
solution to (5.1) with data ynm, then along a non-relabelled subsequence it holds that
uαε,n → uαε in H1(Ω) where uαε ∈ K is a solution to (5.1) with data ym.

Let us point out the analogue of intermediate convergence for H1(Ω)-functions would
be the norm convergence of the gradient ∥∇uαε,n∥L2(Ω) → ∥∇uαε ∥L2(Ω). Furthermore, since
the arguments to prove Theorem 5.1 is somewhat standard in the literature, we will omit
the proof of existence (which is shown via the direct method) and sketch the details for
sequential stability.
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Proof. We define Jε,n(v) ∶= 1
2 ∥G ○S(v) − ynm∥2

O + αEε(v) and by definition,

Jε,n(uαε,n) ≤ Jε,n(v) ∀v ∈ K. (5.5)

Choosing, for instance, v = 1 yields the boundedness of (uαε,n)n∈N in K. Then, the compact

embedding H1(Ω) ⊂ L2(Ω) and Theorem 3.2 give

uαε,n ⇀ uαε in H1(Ω), uαε,n → uαε in L2(Ω), G ○S(uαε,n) →G ○S(uαε ) in O

along a non-relabelled subsequence with limit uαε ∈ K due to K being convex and closed.
Passing to the limit n → ∞ in (5.5) and employing weak lower semicontinuity, we arrive
at Jε(uαε ) ≤ Jε(v) for all v ∈ K, and so uαε is a solution to (5.1). Meanwhile, passing to the
limit n→∞ in the inequality (5.5) with the choice v = uαε ∈ K yields

Jε(uαε ) ≤ lim inf
n→∞

Jε,n(uαε,n) ≤ lim
n→∞

Jε,n(uαε,n) ≤ lim
n→∞

Jε,n(uαε ) = Jε(uαε ),

from which we deduce that limn→∞Eε(uαε,n) = Eε(uαε ). Together with ∥Ψ(uαε,n)∥L1(Ω) →
∥Ψ(uαε )∥L1(Ω), we then obtain ∥∇uαε,n∥2

L2(Ω)
→ ∥∇uαε ∥2

L2(Ω)
.

5.2 Convergence of solutions

An immediate consequence of the Gamma convergence (5.4) is the following result con-
cerning the asymptotic behaviour of minimisers (uαε )ε>0 to (5.1) as ε→ 0.

Theorem 5.2. Let (uαε )ε>0 ⊂ K denote a sequence of solutions to PFIP (5.1). Then, there
exist a non-relabelled subsequence and a limit uα ∈ BV (Ω,{0,1}) such that limε→0 u

α
ε = uα

in L1(Ω), limε→0 Jε(uαε ) = J(uα), and uα is a solution to TVIP (4.1).

Proof. While the argument is somewhat standard, see for instance [21, Proof of Thm. 2],
nevertheless we briefly sketch the details, as some of the elements of the proof will be
used later. Let w ∈ BV (Ω,{0,1}) be arbitrary, then by (3.10) it is clear that J(w) < ∞.
We define the set Ew ∶= {w = 1} so that w = χEw . Our aim is to construct a sequence
(wε)ε>0 ⊂ K such that ∥wε −w∥L1(Ω) → 0 and lim supε→0 Jε(wε) ≤ J(w). In the trivial case
where w ≡ 0 (resp. w ≡ 1), which corresponds to Ew = ∅ (resp. Ew = Ω), we can choose
wε = w for all ε > 0 so that Eε(wε) = 0 and

Jε(wε) = Jf(wε) = Jf(w) ≤ J(w) ∀ε > 0.

In the non-trivial case where 0 < ∣Ew∣ < ∣Ω∣, using [30, Lem. 1], we can approximate Ew ⊂ Ω
by a sequence (Ek)k∈N of open bounded sets in R3 with smooth boundaries such that

lim
k→∞

PΩ(Ek) = PΩ(Ew), ∣(Ek ∩Ω)∆E∣ ≤ 1
k ,

H2(∂Ek ∩ ∂Ω) = 0, ∣Ek ∩Ω∣ = ∣Ew∣ for k sufficiently large,

where A∆B denotes the symmetric difference between the sets A and B, and H2 denotes
the two-dimensional Hausdorff measure. Then, setting wk = χEk∩Ω leads to

∥wk −w∥L1(Ω) = ∣(Ek ∩Ω)∆Ew∣ ≤ 1
k .

We apply item (ii) of Lemma A.1 with v0 = wk and A = Ek , so that for each k there exists
a sequence (wkε ) ⊂ L1(Ω) with ∥wkε −wk∥L1(Ω) = O(ε) and lim supε→0Eε(wkε ) ≤ TV (wk) =
PΩ(Ek). Then, the diagonal sequence (wkεk)k∈N fulfills per construction

∥wkεk −w∥
L1(Ω)

= O(k−1), lim sup
k→∞

Eεk(wkεk) ≤ TV (w). (5.6)
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For this particular sequence (εk)k∈N, setting yεk ∶= S(wkεk) and yw ∶= S(w), by Theorem

3.2 we have yεk → yw in Z as k →∞. Continuity of G ∶ Z → O implies Jf(wkεk) → Jf(w) as

k →∞, and so lim supk→∞ Jεk(wkεk) ≤ J(w). Consequently, we infer supk∈N Jεk(wkεk) < ∞.
Next, by definition of uαε as a solution to (5.1), it holds that

αEεk(uαεk) ≤ Jεk(u
α
εk
) ≤ Jεk(wkεk) < ∞ ∀k ∈ N. (5.7)

This implies that supk∈NEεk(uαεk) < ∞ and by item (iii) of Lemma A.1, there exists a
non-relabelled subsequence and a limit uα ∈ BV (Ω,{0,1}) such that uαεk → uα strongly in
L1(Ω). Furthermore, Theorem 3.2 asserts S(uαεk) → S(uα) in Z and so limk→∞ Jf(uαεk) =
Jf(uα), while when we invoke item (i) of Lemma A.1, (5.6) and (5.7), we obtain

J(uα) = Jf(uα) + αTV (uα) ≤ lim inf
k→∞

(Jf(uαεk) + αEεk(u
α
εk
))

≤ lim sup
k→∞

Jεk(wkεk) ≤ J(w) = Jf(w) + αTV (w).

As w ∈ BV (Ω,{0,1}) is arbitrary this implies that uα is a solution to (4.1). Now, following
the start of the proof, we construct a sequence (vkεk)k∈N satisfying (5.6) with uα in place
of w, and observe that

J(uα) ≤ lim inf
k→∞

Jεk(uαεk) ≤ lim sup
k→∞

Jεk(uαεk) ≤ lim sup
k→∞

Jεk(vkεk) ≤ J(u
α),

which implies limk→∞ Jεk(uαεk) = J(u
α).

Let us now address the convergence as α → 0 and ε→ 0.

Theorem 5.3. Suppose that

(a) G ∶ Z → O is Lispchitz continuous.

(b) The inverse problem (1.5) has a solution u∗ ∈ BV (Ω,{0,1}), and there exist a posi-
tive null sequence (εk)k∈N and a sequence of functions (wk)k∈N ⊂ K such that wk → u∗
strongly in L1(Ω) with lim supk→∞Eεk(wk) ≤ TV (u∗).

(c) (αk)k∈N is a positive null sequence subordinate to (εk)k∈N and u∗ in the following
sense

lim sup
k→∞

1

αk
∥(wk − u∗)curlS(u∗)∥2

L2(Ω) = 0. (5.8)

Then, for a sequence of solutions (uαkεk )k∈N ⊂ K to PFIP (5.1), there exists a non-relabelled
subsequence (k → ∞) and a solution u ∈ BV (Ω,{0,1}) to the inverse problem (1.5) such
that

uαkεk → u in L1(Ω) and TV (u) ≤ TV (u∗). (5.9)

Remark 5.1.

(i) We mention that the obvious choice for (wk)k∈N is the sequence constructed in the
proof of Theorem 5.2 which satisfies (5.6) (with u∗ in place of w). This fixes the
null sequence (εk)k∈N subordinate to u∗. In particular, since (wk)k∈N always exists,
the statement of condition (b) can always be reduced to “the inverse problem (1.5)
has a solution u∗ ∈ BV (Ω,{0,1})”. However, in order to define the null sequence
(αk)k∈N subordinate to (εk)k∈N and u∗, it is necessary to state condition (b) as it is
presented.
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(ii) If u∗ is a minimum-variation solution to the inverse problem (1.5), then the inequal-
ity (5.9) implies that u is a minimum-variation solution to (1.5) as well.

Proof. For each k ∈ N, let uαkεk ∈ K denote a solution to minv∈K Jk(v) where

Jk(v) ∶= Jf(v) + αkEεk(v).

For the sequence (wk)k∈N in the hypothesis, we set zk = S(wk). Then, from the inequality
Jk(uαkεk ) ≤ Jk(wk), we have

Eεk(uαkεk ) ≤
1

αk
Jf(wk) +Eεk(wk) =

1

2αk
∥G(zk) −G(y∗)∥2

O +Eεk(wk), (5.10)

since for y∗ = S(u∗) it holds that G(y∗) = ym in O. Lipschitz continuity of G ∶ Z → O
and the estimate (3.14) imply that

Eεk(uαkεk ) ≤
C

αk
∥(wk − u∗)curly∗∥2

L2(Ω) +Eεk(wk).

The right-hand side is non-negative and its limit superior as k →∞ is bounded by the hy-
pothesis. Hence, it is clear that supk∈NEεk(uαkεk ) < ∞. Invoking the compactness property
(iii) of Lemma A.1 leads to the existence of a non-relabelled subsequence (k →∞) and a
limit u ∈ BV (Ω,{0,1}) such that uαkεk → u in L1(Ω), and subsequently Jf(uαkεk ) → Jf(u)
as k →∞. On the other hand, since Eεk(uαkεk ) ≥ 0 and αk > 0, we have

Jf(uαkεk ) ≤ Jk(u
αk
εk

) ≤ Jf(wk) + αkEεk(wk) ≤ C ∥(wk − u∗)curly∗∥2
L2(Ω) + αkEεk(wk).

Taking limit superior on both sides and employing the hypothesis lim supk→∞Eεk(wk) ≤
TV (u∗) leads to

Jf(u) = lim
k→∞

Jf(uαkεk ) ≤ C lim sup
k→∞

∥(wk − u∗)curly∗∥2
L2(Ω) + (lim sup

k→∞
αk)TV (u∗) = 0.

From the equality Jf(u) = 0 we infer that G○S(u) = ym, i.e., u is a solution to the inverse
problem (1.5). Moreover, as uαkεk → u in L1(Ω), by the hypothesis, (5.10) and the item (i)
of Lemma A.1,

TV (u) ≤ lim inf
k→∞

Eεk(uαkεk ) ≤ lim sup
k→∞

( 1

αk
Jf(wk) +Eεk(wk))

≤ C lim sup
k→∞

1

αk
∥(wk − u∗)curly∗∥2

L2(Ω) + lim sup
k→∞

Eεk(wk) ≤ TV (u∗).

This completes the proof.

Under the existence of a BV (Ω,{0,1})-solution to (1.5) satisfying some regularity
assumption, we can simplify (5.8) to a relation between the null sequences (εk)k∈N and
(αk)k∈N that is more practical for numerical implementations.

Corollary 5.4. Suppose that

(A) G ∶ Z → O is Lipschitz continuous.

(B) The inverse problem (1.5) has a solution u∗ ∈ BV (Ω,{0,1}) such that curlS(u∗) ∈
Lp(Ω) for some p > 2 and there exists an open bounded set A ⊂ R3 with a smooth
boundary satisfying {u∗ = 1} = A ∩Ω and H2(∂A ∩ ∂Ω) = 0.
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Furthermore, for any positive null sequence (εk)k∈N, let (αk)k∈N be a positive null sequence
such that

lim sup
k→∞

ε2
k

αk
= 0. (5.11)

Then, the assertions of Theorem 5.3 are valid.

Proof. By the hypothesis, we can apply item (ii) of Lemma A.1 and obtain a family
(wε)ε>0 ⊂ K such that ∥wε − u∗∥L1(Ω) = O(ε) and lim supε→0Eε(wε) ≤ TV (u∗). Then, a
short calculation shows

1

αk
∥(wεk − u∗)curly∗∥2

L2(Ω)
≤ 1

αk
∥curly∗∥2

Lp(Ω) ∥wεk − u∗∥
2
L2p/(p−2)(Ω)

≤ C

αk
∥wεk − u∗∥

2
L1(Ω)

on account of the fact that 0 ≤ wεk(x), u∗(x) ≤ 1 for a.e. x ∈ Ω. Hence, condition (5.8) is
fulfilled if (5.11) holds.

Let us point out that in Corollary 5.4 the null sequence (εk)k∈N does not need to be
subordinate to the true solution u∗ (or its approximating sequence) as in Theorem 5.3,
which gives greater flexibility at a cost of assuming more regularity on the true solution.
Furthermore, we note from the condition (5.11) and the estimate ∥wεk − u∗∥L1(Ω)

= O(εk)
that εk plays a similar role to the parameter δ in Theorem 4.1.

6 First-order analysis

Following [43, Sec. 3.2] we introduce a vector function

F ∶ [0,1] ×R3 → R3, F(u,s) = [ν0(1 − u) + ν1(∣s∣)u]s, (6.1)

so that the operator Au ∶H0(curl) →H0(curl)∗ defined in (3.1) can be expressed as

⟨Au(y),v⟩ = ∫
Ω
F(u, curly) ⋅ curlv dx ∀y,v ∈H0(curl). (6.2)

Assumption 6.1. In addition to Assumption 3.1, we further assume that

(A5) ν1 ∈ C1(R) and there exists a positive constant CF such that

∣∂F i(u,s)
∂sj

∣ ≤ CF for all u ∈ [0,1], s ∈ R3, i, j ∈ {1,2,3}.

(A6) O = L2(D) where D ⊂ Ω is an open subset, and G ∶ H(curl) → O is the restriction
operator G(y) = y∣D.

One example of ν1 that satisfies (A5) is (see also [43, Example 3.5])

ν1(s) = ν0 − θ exp(−βs2) (6.3)

with constants β ≥ 0 and 0 ≤ θ < ν0. Denoting the Jacobian matrix function of F by
∇sF ∶ Ω × [0,1] ×R3 → R3×3, where

∇sF(u,s) = (∂F i

∂sj
(u,s))

1≤i,j≤3

= [ν0(1 − u) + ν1(∣s∣)u]I + u
ν′1(∣s∣)

∣s∣ s⊗ s,

we see that (A5) implies ∇sF is bounded for all u ∈ [0,1] and s ∈ R3. An immediate
consequence of (A5) and (3.4) is the following, which follows from a minor modification
of [43, Prop. 3.7].
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Lemma 6.1. For all u ∈ [0,1] and all s,a ∈ R3, it holds that

ν1(∣s∣) + ν′1(∣s∣) ∣s∣ ≥ ν, ∇sF(u,s)a ⋅ a ≥ ν ∣a∣2 .

Consequently,

∫
Ω
∇sF(u, curly)v ⋅ v dx ≥ ν ∥v∥2

L2(Ω) ∀u ∈ [0,1], y ∈H0(curl) ,v ∈ L2(Ω). (6.4)

6.1 Optimality system via directional differentiability

In this section, we establish a necessary optimality system for (5.1) through the use of
the weak directional differentiability of the solution operator S ∶ K → Z. To show this
property, let us first discuss the linearised equation associated with the saddle point system
(3.2). In the following, let ū ∈ K, h ∈ L∞(Ω) and ȳ = S(ū). We seek a unique solution
(z, θ) ∈ Z ×H1

0(Ω) to the linear saddle point problem

⎧⎪⎪⎨⎪⎪⎩

aȳ(z,v) + b(v, θ) = fh,ȳ(v) ∀v ∈H0(curl),
b(z, ψ) = 0 ∀ψ ∈H1

0(Ω),
(6.5)

where the bilinear form aȳ ∶H0(curl)×H0(curl) → R and the linear form fh,ȳ ∶H0(curl) →
R are given as

aȳ(z,v) ∶= ∫
Ω
∇sF(ū, curl ȳ) curlz ⋅ curlv dx , (6.6)

fh,ȳ(v) ∶= ∫
Ω
h(ν0 − ν1(∣curl ȳ∣)) curl ȳ ⋅ curlv dx

for all z,v ∈H0(curl). Strictly speaking, the Lagrange multiplier θ is zero as fh,ȳ(∇ψ) = 0
for all ψ ∈H1

0(Ω). But we include it to retain the saddle point structure.

Lemma 6.2. Let ū ∈ K, h ∈ L∞(Ω) and ȳ = S(ū). Then, there exists a unique solution
z = z(ū, h) ∈ Z, θ = 0 ∈H1

0(Ω) to (6.5) satisfying

∥z∥H(curl) ≤ C ∥h∥L∞(Ω) ∥ȳ∥H(curl) (6.7)

for a positive constant C depending only on ν0, ν and Ω.

Proof. Since (6.5) is a linear saddle point problem, to apply standard results [11, Thm. 1.1,
Cor. 1.1] it suffices to note that

⎧⎪⎪⎨⎪⎪⎩

∣aȳ(z,v)∣ ≤ CF ∥z∥H(curl) ∥v∥H(curl) ∀z,v ∈H0(curl),
aȳ(z,z) ≥ ν ∥curlz∥2

L2(Ω) ≥ νc̃−2 ∥z∥2
H(curl) ∀z ∈ Z,

(6.8)

∣fh,ȳ(v)∣ ≤ 2ν0 ∥h∥L∞(Ω) ∥ȳ∥H(curl) ∥v∥H(curl) ∀v ∈H0(curl),

thanks to (A2), (A5), (2.7) and (6.4).

Lemma 6.3. Let ū, u ∈ K and ȳ = S(ū). Furthermore, let z = z(ū, h) ∈ Z denote the
unique solution to (6.5) with h = u− ū ∈ L∞(Ω). Then, the solution operator S ∶ K → Z is
weakly directionally differentiable at ū in the direction u − ū, i.e.,

S(ū + τ(u − ū)) −S(ū)
τ

⇀ z in Z as τ ↓ 0.
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Proof. Let (τk)k∈N ⊂ (0,1] be a null sequence. Since K ⊂H1(Ω) is convex,

uτk ∶= ū + τk(u − ū) = τku + (1 − τk)ū ∈ K ∀k ∈ N.

Thus, for all k ∈ N, the forward problem (3.2) corresponding to data (uτk ,J) admits a
unique solution (yτk , φτk) ∈ Z ×H1

0(Ω). By definition,

⎧⎪⎪⎨⎪⎪⎩

⟨Auτk (yτk) −Aū(ȳ),v⟩ + b(v, φτk − φ̄) = 0 ∀v ∈H0(curl),
b(yτk − ȳ, ψ) = 0 ∀ψ ∈H1

0(Ω).
(6.9)

Choosing v = ∇(φτk − φ̄) yields that

φτk − φ̄ = 0 ∀k ∈ N. (6.10)

For this reason, inserting v = yτk − ȳ ∈ Z in (6.9) and using the abbreviation ν1(y) =
ν1(∣curly∣), we obtain

0 = ⟨Auτk (yτk) −Aū(ȳ),yτk − ȳ⟩

= ∫
Ω
(ν0(1 − ū)curl (yτk − ȳ) + ū[ν1(yτk)curlyτk − ν1(ȳ)curl ȳ]) ⋅ curl (yτk − ȳ)dx

+ τk ∫
Ω
h(ν1(yτk) − ν0)curlyτk ⋅ curl(yτk − ȳ)dx .

From (2.7), (3.5) and (3.10) it follows that

∥yτk − ȳ∥H(curl) ≤ C ∥curl (yτk − ȳ)∥L2(Ω)
≤ Cτk ∥h∥L∞(Ω) ∀k ∈ N.

Consequently, we can extract a non-relabelled subsequence of (τk)k∈N such that

yτk → ȳ in H0(curl), curlyτk(x) → curl ȳ(x) a.e. in Ω,
(yτk − ȳ)

τk
⇀ Y in Z, (6.11)

as k →∞. To identify the equation for Y , we notice that (6.1)–(6.2) and (6.9)–(6.10) yield

(F(uτk , curlyτk) −F(ū, curl ȳ), curlv)L2(Ω) = 0 ∀v ∈H0(curl). (6.12)

Invoking the integral form of the mean value theorem, a short calculation shows that

F(uτk , curlyτk) −F(ū, curlyτk) +F(ū, curlyτk) −F(ū, curl ȳ)

= τkh(ν1(∣curlyτk ∣) − ν0)curlyτk + ∫
1

0
∇sF(ū, curl ((1 − θ)yτk + θȳ))curl (yτk − ȳ)dθ.

From (6.11) and the dominated convergence theorem together with (A2) and (A5), we
infer that

lim
k→∞

∫
1

0
∇sF(ū, curl ((1 − θ)yτk + θȳ))⊺curlv dθ = ∇sF(ū, curl ȳ)⊺curlv in L2(Ω),

lim
k→∞

h(ν1(∣curlyτk ∣) − ν0)curlv = h(ν1(∣curl ȳ∣) − ν0)curlv in L2(Ω),

for any v ∈ H0(curl). Hence, dividing (6.12) by τk and then passing to the limit k → ∞
shows that Y ∈ Z satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(h(ν1(∣curl ȳ∣) − ν0)curl ȳ +∇sF(ū, curl ȳ)curlY , curlv)
L2(Ω)

= 0 ∀v ∈H0(curl),

b(Y , ψ) = 0 ∀ψ ∈H1
0(Ω).

It follows therefore that Y = z is the unique solution to (6.5). Since Y = z is independent
of the choice of the subsequence of (τk)k∈N, we conclude that the assertion is valid.
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Corollary 6.4. Let ū, u ∈ K and ȳ = S(ū). Furthermore, let z = z(ū, h) ∈ Z denote the
unique solution to (6.5) with h = u− ū ∈ L∞(Ω). Then, the objective functional Jε ∶ K → R
is directionally differentiable at ū in the direction u − ū with the directional derivative

δJε(ū, u − ū) = (ȳ − ym,z)L2(D) + α∫
Ω

8ε

π
∇ū ⋅ ∇(u − ū) + 8

πε
(1

2
− ū)(u − ū)dx . (6.13)

Proof. According to (A6), we have that Jε(v) = Jf(v) + αEε(v) with

Jf(v) =
1

2
∥S(v) − ym∥2

L(D) , Eε(v) = ∫
Ω

8ε

2π
∣∇v∣2 + 8

πε
Ψ(v)dx ∀v ∈ K.

Thanks to Lemma 6.3, standard arguments imply that

lim
τ↓0

Jf(ū + τ(u − ū)) − Jf(ū)
τ

= (ȳ − ym,z)L2(D) in R.

Also, in view of (5.2) and since ū + τ(u − ū) ∈ K holds for all τ ∈ [0,1], a straightforward
computation yields

lim
τ↓0

Eε(ū + τ(u − ū)) −Eε(ū)
τ

= ∫
Ω

8ε

π
∇ū ⋅ ∇(u − ū) + 8

πε
(1

2
− ū)(u − ū)dx in R.

In conclusion, the assertion is valid.

For every ū ∈ K with the corresponding state ȳ = S(ū), let us now introduce the adjoint
system associated with (5.1) as follows:

⎧⎪⎪⎨⎪⎪⎩

a∗ȳ(q,v) + b(v, p) = (ȳ − ym,v)L2(D) ∀v ∈H0(curl),
b(q, ψ) = 0 ∀ψ ∈H1

0(Ω),
(6.14)

where the bilinear form a∗ȳ ∶H0(curl) ×H0(curl) → R is defined as

a∗ȳ(q,v) ∶= (∇sF(ū, curl ȳ)⊺curlq, curlv)L2(Ω) ∀q,v ∈H0(curl).

It is easy to see that analogous properties to (6.8) can be shown for a∗ȳ(⋅, ⋅). Hence, using
standard results for linear saddle point problems [11, Thm. 1.1, Cor. 1.1], we obtain the
following well-posedness result for (6.14).

Lemma 6.5. Let ū ∈ K with the corresponding state ȳ = S(ū). Then, there exists a unique
pair (q, p) ∈ Z ×H1

0(Ω) to the adjoint system (6.14) associated with ū and satisfies the
estimate

∥q∥H(curl) + ∥p∥H1
0(Ω) ≤ C ∥ȳ − ym∥L2(D)

for a positive constant C depending only on ν0, ν and Ω.

Employing the adjoint system (6.14) and the established directional differentiability
result, let us now prove an optimality system for PFIP (5.1) in form of a variational
inequality:

Theorem 6.6. Let uαε ∈ K be a solution to the PFIP (5.1) with the corresponding state
yαε = S(uαε ). Furthermore, let (q, p) ∈ Z × H1

0(Ω) denote the unique solution to (6.14)
associated with uαε . Then, it holds that

∫
Ω
((ν0 − ν1(∣curlyαε ∣)) curlyαε ⋅ curlq + 8α

πε
(1

2
− uαε ))(u − uαε )dx

+ ∫
Ω

8αε

π
∇uαε ⋅ ∇(u − uαε )dx ≥ 0 ∀u ∈ K.

(6.15)
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Proof. In view of Corollary 6.4 and the optimality of uαε ,

(yαε − ym,z)L2(D) + α∫
Ω

8ε

π
∇uαε ⋅ ∇(u − uαε ) +

8

πε
(1

2
− uαε )(u − uαε )dx ≥ 0 ∀u ∈ K,

(6.16)

where z ∈ Z denote the unique solution to (6.5) with ȳ = yαε and h = u − uαε ∈ L∞(Ω).
Inserting v = z in the adjoint system (6.14) leads to

(∇sF(uαε , curlyαε )⊺curlq, curlz)L2(Ω) + b(z, p) = (ȳ − ym,z)L2(D).

Meanwhile, substituting (v, ψ) = (q, p) in (6.5) (with ȳ = yαε and h = u − uαε ) yields

(∇sF(uαε , curlyαε )curlz, curlq)L2(Ω) = fu−uαε ,yαε (q), b(z, p) = 0.

Hence, the above equalities give

(yαε − ym,z)L2(D) = ∫
Ω
(u − uαε )(ν0 − ν1(∣curlyαε ∣))curlyαε ⋅ curlq dx , (6.17)

and (6.15) is an immediate consequence of (6.16)–(6.17).

6.2 Optimality system via shape calculus and its convergence

In this section, we derive an alternative optimality system for PFIP (5.1) via the domain
variation technique of shape calculus. Our main result is the convergence of this system
as ε→ 0, which leads to an optimality system for TVIP (4.1).

Assumption 6.2. In addition to Assumption 6.1, we further assume

(A7) The domain Ω is either a convex domain or a domain with C1,1-boundary.

(A8) The prescribed current density J satisfies J ∈ H1(Ω) and the measurement vector
potential ym additionally satisfies ym ∈H1(Ω).

We remark that (A8) is required due to the domain variation methodology we employ
to derive optimality conditions. Moreover, (A7) together with (2.4) and (2.6) implies that

∥f∥H1(Ω) ≤ C( ∥curlf∥L2(Ω) + ∥divf∥L2(Ω) ) ∀f ∈H0(curl) ∩H(div),

and hence S(u) ∈ H1(Ω) for any u ∈ L1(Ω; [0,1]). This improved regularity is needed to
prove the differentiability of certain transformed solutions (see Lemma 6.9) in preparation
for the main result (Theorem 6.11).

The optimality conditions derived in this section involves domain variations, which is
performed with admissible transformations and their corresponding velocity fields.

Definition 6.1. The space Vad of admissible velocity fields is defined as the set of all
V ∈ C0([−τ, τ] ×Ω,R3) where τ > 0 is a fixed small constant such that for all t ∈ [−τ, τ],

(V1) V (t, ⋅) ∶ Ω→ R3, V (t, ⋅) ∈ C2
c (Ω,R3) and there exists C > 0 such that

∥V (⋅, y) − V (⋅, z)∥C0([−τ,τ],R3) ≤ C ∣y − z∣ ∀y, z ∈ Ω.

(V2) V (t, x) ⋅n(x) = 0 for all x ∈ ∂Ω.
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Then, the space Tad of admissible transformations is defined as the set of corresponding
solutions to the ordinary differential equation

∂tTt(x) = V (Tt(x)), T0(x) = x,

for V ∈ Vad, which yields a mapping T ∶ [−τ0, τ0] × Ω → Ω, Tt(x) ∶= T (t, x), for some
τ0 ∈ (0, τ) sufficiently small.

Remark 6.1. By [38, Thm. 2.18] the transformation T ∶ [−τ0, τ0] ×Ω → Ω corresponding
to an admissible velocity field V ∈ Vad is bijective and satisfies the properties

T and T−1 ∈ C0([−τ0, τ0];C2(Ω;R3)),

which implies

∥Tt − I∥L∞(Ω) → 0, ∥T −1
t − I∥

L∞(Ω)
→ 0 as t→ 0,

where I(x) = x is the identity map. Moreover, by [38, Lem. 2.31 and Prop. 2.35], for any
compact set U ⊂ Ω, it holds that

∥t−1(DTt − I) −DV (0)∥
W 1,∞(U)

→ 0, (6.18)

∥t−1(ξt − 1) − divV (0)∥
W 1,∞(U)

→ 0, (6.19)

∥t−1(Tt − I) − V (0)∥
L∞(U)

→ 0 (6.20)

as t → 0, where I is the identity matrix, DTt is the Jacobian matrix of Tt and ξ(t, x) ∶=
ξt(x) ∶= det DTt(x).

While we recognise Tt(Ω) = Ω for all t ∈ [−τ0, τ0] due to (V2), in some of the calculations
below we use the notation Ωt = Tt(Ω) for better clarity. Through the relation

∇(f ○ Tt) = [(∇f) ○ Tt]DTt = DT ⊺t (∇f) ○ Tt, (6.21)

it is clear that f ∈ H1(Ωt) iff f ○ Tt ∈ H1(Ω). In contrast, composition with the mapping
Tt or T−1

t modifies the curl operator in an undesirable way (see [26, §3] or [27, §4.4])

ĉurly = ξtDT −1
t (DT−⊺t ⨉D(y ○ T−1

t ) ○ Tt) for y ∶ Ωt → R3, (6.22)

where ĉurl is the curl operator with respect to the transformed variables x̂ = Tt(x) and the
tensor product A⨉B for two second order tensors A = (akl)1≤k,l≤3 and B = (bkl)1≤k,l≤3 is
defined as A⨉B = ∑3

j,k=1 εijk∑3
l=1 aklblj with the antisymmetric tensor εijk. In particular,

y ∈ H(curl; Ω) may not imply y ○ Tt ∈ H(curl; Ωt). Although via (A7) the solution to
the state equation belongs to H1(Ω), the expression (6.22) for the curl operator is still
difficult to work with. On the other hand, the transformation

ŷ ∶= DT−⊺t y ○ T−1
t for y ∶ Ω→ R3 (6.23)

is curl preserving, i.e., it holds that (see [31, Cor. 3.58])

(ĉurl ŷ) ○ Tt = ξ−1
t DTt curly for y ∶ Ω→ R3, (6.24)

and so curly ∈ L2(Ω) if and only if ĉurl ŷ ∈ L2(Ωt). Another advantage of (6.23) is that,
for given y,z ∈H(curl) with ŷ ∶= DT−⊺t y ○ T−1

t and ẑ ∶= DT−⊺t z ○ T −1
t , we have

∫
Ωt

ĉurl ŷ ⋅ ẑ dx̂ = ∫
Ω
ξt(ξ−1

t DTtcurly ⋅DT−⊺t z)dx = (curly,z)L2(Ω).
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Hence, y ∈H0(curl; Ω) iff ŷ = DT−⊺t y ○ T−1
t ∈H0(curl; Ωt) and y ∈H0(curl; Ωt) iff DT ⊺t y ○

Tt ∈ H0(curl; Ω). Therefore, in the sequel we focus mainly on the transformation (6.23)
for the vector potential y. Furthermore, we use the following notations

A(t) ∶= 1

ξt
DT ⊺t DTt, A−1(t) = ξtDT−1

t DT−⊺t , B(t) ∶= 1

ξt
DTt, B−1(t) = ξtDT−1

t .

It is well-known that A(t), A−1(t), B(t) and B−1(t) are differentiable at t = 0 with
derivatives [15, Chap. 9, Thm. 4.1 and equ. (4.26)]

A′(0) = −divV (0)I +DV (0) + (DV (0))⊺ = −(A−1)′(0),
B′(0) = −divV (0)I +DV (0) = −(B−1)′(0).

Then, by Remark 6.1, there exists a positive constant C such that for all t ∈ (−τ0, τ0) with
τ0 sufficiently small,

∥t−1(A(t) − I)∥
L∞(Ω)

+ ∥t−1div(A−1(t) − I)∥
L∞(Ω)

+ ∥t−1(ξt − 1)∥
L∞(Ω)

+ ∥t−1(B(t) − I)∥
L∞(Ω)

+ ∥t−1(B−1(t) − I)∥
L∞(Ω)

+ ∥t−1(Tt − I)∥
L∞(Ω)

≤ C.
(6.25)

Lemma 6.7. Let V ∈ Vad be given and T ∈ Tad be the corresponding transformation. For
any t ∈ [−τ0, τ0] and u ∈ BV (Ω,{0,1}), let ut ∶= u ○ T−1

t . Then, it holds that

∥ut − u∥
L1(Ω)

→ 0 as t→ 0.

Consequently, by Theorem 3.2 and (2.4), if (y, φ), (yt, φt) ∈ H1(Ω) ×H1
0(Ω) are unique

solutions of (3.2) corresponding to data (u,J) and (ut,J), respectively, then

yt → y in H1(Ω), φt ⇀ φ in H1
0(Ω).

Proof. Suppose for the moment that u ∈W 1,p(Ω) for p ≥ 1. For x ∈ Ω, the relation

ut(x) − u(x) = ∫
1

0
∇u(x + s(T−1

t (x) − x)) ⋅ (T−1
t (x) − x) ds

and the change of variable z = [(1 − s)I + sT −1
t ](x) yields

∥ut − u∥p
Lp(Ω)

≤ ∥T −1
t − I∥p

L∞(Ω)∫
1

0
∫

Ω
∣∇u(x + s(T−1

t (x) − x))∣p dx ds

= ∥T −1
t − I∥p

L∞(Ω)∫
1

0
∫

Ω
∣∇u(z)∣p det(D((1 − s)I + sT −1

t )−1)dz ds

≤ c∗ ∥T−1
t − I∥p

L∞(Ω)
∥∇u∥p

Lp(Ω)
→ 0 as t→ 0,

(6.26)

where the regularity of the corresponding velocity field V ∈ Vad implies the boundedness of
the determinant, see [38, p. 69]. Now, for a fixed u ∈ BV (Ω,{0,1}), by following the start
of the proof of Theorem 5.2, we can construct a sequence (uε)ε>0 ⊂ K ⊂ H1(Ω) such that
uε → u strongly in L1(Ω) as ε → 0 and lim supε→0Eε(uε) ≤ TV (u). Given an arbitrary
ζ > 0, there exists ε0 = ε0(ζ) > 0 such that

∥uε0 − u∥L1(Ω) <
ζ

3
and Eε0(uε0) ≤ TV (u) + 1.

Then, as ∥T−1
t − I∥

L∞(Ω)
→ 0 as t→ 0, there exists τ1 = τ1(ζ, ε0) > 0 such that

∥T−1
t − I∥

L∞(Ω)
< ζ

3

√
ε0

2(TV (u) + 1) ∣Ω∣ c2
∗

for all t ∈ (−τ1, τ1),
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where c∗ is the constant in (6.26). Hence, for t ∈ (−τ1, τ1) we find that

∥ut − u∥
L1(Ω)

≤ ∥ut − utε0∥L1(Ω)
+ ∥uε0 − u∥L1(Ω) + ∥utε0 − uε0∥L1(Ω)

≤ 2ζ

3
+ c∗ ∥∇uε0∥L1(Ω) ∥T

−1
t − I∥

L∞(Ω)
< ζ,

since ε0 ∥∇uε0∥
2
L2(Ω) ≤ 2(TV (u) + 1) and ∥∇uε0∥L1(Ω) ≤ ∣Ω∣1/2 ∥∇uε0∥L2(Ω). Arbitrariness

of ζ yields ut → u in L1(Ω).

Lemma 6.8. Let V ∈ Vad be given and T ∈ Tad be the corresponding transformation. For
J ∈H1(Ω) it holds that

∥t−1(J ○ Tt − J) − (∇J)V (0)∥
L2(Ω)

→ 0 as t→ 0.

Consequently, there exists a positive constant C such that for all t ∈ (−τ0, τ0) with τ0

sufficiently small,

∥t−1(J ○ Tt − J)∥
L2(Ω)

≤ C.

Proof. Fix i ∈ {1,2,3} and denote by Ji the ith component of J . For t ∈ (−τ0, τ0), and
x ∈ Ω, thanks to the relation

t−1((Ji ○ Tt)(x) − Ji(x)) − ∇Ji(x) ⋅ V (0, x)

= ∫
1

0
[∇Ji(x + s(Tt(x) − x)) − ∇Ji(x)] ⋅

Tt(x) − x
t

ds +∇Ji(x) ⋅ (
Tt(x) − x

t
− V (0, x)),

we infer, similar to the proof of Lemma 6.7, that

∥t−1(Ji ○ Tt − Ji) − ∇Ji ⋅ V (0)∥2

L2(Ω)

≤ ∥t−1(Tt − I)∥2

L∞(Ω)∫
1

0
∫

Ω
∣∇Ji(x + s(Tt(x) − x)) − ∇Ji(x)∣2 dx ds

+ ∥∇Ji∥2
L2(Ω) ∥t−1(Tt − I) − V (0)∥2

L∞(Ω)
.

The second term on the right-hand side tends to zero as t → 0 by Remark 6.1, while the
first term tends to zero as t→ 0 by (6.25) and the dominated convergence theorem.

Lemma 6.9. Let V ∈ Vad be an admissible velocity with the corresponding transformation
T ∈ Tad. Let u ∈ L1(Ω; [0,1]) and define ut ∶= u ○ T−1

t with the unique solution (yt, φt) ∈
H1(Ωt)×H1

0(Ωt) to (3.2) corresponding to data (ut,J), and we denote (u0,y0, φ0) simply
by (u,y, φ). Then, there exists τ0 > 0 such that the mappings

[−τ0, τ0] ∋ t↦ DT ⊺t (yt ○ Tt) ∈H1(Ω), [−τ0, τ0] ∋ t↦ (φt ○ Tt) ∈H1
0(Ω)

are Gâteaux differentiable at t = 0, with Gâteaux derivatives Ẏ [V ] ∶= d
dt(DT

⊺
t (yt○Tt))∣t=0

∈
H1(Ω) and φ̇[V ] ∶= d

dt(φ
t○Tt)∣t=0

∈H1
0(Ω) that are the unique solution to the linear saddle

point problem

⎧⎪⎪⎨⎪⎪⎩

ay(Ẏ [V ],v) + b(v, φ̇[V ]) = Gu,y,φ(v) ∀v ∈H0(curl),
b(Ẏ [V ], ψ) =Hy(ψ) ∀ψ ∈H1

0(Ω),
(6.27)
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where ay(⋅, ⋅) is defined as in (6.6), while Gu,y,φ ∶H0(curl) → R and Hy ∶ H1
0(Ω) → R are

defined as

Gu,y,φ(v) ∶= ∫
Ω
A′(0)v ⋅ ∇φ − (ν0(1 − u) + ν1(∣curly∣)u)(A′(0) curly) ⋅ curlv dx

− ∫
Ω
u
ν′1(∣curly∣)

∣curly∣ (curly ⋅B′(0)curly)curly ⋅ curlv dx (6.28)

+ ∫
Ω
v ⋅ (∇J)V (0) −B′(0)v ⋅ J dx ,

Hy(ψ) ∶= ∫
Ω
A′(0)y ⋅ ∇ψ dx .

Proof. Thanks to the smoothness of V ∈ Vad, we can choose τ0 sufficiently small so that
there exist positive constants c0, . . . , c4, independent of t such that

c0 ≤ ξt ≤ c1, c2 ∣ζ ∣2 ≤ A(t)ζ ⋅ ζ ≤ c3 ∣ζ ∣2 , ∣B(t)∣ + ∣B−1(t)∣ ≤ c4 (6.29)

hold for all t ∈ [−τ0, τ0] and for all non-zero ζ ∈ R3. We consider the functional

F ∶ [−τ0, τ0] ×H0(curl) ×H1
0(Ω) →H0(curl)∗ ×H−1(Ω),

F (t, (y, φ)) = (F1(t, (y, φ)), F2(t, (y, φ))) ∈H0(curl)∗ ×H−1(Ω),

defined as

F1(t, (y, φ))[v] ∶= ∫
Ω
(ν0(1 − u) + uν1(∣B(t)curly∣))A(t)curly ⋅ curlv dx

+ ∫
Ω
A−1(t)v ⋅ ∇φ −B−⊺(t)v ⋅ (J ○ Tt)dx ,

F2(t, (y, φ))[ψ] ∶= ∫
Ω
y ⋅A−1(t)∇ψ dx .

Let (yt, φt) ∈ H1(Ωt) ×H1
0(Ωt) denote the unique solution to (3.2) on Ωt corresponding

to data (ut,J), which by (3.10) satisfies

∥yt∥H1(Ωt) + ∥φt∥H1
0(Ωt)

≤ C ∥J∥L2(Ω) (6.30)

for a positive constant C depending only on ν0, ν, ν and Ω. For convenience, we set ỹt ∶=
DT ⊺t y

t ○Tt, so that from (6.23) and (6.24) we have the relation B(t)curl ỹt = (ĉurlyt) ○Tt.
By the classical transformation theorem and (6.21), for every ψ ∈H1

0(Ω), it holds that

F2(t, (ỹt, φt ○ Tt))[ψ] = ∫
Ω
ξt(yt ○ Tt) ⋅DT −⊺t ∇ψ dx = ∫

Ωt
yt ⋅ ∇(ψ ○ T−1

t )dx̂ = 0.

Furthermore, for every v ∈H0(curl; Ω) ⇔ v̂ ∶= DT−⊺t v ○ T −1
t ∈H0(curl; Ωt), we obtain due

to (6.24) that

F1(t, (ỹt, φt ○ Tt))[v]

= ∫
Ωt

(ν0(1 − ut) + utν1(∣ĉurlyt∣)) ĉurlyt ⋅ ĉurl v̂ + v̂ ⋅ ∇φt − v̂ ⋅ J dx̂ = 0.

Hence,

F (t, (ỹt, φt ○ Tt)) = 0 ∀t ∈ [−τ0, τ0].
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Let Υt ∶= ỹt − y ∈ H0(curl; Ω) ∩H1(Ω) and Φt ∶= φt ○ Tt − φ ∈ H1
0(Ω). For arbitrary

v ∈H0(curl; Ω) and ψ ∈H1
0(Ω), we find that the difference 0 = F (t, (ỹt, φt ○ Tt))[(v, ψ)] −

F (0, (y, φ))[(v, ψ)] reads as (suppressing the t-dependence in the matrices and in ξt)

0 = ∫
Ω
(A−1ỹt − y) ⋅ ∇ψ dx = ∫

Ω
A−1Υt ⋅ ∇ψ + (A−1 − I)y ⋅ ∇ψ dx , (6.31)

0 = ∫
Ω
−B−⊺v ⋅ (J ○ Tt − J) − J ⋅ (B−⊺ − I)v +A−1v ⋅ ∇Φt + (A−1 − I)v ⋅ ∇φdx (6.32)

+ ∫
Ω
ν0(1 − u)(Acurl Υt ⋅ curlv + (A − I)curly ⋅ curlv)dx

+ ∫
Ω
ξu([ν1(∣Bcurl ỹt∣)Bcurl ỹt − ν1(∣Bcurly∣)Bcurly] ⋅Bcurlv)dx

+ ∫
Ω
ξu(ν1(∣Bcurly∣)Bcurly − ν1(∣curly∣)curly) ⋅Bcurlv dx

+ ∫
Ω
(ξ − 1)uν1(∣curly∣)curly ⋅Bcurlv + uν1(∣curly∣)curly ⋅ (B − I)curlv dx

=∶ I1 + I2 + I3 + I4 + I5,

where in the above we used the relation A(t) = ξtB⊺(t)B(t). We first consider v = ∇Φt in
(6.32) and obtain due to curl∇ ≡ 0,

∥∇Φt∥L2(Ω) ≤ C( ∥B−⊺ − I∥
L∞(Ω)

+ ∥A−1 − I∥
L∞(Ω)

+ ∥J ○ Tt − J∥L2(Ω) ), (6.33)

for some positive constant C depending only on ∥J∥L2(Ω), c3 and c4 thanks to (3.10) and
(6.29). By virtue of the bounds (3.10), (6.29) and (6.30), as well as the property (3.6) we
can infer the following:

I1 ≥ −C( ∥B−⊺ − I∥
L∞(Ω)

+ ∥A−1 − I∥
L∞(Ω)

+ ∥J ○ Tt − J∥L2(Ω) ) ∥v∥L2(Ω) + ∫
Ω
A−1v ⋅ ∇Φt dx

I2 ≥ ∫
Ω
(1 − u)ν0Acurl Υt ⋅ curlv dx −C ∥A − I∥L∞(Ω) ∥curlv∥L2(Ω) ,

I4 ≥ −C ∥B − I∥L∞(Ω) ∥curlv∥L2(Ω) ,

I5 ≥ −C( ∥ξ − 1∥L∞(Ω) + ∥B − I∥L∞(Ω) ) ∥curlv∥L2(Ω) ,

for positive constants C depending only on c0, . . . , c4, ν0, ν, ν, Ω and ∥J∥L2(Ω). For the

term I3, when choosing v = Υt = ỹt − y, we employ (3.5) and the relation A = ξB⊺B to
deduce that

I3 ≥ ∫
Ω
ξuν∣Bcurl (ỹt − y)∣2 = ∫

Ω
uνAcurl Υt ⋅ curl Υt dx

Hence, choosing v = Υt in (6.32), and using the positivity of ξt, the positive-definiteness
of A(t) and the lower bound ν0 ≥ ν, as well as the estimates above leads to

∥curl Υt∥2
L2(Ω) ≤ C( ∥B − I∥L∞(Ω) + ∥A−1 − I∥

L∞(Ω)
+ ∥J ○ Tt − J∥L2(Ω) ) ∥Υt∥L2(Ω)

+C( ∥A − I∥L∞(Ω) + ∥B − I∥L∞(Ω) + ∥ξ − 1∥L∞(Ω) ) ∥curl Υt∥L2(Ω)

+C ∣∫
Ω
A−1Υt ⋅ ∇Φt dx ∣ .

(6.34)

On the one hand, from (6.31) and the estimates (3.10) and (6.33), we see that

∣∫
Ω
A−1Υt ⋅ ∇Φt dx ∣ = ∣∫

Ω
(I −A−1)y ⋅ ∇Φt dx ∣

≤ C( ∥I −A−1∥2

L∞(Ω)
+ ∥I −B−⊺∥2

L∞(Ω)
+ ∥J ○ Tt − J∥2

L2(Ω) ).
(6.35)
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On the other hand, we infer from the first equality of (6.31) that

∫
Ω

Υt ⋅ ∇ψ dx = ∫
Ω
((I −A−1)ỹt) ⋅ ∇ψ dx ∀ψ ∈H1

0(Ω).

Since DT ⊺t y
t ○Tt ∈H1(Ω), see the discussion after Remark 6.1, it holds that (I−A−1)ỹt ∈

H1(Ω), which implies the relation divΥt = div((I−A−1)ỹt) ∈ L2(Ω) holds with the estimate

∥divΥt∥2
L2(Ω) ≤ C( ∥I −A−1∥2

L∞(Ω)
+ ∥div(I −A−1)⊺∥2

L∞(Ω)
), (6.36)

where C > 0 depends only on ∥yt∥H1(Ω) (which is bounded by ∥J∥L2(Ω) due to (6.30)) and
∥DTt∥W 1,∞(Ω) (which is bounded in t due to Remark 6.1). Hence, substituting (6.35) into
(6.34), and adding (6.36) to the resulting inequality, by Young’s inequality applied to the
terms involving the L2(Ω)-norm of Υt, we arrive at

∥curlΥt∥2
L2(Ω) + ∥divΥt∥2

L2(Ω) −K ∥Υt∥2
L2(Ω)

≤ C( ∥A − I∥2
L∞(Ω) + ∥B − I∥2

L∞(Ω) + ∥I −A−1∥2

W 1,∞(Ω)
+ ∥I −B−1∥2

L∞(Ω)
)

+C( ∥ξ − 1∥2
L∞(Ω) + ∥J ○ Tt − J∥2

L2(Ω) ),

for some positive constant K > 0 that can be chosen as small as one desires, with the
constant C appearing twice above depending on K. Invoking (2.6) and choosing K suffi-
ciently small, together with (2.4), (6.25), (6.33), and Lemma 6.8 we then infer the uniform
bounds

∥t−1Υt∥H1(Ω)
+ ∥t−1Φt∥H1

0(Ω)
≤ C, (6.37)

so that along a non-relabelled subsequence

t−1Υt ⇀ Ẏ [V ] in H1(Ω), t−1Φt ⇀ φ̇[V ] in H1
0(Ω) (6.38)

for some functions Ẏ [V ] ∈H1(Ω) and φ̇[V ] ∈H1
0(Ω). Let us remark divΥt ≠ 0 due to the

definition of ỹt, and so the Poincaré inequality (2.7) for Z-valued functions cannot be used
to control the L2(Ω)-norm of Υt arising on the right-hand side of (6.34). Therefore, it is
necessary to derive an estimate for divΥt and in turn we require the regularity ỹt ∈H1(Ωt)
for all t ∈ [−τ0, τ0], which is guaranteed with the assumption (A7) for the domain Ω and
the continuous embedding (2.4).

Next, consider the vector function I(s) = ν1(∣s∣)s. Then, similar to the proof of
Lemma 6.3, the integral form of the mean value theorem gives

I(Bcurl ỹt) − I(Bcurly) = ∫
1

0
∇I(θBcurly + (1 − θ)Bcurl ỹt)Bcurl Υt dθ,

I(Bcurly) − I(curly) = ∫
1

0
∇I(ζcurly + (1 − ζ)Bcurly)(B − I)curly dζ,

From the definition (6.22), for fixed u ∈ H1(Ω), it is clear that ĉurlu → curlu as t → 0,
and since B(t) → I and Dyt → Dy a.e. in Ω as t → 0 (the latter due to Lemma 6.7), we
infer that Bcurl ỹt = (ĉurlyt) ○Tt → curly a.e. in Ω as t→ 0. Moreover, since ∇sF(u,s) =
ν0(1 − u)I + u∇I(s), we deduce with the help of (A5) and the dominated convergence
theorem that

I4

t
= ∫

Ω
∫

1

0
ξt∇I(ζcurly + (1 − ζ)Bcurly)(B − I)

t
curly ⋅Bcurlv dζ dx

→ ∫
Ω
∇I(curly)B′(0)curly ⋅ curlv dx .
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Similarly, since ∫ 1
0 B

⊺∇I((1 − θ)Bcurly + θcurl Υt)⊺Bcurlv dθ → ∇I(curly)⊺curlv in
L2(Ω) by the dominated convergence theorem, we infer that

I3

t
= ∫

Ω
∫

1

0
∇I(θBcurly + (1 − θ)Bcurl ỹt)Bcurl

Υt

t
⋅Bcurlv dθ dx

→ ∫
Ω
∇I(curly)curl Ẏ [V ] ⋅ curlv dx .

Hence, dividing (6.31) and (6.32) by t and sending t → 0, applying the convergences in
Remark 6.1, Lemma 6.8 and (6.38), we see that (Ẏ [V ], φ̇[V ]) ∈H1(Ω) ×H1

0(Ω) satisfies

0 = ∫
Ω
Ẏ [V ] ⋅ ∇ψ −A′(0)y ⋅ ∇ψ dx ,

0 = ∫
Ω
−v ⋅ (∇J)V (0) +B′(0)J ⋅ v + v ⋅ ∇φ̇[V ] −A′(0)v ⋅ ∇φdx

+ ∫
Ω
ν0(1 − u)curl Ẏ [V ] ⋅ curlv + ν0(1 − u)A′(0)curly ⋅ curlv dx

+ ∫
Ω
u(∇I(curly)curl Ẏ [V ] + ∇I(curly)B′(0)curly) ⋅ curlv dx

+ ∫
Ω
(uν1(∣curly∣)curly ⋅ curlv)divV (0) + (B⊺)′(0)I(curly) ⋅ curlv dx

for arbitrary ψ ∈H1
0(Ω) and v ∈H0(curl), which is the linear saddle point problem (6.27)

after noting the relation A′(0) = B′(0) + (B⊺)′(0) + divV (0). Uniqueness of solutions to
(6.27) follows easily from the coercivity estimate (6.4) and the linearity of the problem.

Remark 6.2. The function φ̇[V ] is the material derivative of φ, while the function Ẏ [V ]
is related to the material derivative ẏ[V ] ∶= d

dt(y(t) ○ Tt)∣t=0
of y via the formula

ẏ[V ] = Ẏ [V ] − (DV (0))⊺y, (6.39)

and the equations satisfied by ẏ[V ] can be easily deduced from (6.27).

We prove now an alternate necessary optimality system for PFIP (5.1) derived by the
method of domain variations.

Theorem 6.10. For fixed α, ε > 0, let uαε ∈ K be a solution to (5.1) with correspond-
ing solution (yαε , φαε ) ∈ Z × H1

0(Ω) to (3.2). For every admissible velocity V ∈ Vad, let
(Ẏ α

ε [V ], φ̇αε [V ]) ∈ H1(Ω) ×H1
0(Ω) denote the unique solution to (6.27) corresponding to

(uαε ,yαε , φαε ). Then, it holds that

0 = ∫
D
(yαε − ym) ⋅ (Ẏ α

ε [V ] − (DV (0))⊺yαε − (∇ym)V (0)) + 1

2
∣yαε − ym∣2 divV (0)dx

(6.40)

+ α∫
Ω
(γε

2
∣∇uαε ∣

2 + γ
ε

Ψ(uαε ))divV (0) − γε∇uαε ⋅ (∇V (0))∇uαε dx ∀V ∈ Vad.

Proof. Let V ∈ Vad be an admissible velocity with the corresponding transformation T ∈
Tad. We introduce the functional

g ∶ (−τ0, τ0) → R, g(t) ∶= Jf(uαε ○ T −1
t ) + αEε(uαε ○ T −1

t ).

Since uαε ∈ K, by (6.21) we have that

uαε ○ T−1
t ∈ K ∀t ∈ (−τ0, τ0).
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For this reason, as uαε ∈ K is a solution to (5.1), we have

g(0) ≤ g(t) ∀t ∈ (−τ0, τ0),

from which it follows that

0 = g′(0) = d

dt
Jf(uαε ○ T−1

t )∣
t=0

+ d

dt
Eε(uαε ○ T−1

t )∣
t=0
. (6.41)

By a change of variables, the derivative of the first term is obtained as follows:

d

dt
Jf(uα,t)∣t=0

= d

dt

1

2
∫
D

∣S(uαε ○ T−1
t ) ○ Tt − ym ○ Tt∣

2
ξt dx ∣

t=0
(6.42)

=®
(6.19)

∫
D
(yαε − ym) ⋅ d

dt
(yαε (t) ○ Tt − ym ○ Tt)∣t=0

+ 1

2
∣yαε − ym∣2 divV (0)dx

= ∫
D
(yαε − ym) ⋅ (Ẏ α

ε [V ] − (DV (0))⊺yαε − (∇ym)V (0)) + 1

2
∣yαε − ym∣2 divV (0)dx ,

where we have used (6.39) and the formula d
dtym○Tt∣t=0

= (∇ym)V (0) for the last equality.

Meanwhile, the directional derivative d
dtEε(u

α
ε ○T−1

t )∣
t=0

is obtained (cf. [25, Lem. 7.5]) as
follows:

d

dt
Eε(uαε ○ T−1

t )∣
t=0

= α∫
Ω
(γε

2
∣∇uαε ∣

2 + γ
ε

Ψ(uαε ))divV (0) − γε∇uαε ⋅ (∇V (0))∇uαε dx .
(6.43)

In conclusion, the assertion follows from (6.41)–(6.43).

Our main result on the convergence of the optimality system (6.40) as ε→ 0 is formu-
lated as follows.

Theorem 6.11. For fixed α > 0, let (uαε )ε>0 ⊂ K be solutions to PFIP (5.1). For any
T ∈ Tad with corresponding velocity field V ∈ Vad, there exists a non-relabelled subsequence
such that

uαε → uα in L1(Ω), Jε(uαε ) → J(uα) in R, (6.44)

Ẏ α
ε [V ] ⇀ Ẏ α[V ] in H1(Ω), φ̇αε [V ] ⇀ φ̇α[V ] in H1

0(Ω), (6.45)

where uα ∈ BV (Ω,{0,1}) is a solution to TVIP (4.1), and the pair (Ẏ α[V ], φ̇α[V ]) ∈
H0(curl)∩H1(Ω)×H1

0(Ω) satisfies (6.27) corresponding to (uα,yα, φα). Furthermore, it
holds that

DJε(uαε )[V ] → DJ(uα)[V ] in R, (6.46)

where

DJ(uα)[V ] = ∫
D
(yα − ym) ⋅ (Ẏ α[V ] − (DV (0))⊺yα − (∇ym)V (0))dx

+ ∫
D

1

2
∣yα − ym∣2 divV (0)dx + α∫

Ω
(divV (0) − µ ⋅ (∇V (0))µ)d∣Dχ{uα=1}∣,

with µ = Dχ
{uα=1}

∣Dχ
{uα=1}∣

as the generalised unit normal on the set {uα = 1}.
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Remark 6.3. In general, uα ○ T−1
t may not belong to BV (Ω,{0,1}) for T ∈ Tad, and

thus we cannot use uα ○ T−1
t as a comparison function to deduce analogous statements

in Theorem 6.10 for TVIP. However, if we assume ∂{uα = 1} is Lipschitz, then for any
φ ∈ C1

0(Ωt;R3) with ∣φ∣ ≤ 1 a.e. in Ωt = Tt(Ω), a short calculation shows

∫
Ωt

(uα ○ T−1
t )d̂ivφ dx̂ = ∫

Ω
ξ(t)uαDT −⊺t ∶ ∇(φ ○ Tt)dx

= −∫
{uα=1}

div(ξ(t)DT−1
t ) ⋅ (φ ○ Tt)dx + ∫

∂{uα=1}
[ξ(t)DT−⊺t ⋅ (φ ○ Tt)]ndH2,

where the right-hand side can be bounded independently of φ, which implies uα ○ T−1
t ∈

BV (Ωt,{0,1}). Denoting by (yα,t, φα,t) the unique solution to (3.2) corresponding to data
(uα ○ T −1

t ,J), from the proofs of Lemma 6.9 and Theorem 6.10 we can identify Ẏ α[V ]
and φ̇α[V ] as the Gâteaux derivatives d

dt(DT
⊺
t (yα,t ○ Tt))∣t=0 and d

dt(φ
α,t ○ Tt)∣t=0, and

DJ(uα)[V ] as the shape gradient for TVIP.

Proof. The first assertion (6.44) is the conclusion of Theorem 5.2. Let (yαε , φαε ) and
(yα, φα) denote the unique solution of (3.2) corresponding to data (uαε ,J) and (uα,J),
respectively. Then, the assertions of Theorem 3.2 and assumption (A5) imply that

Guαε ,yαε ,φαε (v) → Guα,yα,φα(v), Hyαε (ψ) →Hyα(ψ) ∀v ∈H0(curl), ψ ∈H1
0(Ω).

In particular, (A5) ensures that

∣uαε
ν′1(∣curlyαε ∣)

∣curlyαε ∣
(curlyαε ⊗ curlyαε )curlv∣ ≤ (CF + ν0) ∣curlv∣ ∀v ∈H0(curl),

which allows us to pass to the limit with the help of the dominated convergence theorem.
Moreover, (3.10) and the smoothness of V ∈ Vad imply

∥Guαε ,yαε ,φαε ∥H(curl)∗
+ ∥Hyαε ∥H−1(Ω)

≤ C ∥J∥H1(Ω)

for a positive constant C independent of ε. Since (Ẏ α
ε [V ], φ̇αε [V ]) ∈ H1(Ω) ×H1

0(Ω) is a
solution to the linear saddle point problem (6.27) with right-hand side (Guαε ,yαε ,φαε ,Hyαε ),
by Lemma 2.1 and (2.4), we see that

∥Ẏ α
ε [V ]∥

H1(Ω)
+ ∥φ̇αε [V ]∥

H1
0(Ω)

≤ C.

Hence, along a non-relabelled subsequence, we have the weak convergence Ẏ α
ε ⇀ Ẏ α[V ] ∈

H0(curl) ∩H1(Ω), and φ̇αε [V ] ⇀ φ̇α[V ] ∈ H1
0(Ω). One then finds from passing to the

limit in equations for (Ẏ α
ε [V ], φ̇αε [V ]) that (Ẏ α[V ], φ̇α[V ]) satisfies (6.27) corresponding

to (uα,yα, φα). This shows the second assertion (6.45).
For the last assertion (6.46) concerning the convergence of the optimality conditions,

by the strong convergence of yαε and Ẏ α
ε [V ] in L2(Ω), it is easy to see that DJf(uαε )[V ] →

DJf(uα)[V ]. Meanwhile, the convergence

DEε(uαε )[V ] = ∫
Ω
(γε

2
∣∇uαε ∣

2 + γ
ε

Ψ(uαε ))divV (0) − γε∇uαε ⋅ (∇V (0))∇uαε dx

→ ∫
Ω
(divV (0) − µ ⋅ (∇V (0))µ)d∣Dχ{uα=1}∣ = DTV (uα)[V ]

can be deduced as a consequence of (6.44) and the calculations in the proof of [20,
Thm. 4.2]. This completes the proof.
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A Gamma convergence of the Ginzburg–Landau functional

Lemma A.1. Let Ω ⊂ Rd be an open bounded domain with a Lipschitz boundary. For
ε > 0, let Eε(v) = 8

π ∫Ω
ε
2 ∣∇v∣2 + 1

2εv(1 − v)dx denote the Ginzburg–Landau functional.

(i) If (vε)ε>0 ⊂ K is a sequence such that vε → v0 strongly in L1(Ω) and lim infε→0Eε(vε) <
∞, then v0 ∈ BV (Ω,{0,1}) with TV (v0) ≤ lim infε→0Eε(vε).

(ii) Let A ⊂ Rd be an open bounded set with a smooth boundary ∂A satisfying H2(∂A ∩
∂Ω) = 0, and let v0 = χA∩Ω. Then, there is a family (vε)ε>0 of Lipschitz continuous
functions on Ω such that ∥vε − v0∥L1(Ω) = O(ε), 0 ≤ vε(x) ≤ 1 a.e. in Ω and satisfies

the properties ∫Ω vε dx = ∫Ω v0 dx = ∣A ∩Ω∣ and lim supε→0Eε(vε) ≤ TV (v0).

(iii) Let (uε)ε>0 ⊂ K be a sequence satisfying supε>0Eε(uε) < ∞. Then, there exists a
non-relabelled subsequence ε→ 0 and a limit function u such that uε → u strongly in
L1(Ω) with u ∈ BV (Ω,{0,1}).

Items (i) and (ii) are also known as the liminf and limsup inequalities of Gamma
convergence, while item (iii) is called the compactness property. In the following we only
outline the modifications necessary to adapt [9, Props. 3.8, 3.11] for our consideration of
the potential Ψ(s) = 1

2s(1 − s). We point out that in the constant γ and functional Eγ
used in [9] correspond in our present notation to γ = ε2 and Eγ = εEε. For further details,
we also refer to [25, Sec. 6.2] and [37, Sec. 1B].

Proof. Item (i) follows directly from the proof of [9, Prop. 3.8] by replacing [9, equ. (3.58)]
with φ(t) = ∫ t0 8

π

√
2Ψ(s)ds which satisfies φ(0) = 0 and φ(1) = 1. Notice that φ′(t) > 0 for

all t ∈ (0,1), and hence φ ∶ [0,1] → [0,1] is strictly increasing and bijective. We denote by
ϕ ∶ [0,1] → [0,1] the inverse of φ which is also strictly increasing.

Item (ii) follows directly from the proof of [9, Prop. 3.11] by replacing [9, equ. (3.65),
(3.66)] with

χ∗(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 t ≥ 0,

0 t < 0,
ζε(t) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 t > ηε ∶= πε,
1
2 +

1
2 sin ( tε −

π
2 ) 0 ≤ t ≤ ηε,

0 t < 0.

A short calculation shows that [9, equ. (3.67)] is satisfied, i.e., εζ ′ε(t) =
√

2Ψ(ζε(t)) for
all t ∈ [0, ηε]. We mention that the convergence rate ∥vε − v∥L1(Ω) = O(ε) is in fact a
consequence of the calculations in [9, p. 271].

For item (iii), we adopt some ideas from the proofs of [3, Prop. 4.1] and [30, Prop. 3].
Let (uε)ε>0 ⊂ K be a sequence satisfying supε>0Eε(uε) < ∞. We set wε(x) ∶= φ(uε(x)) for
a.e. x ∈ Ω, where φ is the function defined in the proof of assertion (i). Then, Lipschitz
continuity of φ implies that ∇wε = φ′(uε)∇uε = 8

π

√
2Ψ(uε)∇uε. Young’s inequality now

shows that

∥∇wε∥L1(Ω) ≤
8

π
∫

Ω

1

ε
Ψ(uε) +

ε

2
∣∇uε∣2 dx = Eε(uε).

Together with the fact ∥wε∥L1(Ω) ≤ ∣Ω∣ we find that (wε)ε>0 is a bounded sequence in

W 1,1(Ω) ⊂ BV (Ω). BV compactness leads to the existence of a non-relabelled subsequence
and a limit w ∈ BV (Ω) such that wε ⇀ w in BV (Ω), wε → w strongly in L1(Ω) and a.e. in
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Ω. The candidate limit of (uε)ε>0 along that subsequence is u(x) ∶= ϕ(w(x)). Since ϕ has
bounded derivative on [0,1] we infer

∥uε − u∥L1(Ω) = ∥ϕ(wε) − ϕ(w)∥L1(Ω) ≤ C ∥wε −w∥L1(Ω) → 0.

To deduce that the limit u belongs to BV (Ω,{0,1}) we simply apply item (i) since
lim infε→0Eε(uε) ≤ lim supε→0Eε(uε) ≤ supε>0Eε(uε) < ∞.
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