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Abstract

An inverse problem of reconstructing the magnetic reluctivity in a quasilinear
magnetostatic Maxwell system is studied. To overcome the ill-posedness of the in-
verse problem, we propose and investigate two regularisations posed as constrained
minimisation problems. The first uses the total variation (perimeter) regularisation,
and the second makes use of the phase field regularisation. Existence of minimisers,
sequential stability with respect to data perturbation, and consistency as the regu-
larisation parameters tending to zero are rigorously analysed. Under some regularity
assumption, we infer a relation between the regularisation parameters that allows one
to recover a solution to the original inverse problem from the phase field regularised
problem. The second focus of the paper is set on the first-order analysis of both reg-
ularisation approaches. For the phase field approach, two types of optimality systems
are derived through a weak directional differentiability result and the domain varia-
tion technique of shape calculus. As a final result, we show the convergence of the
optimality conditions obtained from shape calculus, leading to a necessary optimality
system for the total variation inverse problem.

Key words. Inverse problem, quasilinear magnetostatic Maxwell equations, total vari-
ation, phase field regularisation, optimality conditions, I'-convergence.
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1 Introduction

Let Q c R? be a bounded domain with a connected Lipschitz boundary containing two
different types of materials. The first is a ferromagnetic material (iron, nickel, cobalt, etc.)
which responses strongly to an external magnetic field, and the second is a nonmagnetic
material (copper, aluminium, silver etc.) which is significantly less responsive to the
magnetic field. Denoting the region occupied by the nonmagnetic material as ¢ and the
complement region occupied by the ferromagnetic material as €, so that Q = QyuQ; and
Qo Ny =@, our interest lies in solving the inverse problem of determining the location of
7 based on measurements of certain quantities.

Electromagnetic phenomena can be well-described with the help of Maxwell’s equa-
tions. In this paper, we focus on the magnetostatic setting, for which the governing partial
differential equations (PDEs) derived from Maxwell’s equations reduce to

cwlH=J, H=vB, divB=0. (1.1)
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Here, H, B and J denote the magnetic field, the magnetic induction, and the applied
current density, respectively. The magnetic reluctivity v is the reciprocal of the magnetic
permeability p, so that the second equation in (|1.1)) can be equivalently expressed as the
more standard form B = uH.

Denoting by vy as the vacuum magnetic reluctivity, for nonmagnetic materials under
consideration, we assume that the corresponding magnetic reluctivity is equal to 1. This
is reasonable as many nonmagnetic materials exhibit a permeability close to the vacuum
permeability po = 1/19. On the other hand, for the ferromagnetic material, the reluctivity
v highly depends on the magnitude of the magnetic induction B, i.e., v = v1(|B]) for some
strictly positive function v1 € C1(R). We refer to Kaltenbacher et al. [28] concerning the
identification of the nonlinear reluctivity v1(|B]|) based on magnetic induction measure-
ments and its numerical realisation. Introducing the overall reluctivity as the function
v:[0,1] xR - [0, 00) defined by

v(u,s) =1vp(l—u)+vi(s)u,

and using the classical magnetic vector potential formulation allows us to reformulate (|1.1))
into:

curl (v(u(x),|curly(x)|) curly(z)) = J(z) in Q,

divy =0 in , (1.2)

yxn=0 on 0f).

Notice that the forward system ((1.2)) makes use of the perfectly conducting electric (PEC)
boundary condition with n denoting the outer unit normal on 9€2. Moreover, the magnetic
vector potential y satisfies

curly = B in €, (1.3)
and if u(z) € {0,1} a.e. in €2, then

7 in {u =0},

n(B|) in{u=1}. (1.4)

v(u,|Bl) ={

In essence, complete knowledge of u in 2 allows us to determine the location of €2y and
Q as the sets {u =0} and {u = 1}, respectively. Therefore, the function u plays the role
of the solution to the inverse problem we introduce below.

The equation gives rise to a quasilinear saddle point structure. Under appropriate
assumptions for the magnetic reluctivity, the well-posedness of can be deduced. This
leads to the solution operator S : u ~ y assigning every function u taking values in [0, 1]
to the magnetic vector potential y posed on 2. For the moment, let Z denote the solution
space in which y belongs to (see for its precise definition). Furthermore, let y,, € O
denote a measurement of the vector potential y, where O is a Hilbert space with norm
Ilo, and G : Z - O a bounded continuous operator. Then, our inverse problem read as:

Find u € L'(Q), u(z) € {0,1} a.e. in Q s.t. G o S(u) =y, in O. (1.5)

The prototype setting for this paper is @ = L?(D) and G(y) = y|p where D c € is an
open subset, and y,, is a measurement of the magnetic vector potential in D induced by
the applied current density J. Both y,, € O and J € L?(Q) are given data for the inverse
problem . Under stronger assumptions such as 99 is of class C1'! or 99 is convex, one
may even consider y,, to be a boundary measurement with @ = L?(X) and G(y) = yls,
where X can be a part of the boundary (X c 9Q) or the entire boundary (X = 9%).



Due to the compactness of the embedding Z cc L*(Q2) (see (2.5)), the inverse problem
is ill-posed. The standard approach to tackle the ill-posedness is to employ the
Tikhonov regularisation [16,[39]. From a theoretical point of view, perhaps the most
intuitive is to penalise the perimeter of 1 = {u = 1}, leading to the total variation inverse
problem (TVIP):

1
Find u* = argmin (— |G o S(v) —yml + aTV(v)).
veBV(2,{0,1}) * 2

Here, o > 0 is a regularisation parameter, TV (-) denotes the total variation functional
and BV (€,{0,1}) is the set of functions of bounded variations with values in {0,1} (see
Section for more details). On the other hand, for numerical purposes, the non-convexity
of BV (€,{0,1}) introduces challenging issues for implementation. One remedy is to
rephrase TVIP as a shape optimization problem and derive optimality conditions using
shape calculus [24}25,27]. The second is to consider a further regularisation in which
the total variation functional T'V'(+) is approximated by the Ginzburg-Landau functional
E.(-), where € > 0 is a small parameter. This has been employed to great effect in various
shape and topology optimisation problems, see [4H7,21}22,25] and the references cited
therein. In our present setting, it leads to the phase field inverse problem (PFIP):

1 1
Find v = argmin (— |G o S(v) - ym||é + aEs(v)), E.(v):= f = Vo> + =0 (v),
< 2 Q2 IS

ve

with a double well potential ¥(s) and a nonempty closed convex set K c H () (see
(5-2)—(5.3) for their definitions).

The goal of this paper is to examine the mathematical analysis of both regularisation
approaches TVIP and PFIP. More precisely, we show the existence of minimisers and
investigate desirable properties such as the sequential stability with respect to perturba-
tions in the data y,,, and asymptotic limits & - 0 and ¢ - 0. To the best of the authors’
knowledge, this paper is the first contribution towards TVIP and PFIP for the quasilinear
Maxwell system with two main novelties: The first is the convergence analysis for
PFIP involving their respective minimisers and optimality conditions (Theorems and
6.11). Here, two types of optimality systems for PFIP (Theorems and are es-
tablished based on a weak directional differentiability result (Lemma and the domain
variation technique of shape calculus (Lemma . Based on the latter technique, we
prove the convergence of the optimality conditions for PFIP as € — 0, leading to an opti-
mality system for TVIP. The second main novelty, which seems not to have received much
attention in the literature, is the convergence of solutions for PFIP to a solution of the
original inverse problem (Theorem , and inferring (under ideal conditions) a relation
of the form a = O(e?) with d < 2 (see (5.11)) between parameters o and € that could serve
as a useful guideline for numerical implementations. Let us mention that there are several
possible numerical strategies to solve the phase field optimality conditions to numerically
realise our solution, namely a parabolic variational inequality approach [4-6,/14] or the
VMPT method [7,8]. The analysis of these strategies, together with a finite element ap-
proximation of the forward model and adjoint system in a fashion similar to [43], would
be the next step of our investigation. However, due to the length of the paper, we choose
to defer the numerical investigations of the inverse problem and its regularisations
to future work.

Identification problems of material parameters in linear Maxwell’s equations have been
extensively investigated in many contributions, including [19,29,133.35,41]. On the other
hand, the mathematical analysis for inverse problems governed by nonlinear Maxwell’s



equations is still in the early stages of development. In the context of the optimal control,
stationary and evolutionary nonlinear Maxwell’s equations were investigated in [32}42-44).
More recently, [12] analysed ill-posed backward nonlinear Maxwell’s equations and derived
a variational source condition for the convergence rate of the corresponding Tikhonov
regularisation. We believe that our present results may lead to further progresses in the
mathematical analysis of nonlinear electromagnetic inverse problems.

The paper is structured as follows: In Section [2] we introduce several useful auxiliary
results and preliminaries. In Section |3 we prove the well-posedness of and continuity
properties of the solution operator S. The existence of minimisers, sequential stability with
respect to data perturbation, and asymptotic behaviour as & - 0 and € — 0 are discussed in
Sections [4 and [5} respectively. In Section [6] the first-order necessary optimality conditions
are derived, and we discuss the convergence of the phase field optimality conditions to the
total variation optimality conditions. In the appendix we state a useful result involving
the I'-convergence of functionals.

2 Preliminaries

2.1 Function spaces for electromagnetic problems

For any open set Q c R3, the Hilbert spaces
H(curl) = {f e L*(Q) : cwrl f ¢ LX(Q)}, H(div) = {f € L*(Q) : div f ¢ L*(Q)}

are equipped with the norms

=

1
11 e ceunty = (1F 122y + lewrl £l 3200y )20 1F|Eraiy = (1F 12y + Idiv 1720 )?
(2.1)

where curl f and divf are to be understood as the weak curl and weak divergence of
f € L*(Q), respectively. We define the subspace Hy(curl) ¢ H(curl) as the completion of
C>(Q;R3) with respect to the H (curl)-topology, which admits the following characteri-
sation (cf. e.g. [45, Appendix A])

Hy(curl) = {f € H(curl) : (curl f,g)r2(q) = (f,curlg)r2q) Vge H(curl)}. (2.2)

Our solution space, consisting of divergence-free Hy(curl) functions, is denoted as

Z:={f ¢ Hy(cwl) : (f,Ve)12()=0 Vie HY(Q)}, (2.3)
and is equipped with the H (curl)-norm (£2.1). We now state several well-known results:

e The continuous embedding

0 if Q is Lipschitz,

2.4
1/2 if Q is convex/of class C11. 24)

Hy(curl) n H(div) c H2*°(Q), o, = {
We refer to [13, Thm. 2] for the first case and to [2, Thms. 2.12 and 2.17] for the
second case.

e An immediate consequence is the Maxwell compactness property first attributed to
Weck [40]

Hy(curl) n H(div) cc L*(Q). (2.5)



e The Poincaré—Friedrich-type inequality: There exists a positive constant C' such that
2 . p2 2 .
| #1720y < C(Idiv |3 + [eurlf|72 ) ¥F ¢ Ho(cur) n H(div),  (2.6)
which also implies there exists a positive constant ¢ such that

| £ e (eurny S Elcurl fll g VfeZ. (2.7)
For a domain 2 with connected boundary OS2, it holds that

{y € Hy(curl) n H(div) : curly =0, divy =0 in Q} = {0}, (2.8)

see for example [34, Thm. 1] or [2, equ. (3.23) and Prop. 3.18]. Then, (2.6) can be
established with (2.5) and (2.8) using a contradiction argument akin to the usual
proof of the Poincaré inequality, cf. [17, §5.8, Thm. 1].

2.2 Functions of bounded variations

We review basic properties for functions of bounded variations that are sufficient for our
analysis. For a more detailed introduction we point to [1,[18,[23].

We say that u € L'(Q) is a function of bounded variation in € if its distributional
gradient Du is a finite Radon measure. The space of all such functions is denoted as
BV () and is endowed with the norm || gy (o) = [ 1) + TV (-), where for u € BV (€2),
the total variation TV (u) is defined as

TV (u) = |Du| () := sup{ /;zudivcﬁdac s.it. g e Co (R, o], < 1}.

The space BV (£2,{0,1}) denotes the space of all BV () functions taking values in {0,1}.
We say that a set E c Q is a set of finite perimeter if xg € BV(€,{0,1}), where for a set
A, xa(z)=1if x € A and xa(z) =0 if x ¢ A. Furthermore, if u € BV (£,{0,1}) is not
constant, then there exists a measurable set of finite perimeter £* defined as

E“:{zeQ:hm

1
- u(y)dy =11,
50 | Bs ()] mu>(y)y }

such that ypu(z) = u(x) a.e. in , where Bs(x) denotes the ball centred at x with radius
9, and |Bs(z)| its Lebesgue measure. The perimeter of a subset E c  of finite perimeter
is defined as Po(E) = [Dxg|(2). We say that a sequence (uy)reny € BV (£2) converges to
u e BV () in the sense of intermediate convergence (or strict convergence) if

up — w in LY(Q) and TV (ug) - TV (u) in R. (2.9)

Furthermore, if (ug)gey € BV(€) is a bounded sequence, then there exists a subse-
quence (kp)ney and a limit w € BV(Q) such that ug, — w in L'(Q) and TV (u) <
liminf, o TV (ug, ).

2.3 Saddle point problems

The following is a simplified version of the result due to Scheurer [36, Props. 2.3 and 2.4]
for nonlinear saddle point problems.

Lemma 2.1. Let V and W be two reflexive Banach spaces with dual spaces V* and W*,
respectively. Let A:V — V* be a nonlinear operator, b: V x W — R be a bilinear form
with a continuous and linear operator B :V — W* defined as (Bv,w)y = b(v,w), with B’
denoting the adjoint of B. Furthermore, suppose the following hold:



(1) A:V = V™ is hemicontinuous, i.e., limy_o(A(z + ty), 2)y = (A(x),2) Va,y,2€ V.
(i) 38> 0 s.t. (A(u) - A(v),u-v)>Blu-vly Vu,veVy={veV : Bu=g}.
(iii) 3y>0 s.t. [A(u) = A(v)|y« <v|u-v|y Yu,veV.

(iv) 3k >0 s.t. |B'qly« 2 k|qly and V admits a direct decomposition with Vy := KerB
and V.

Then, for any (f,g) € V* x W*, the nonlinear saddle point problem

{<A<u>,v>v +b(v,0) = (fo)y VeV,
b(“ﬂb) = <ng>W V¢ eW

admits a unique solution (u,d) € V. x W such that

luly + 16w < CCIF Ly + gl )

for some positive constant C = C’(’y,_,B,k). Furthermore, let (u,¢) € V x W denote the
unique solution to (2.10) with data (f,g) € V* x W*. Then, it holds that

lu—aly + o=, <C(|f-F|

for some positive constant C = C(~, 8,k).

(2.10)

Vv + Hg_gHW*)

3 Analysis of the forward model

For a fixed function u : 2 — [0,1], we define the operator A, : Hyp(curl) - Hy(curl)* and
the bilinear form b: Hy(curl) x H} () = R as

(Au(y),v) = /Q(yo(l —u) +vi(Jeurly|)u)curly - curlvdx  Vy,v € Hy(curl),

b(y, ) := ny‘WdI Vy € Ho(curl), ¢ € Hy(9). .
Then, a mixed formulation of reads as
{(Auw),v) +b(v.0) = (J.v) () Y € Hy(ew), 52)
b(y.¥) =0 Vi € Hy(9).
The function ¢ is referred to as the Lagrange multiplier associated with . If
div/=0in Q < (J, V)2 =0 Ve Hj(Q) (3.3)

holds, then choosing v = V¢ in the first equality yields b(V, ¢) = 0 for all ¢ € HZ (),
i.e., ¢ is a weak solution to the homogeneous Dirichlet Laplace problem, hence ¢ = 0.

To analyse the forward model (3.1)), we make the following assumptions (cf. [28] for
their physical justification), which we assume to hold throughout the rest of the paper.

Assumption 3.1. Let vy > 0 denote the vacuum magnetic reluctivity. We assume that
(A1) v1:[0,00) = [0,00) is a continuous function.
(A2) There exists a constant v € (0,v9) such that for all s € [0, 00),

v<vi(s)<wo,  limvi(s) = v,

6



(A3) There exists a constant U € [1y, ) such that the mapping s — v1(s)s satisfies

(r1(s)s—11(8)8)(s—38) >

lv1(s)s —11(8)8] <

2 (3.4)

for all s,5¢€[0,00).
(A4) The observation operator G : Z - O is bounded and continuous.

By [43| Lem. 2.2] we obtain the following inequalities: For all v, % € R3, it holds that
(i (Jo)v -1 ([o)o) - (v -9) 2 v|v - o], (3.5)
[v1(Jv))v —vi(J9))v| < (2vp +7) v — D). (3.6)

As a consequence of the definition of A,,, the fact v < vy and (2.7)), we can verify
(Au(y) _Au(g)ay_g> Zé”y_’gH%—I(curl) vg?@ € Z7 (37)
|<Au(y) - Au(@)¢v>| <Ck Hy - g”H(curl) ”vHH(curl) Vy,ga vE€ Ho(CUI‘l), (38)

where C, = 2y + 7 and ¢ depends only on v and the constant ¢ in . In particular,
conditions (i), (ii) and (iii) of Lemma are fulfilled with § = ¢ and v = 2y + v for the
choice of function spaces V = Hoy(curl), W = H}(Q) and Vy = KerB = Z.

Meanwhile, following [43, equ. (3.11)], the bilinear from b : Ho(curl) x Hi(Q) — R
satisfies the Ladyzhenskaya-Babuska-Brezzi (LBB) condition:

by, )| b, 9)

yeHy(curl) “yHH(curl) - ||V¢HL2(Q)

= VYl 20y 2 ElWlmey Vo€ Hy(), (3.9)

with a positive constant ¢ depending only on €. Standard results, e.g. |11, Thm. 0.1]
yields that the LBB condition is equivalent to condition (iv) in Lemma Hence, the
well-posedness of (3.2)) follows from Lemma

Theorem 3.1. For J € L*(Q) and u € L'Y(;[0,1]) = {f € L}(Q) : 0 < f(z) <
1 a.e. in Q}, there exists a unique solution pair (y,¢) € Z x H}(Q) to . If J sat-
isfies then ¢ = 0. Furthermore, there exists a positive constant C' depending only on
vy, vV, U and € such that

Iyl e cuny + 052 (0) < C 1T L2y - (3.10)

We stress that the above estimate is independent of u € L*(£2;[0,1]) thanks to (3.7).
The well-posedness of (3.2) allows us to define a solution operator

S:LM%[0,1]) = Z, uw~y,
and the next result shows a continuity property.

Theorem 3.2. Let J € L?(Q) and (up)geny © L1 (Q;[0,1]) denote a sequence converging
strongly to some u e L*(;[0,1]). Let (Yg, dr)ken © Z x H} () denote the corresponding
solutions to (3.2) with data (uk,J)ken. Then, it holds that

yr >y inZ, ¢p—~¢in Hy(Q),

where the limiting pair (y,¢) € Z x HE(Y) is the unique solution to (3.2) with data (u,J).

7



Proof. Let (ug)reny be a sequence satisfying the hypothesis. From the estimate stated in
Theorem we can extract a non-relabelled subsequence and limit functions (y,¢) €
Z x H}(Q) such that

yp =y in H(curl), ¢ —~¢in H(Q). (3.11)

Setting gr = yir — y as the difference, and upon subtracting the term [,[ro(1 — ug) +
v1(|curly|)ug ]curly - curlv dz from both sides of (3.2]) leads to

[Q vo(1 — ug )eurl gy, - curl v + ug[v1 (Jeurl yi| )curl yg, — vi (Jeurl y|)curl y] - curl v dz
= _/Q Jv - [vo(1 - ug) + vy (Jeurly|)ug Jcurly - curlvdx — b(v,¢p) VYve Z.

Substituting v = g; € Z and employing the bounds v < v1(+) < vy, the strong monotonicity
(3.5), the facts 0 < ug <1 a.e. in Q and b(Yx, i) = 0 gives

v ||curl gy ”iz < ]g; Jyi — [vo(1 - ug) + vi(|curl y|)ug Jeurl y - curl gy, dz . (3.12)

The right-hand side of (3.12)) converges to zero thanks to the L?()-weak convergences
Jr — 0, curl g — 0 and the L?(Q)-strong convergence v; uy curly — v; ucurly for i = 0, 1.
Then, ([2:5) and (27) imply

yr — y in Hy(curl). (3.13)

Thus, after extracting a non-relabelled subsequence we obtain due to (A1)—(A2]) that
v1([curlyg(z)|) = vi(|curly(x)|) a.e. in  and

vi(Jeurlyg|)curlv — vy (Jeurly|)curlv in L2(Q) Vo € Hy(curl).

In conjunction with uy, curlyy, — wcurly in L?(Q) derived from the generalized dominating
convergence theorem and the facts ug curl y,, - ucurly a.e. in Q, |uy curl yg| < |curl yi| and

(3.13)), it follows that

/Qukul(|curlyk|)curlyk'curlvdm —>fﬂuul(|cur1y|)curly-curlvd:r Vv e Hy(curl).

Hence, passing to the limit k — oo in for (yx, ¢r) with data (ug,J) shows that the
limiting pair (y, ¢) satisfies (3.2)) with data (u,J). Now, since the unique solution of
with data (u,J) is independent of the choice of the extracted subsequence (yi, Ok )kenN,
classical arguments yield that the convergence properties and hold true for
the whole sequence. This completes the proof. ]

Theorem 3.3. Given J € L*(Q) and u,u € L*(Q;[0,1]), let (y,¢) and (y,¢) denote the
corresponding unique solutions to (3.2) with data (u,J) and (u,J), respectively. Then,
there exists a positive constant C depending only on vy, v and ) such that

ly =9l 5 (euny < O (u - @)curly| gz (q) - (3.14)

Proof. Let us write v1(y) = v1(|curly|) for convenience. Then, subtracting (3.2)) for (y, )
from the same equalities for (g, ¢) leads to

/Q v-V(¢p—¢)+[vo(1-u)curl (y - ) + u(vi(y)curly — v (g)curlg)] - curl v d
= fQ(u —u)[vo —vi(g)]ecurly - curlvde Vo € Hy(curl),

fQ(y—y)-wdx =0 Ve HNQ).



Choosing v =y — 4 and v = ¢ — ¢, keeping in mind that vy > v, u € [0,1] and (3.5) yields
the inequality

vl (y-9) e < [ [0~ (@)= Deulg-cul (y - ) de
Hence, in view of (A2)),

[curl (y — ) HLz(Q) < 271V0 I (u - @)Curl’gan(Q) :

In conclusion, the desired assertion comes from application of (2.7]). ]

4 Total variation inverse problem

Throughout this section let J € L2(Q), y, € © and a > 0 be fixed. The total variation
regularised inverse problem (TVIP) reads as

. 1
ey i T ()= Jp(0) + TV (0), Jj(v) = 3]G S () ~ymlo-  (41)

The following theorem shows that exhibits desirable properties, such as existence of a
solution and being (sequentially) stable with respect to data perturbations. Furthermore,
under suitable conditions, a minimum-variation solution to the original inverse problem
(1.5) can be obtained (provided the solution set is non-empty) from as a — 0.

Theorem 4.1. The following assertions hold:
e There exists at least one solution u® € BV (,{0,1}) to (4.1)).

o If (Yl )nen € O is a sequence such that Y, = ym in O, and u® denotes a solution to
(4.1) with data y)},, then along a non-relabelled subsequence it holds that u$ converges
to a solution u® to (4.1)) with data y,, in the sense of intermediate convergence ([2.9)).

Assume now that the inverse problem (1.5) has a solution in BV (§2,{0,1}). For any é >0,
let (as)s-0 be a positive null sequence such that i—z -0 asd—>0. Let u?‘s be a solution to

. 1 5 2
= = — T
veBV(0,10,1}) Jav) =3 |G o S@) -yl + TV (),

where yfn satisfies Hygl—ymHo < 6. Then, there exists a non-relabelled subsequence of

(u5?)s50 and a solution u € BV (€,{0,1}) to the inverse problem (L.5)) such that
u§® > in L'(Q), uf’ —u in BV(Q).

Furthermore, u satisfies TV (u) < TV (w) for every solution w € BV (Q,{0,1}) to the
inverse problem (L.5)), i.e., the limit u is a minimum-variation solution to ([1.5)).

The proof of Theorem follows along similar lines of argument as in the proof
of [5, Props. 2.2, 2.3, 2.4], compare also [16, Thms. 10.2, 10.3]. Although our present
setting allows for a more abstract measurement space O and measurement operator G,
we mention that, for u% - u® in L'(Q), Theorem together with the boundedness and
continuity of G implies

GoS(uy)—>GoS(u®)in O,

which yields J¢(up) - Jr(u®). These observations, in conjunction with the arguments
in [5] are sufficient to infer the assertions of Theorem Hence, we omit the proof.



5 Phase field inverse problem

In all what follows, let J € L2(Q), y,, € O and a, € > 0 be fixed. The phase field regularised
inverse problem (PFIP) reads as

min J.(v) = Jy(0) + aB(v),  E(v) :=[9§|w|2+g\y(v)dx. (5.1)

In the setting of , ¥ is a nonnegative double well potential with minima at 0 and
1, while ~ is a constant depending only on W. It is clear from the definition that for F.
to be well-defined, we must expand the solution space K from BV (,{0,1}) to subsets
of H'(Q). If ¥ is defined everywhere on R, such as the smooth double well potential
TU(s) = s%(1-5)?%, we may choose K as the whole of H(2). Alternatively we can consider
the double obstacle potential [9]

1 .
=s(1- f 0,1

\1}(3):{28( S) 1 36[.7 ]7 (52)
+00 otherwise,

that is only finite over the interval [0, 1], so that the solution space for PFIP can be taken
to be the following closed and convex set

K={feH(Q):0<f<1ae inQ}. (5.3)

In this setting, 7! = /01 V2U(y)dy = [01 Vy(1-y)dy = %, then by minor modifications
of |9, Thm. 3.7] detailed in Appendix [A] we find that the following extended functionals

_JE:(v), vek, TV (v), veBV(Q,{0,1}),
58(1))_{%07 vEK, go(v)_{+oo, v¢ BV(Q,{0,1})

r r
satisfy & (v) — &y(v) in X, where — denotes Gamma convergence. Furthermore, from
the continuity of G o S : L'(£2;[0,1]) - O and the property that Gamma convergence is
stable under continuous perturbations |10, Rmk. 1.7], we have

Jo(v) = J;(v) + aba(v) B Tp(v) + ao(v) = J(v) as £ > 0, (5.4)

which motivates the investigation of (b.1)). For the rest of the paper, we consider K as
defined in (5.3]) and take W as the double obstacle potential ([5.2)) with v = %.

5.1 Properties of solutions

Theorem 5.1. The following assertions hold:
e There exists at least one solution u € K to (5.1)).

o If (yp)nen € O is a sequence such that yy, — ym in O, and uZ, € K denotes a
solution to (5.1) with data y,, then along a non-relabelled subsequence it holds that
ul, - u® in H(2) where u2 € K is a solution to (5.1) with data yu,.

e,n

Let us point out the analogue of intermediate convergence for H'(Q)-functions would
be the norm convergence of the gradient |VuZ,|r2(q) = [Vug|p2(q)- Furthermore, since
the arguments to prove Theorem [5.1|is somewhat standard in the literature, we will omit
the proof of existence (which is shown via the direct method) and sketch the details for
sequential stability.
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Proof. We define J; ,(v) := % |G o S(v) - yﬁLHé + aF.(v) and by definition,
Jen(ugy,) € Jen(v) Yvek. (5.5)

Choosing, for instance, v = 1 yields the boundedness of (ug',, )neny in K. Then, the compact
embedding H'(Q) c L?(Q) and Theorem give

ug, = wug in HY(Q), &, »u®in L*(Q), GoS(uZ,)—>GoS(u)in O

en

along a non-relabelled subsequence with limit uZ € K due to K being convex and closed.
Passing to the limit n — oo in and employing weak lower semicontinuity, we arrive
at Jo(u2) < J.(v) for all v € K, and so u2 is a solution to (5.1)). Meanwhile, passing to the
limit n — oo in the inequality with the choice v = ug € K yields

Je(ug') <liminf Je o (ug,) < lim Jep(ug,,) < lim Je oy (ug) = Je(ud),

from which we deduce that lim, e Fe(ug,,) = Ec(ug). Together with [W¥(ug,)|r1 ) —
H\I'(ug‘)HLl(Q), we then obtain ||Vu?m||2Lg(Q) - HVU‘E’H%Q(Q). O

5.2 Convergence of solutions

An immediate consequence of the Gamma convergence ([5.4)) is the following result con-
cerning the asymptotic behaviour of minimisers (u2).so to (5.1 as e — 0.

Theorem 5.2. Let (ul)es0 ¢ K denote a sequence of solutions to PFIP (5.1)). Then, there
exist a non-relabelled subsequence and a limit u® € BV (£2,{0,1}) such that lim._oud = u®
in LY(Q), lim_o J.(u2) = J(u®), and u® is a solution to TVIP (&.1)).

Proof. While the argument is somewhat standard, see for instance [21, Proof of Thm. 2],
nevertheless we briefly sketch the details, as some of the elements of the proof will be
used later. Let w e BV (,{0,1}) be arbitrary, then by it is clear that J(w) < oo.
We define the set EY := {w = 1} so that w = xygw. Our aim is to construct a sequence
(we)es0 € K such that |w. — w”Ll(Q) — 0 and limsup,_,o Jo(w:) < J(w). In the trivial case
where w = 0 (resp. w = 1), which corresponds to E* = @ (resp. E* = ), we can choose
we =w for all € >0 so that E.(w.) =0 and

Je(we) = Jp(we) = Jp(w) < J(w) Ve>0.

In the non-trivial case where 0 < |[E"| < |Q|, using [30, Lem. 1], we can approximate E" c Q
by a sequence (Ej)ren of open bounded sets in R? with smooth boundaries such that

lim Po(Ey) = Pa(E™),  |(Eun@Q)AE < L,
Ho(OE,nON) =0, |ExnQ|=|EY| for k sufficiently large,

where AAB denotes the symmetric difference between the sets A and B, and Hs denotes
the two-dimensional Hausdorff measure. Then, setting wy, = xg,nq leads to

|lwg _wHLl(Q) = |(ExnQ)AEY| < %

We apply item (ii) of Lemmawith v = wi and A = Ey, , so that for each k there exists
a sequence (wh) ¢ L1(Q) with [wf w1 (g = O(e) and limsup, o B (wk) < TV (wy) -
Pqo(E)). Then, the diagonal sequence (wfk) ken fulfills per construction

= O™, limsup E., (wfk) <TV (w). (5.6)

k—o0

Jw?, - wHLl(Q)

11



For this particular sequence (&g )ken, setting ye, = S (wfk) and y,, := S(w), by Theorem

We have y., = Yy in Z as k — oo. Continuity of G : Z — O implies Jf(wfk) - J¢(w) as

k — oo, and so limsupy,_, ., Je, (wfk) < J(w). Consequently, we infer supey Je, (wfk) < 00,
Next, by definition of uZ as a solution to , it holds that

This implies that supgey Ee, (ug,) < oo and by item (iii) of Lemma there exists a
non-relabelled subsequence and a limit u® € BV (€2, {0,1}) such that uZ, — u® strongly in
L'(Q). Furthermore, Theorem [3.2 asserts S(u? ) - S(u®) in Z and 50 limj_e J5(ul,) =

J¢(u®), while when we invoke item (i) of Lemma (5.6) and (5.7)), we obtain
J(u®) = Jr(u®) +aTV(u™) < h,?linf(‘]f(u?k) +ab, (ug))

<limsup J;, (wfk) <J(w) = Jp(w) + TV (w).

k—o0

Asw e BV (£,{0,1}) is arbitrary this implies that u® is a solution to (4.1)). Now, following
the start of the proof, we construct a sequence (v?k) ken satisfying (5.6) with «® in place
of w, and observe that

J(u™) < lilgn inf J;, (ug, ) < limsup J, (ug, ) < limsup J;, (vfk) < J(u”),

which implies limy,c0 Je,, (ug, ) = J(u®). O
Let us now address the convergence as @ —» 0 and € — 0.
Theorem 5.3. Suppose that
(a) G:Z — O is Lispchitz continuous.

(b) The inverse problem (1.5) has a solution u. € BV (€,{0,1}), and there exist a posi-
tive null sequence (e )ken and a sequence of functions (wy)geny € K such that wy — uy
strongly in L*(Q) with limsupy_, o Fe, (wi,) < TV (uy).

(c) (ar)ken is a positive null sequence subordinate to (e)gen and u. in the following
sense

1
lim sup - | (wg, — us)curl S (uy) Hig(m =0. (5.8)
k—o0 k

Then, for a sequence of solutions (u?:)keN c K to PFIP (5.1), there exists a non-relabelled
subsequence (k — oco0) and a solution uw € BV (Q,{0,1}) to the inverse problem (1.5)) such
that

ult > in LNQ)  and TV (u) < TV (u.). (5.9)
Remark 5.1.

(i) We mention that the obvious choice for (wi)ken 1S the sequence constructed in the
proof of Theorem which satisfies (with w, in place of w). This fizes the
null sequence (e)ken subordinate to u.. In particular, since (wg)ken always exists,
the statement of condition (b) can always be reduced to “the inverse problem
has a solution u. € BV (9Q,{0,1})”. However, in order to define the null sequence
() ken subordinate to (ex)keny and uy, it is necessary to state condition (b) as it is
presented.

12



(i1) If ux is a minimum-variation solution to the inverse problem (L.5)), then the inequal-
ity (5.9) implies that u is a minimum-variation solution to (1.5)) as well.

Proof. For each k € N, let ugk € K denote a solution to minyex Jr(v) where

Jp(v) = Jp(v) + o Ee, (v).
For the sequence (wy)gen in the hypothesis, we set zx = S(wy). Then, from the inequality
Ji(ugk) < Jp(wy), we have

1

o 1
Be, (1)) € () + Bey (1) = 5 1G(20) - G@ollp + o). (5.10)

since for y. = S(u,) it holds that G(y+) = ym in O. Lipschitz continuity of G: Z - O
and the estimate (3.14) imply that

o C
e (ugf) < - (g — w)ewrl . 22y + Bey (wr)-

The right-hand side is non-negative and its limit superior as k — oo is bounded by the hy-
pothesis. Hence, it is clear that supycy Ee, (ug*) < co. Invoking the compactness property
(iii) of Lemma leads to the existence of a non-relabelled subsequence (k — co0) and a
limit u € BV (£,{0,1}) such that u2* — u in L'(£2), and subsequently J¢(u2*) — J¢(u)
as k — co. On the other hand, since E., (ug*) >0 and aj >0, we have

Jr(ugl) < Ji(ugk) < Jp(wy) + g By (wy) < C'||(wy, = us Jeurl ys ||2LZ(Q) +apEe, (wg).

Taking limit superior on both sides and employing the hypothesis limsup;,_, o, E¢, (wg) <
TV (u.) leads to

Ty(u) = Jim Ty (u2t) < Climsup = s )ewlys [ o) + (imsup )TV (u) = 0.

From the equality Jr(u) = 0 we infer that G0 S(u) = y,, i.e., u is a solution to the inverse
problem ([1.5). Moreover, as ug* — u in L'(Q), by the hypothesis, (5.10) and the item (i)

of Lemma [AT]
1
TV (u) <liminf B, (uck) <limsup (—Jf(wk) + B, (wk))
k—oo k—o00 (7%

1
< Climsup — | (wg — us)curl y. Hiz(ﬂ) +limsup E,, (wg) < TV (uy).
(6% k—o0

k—o0
This completes the proof. O

Under the existence of a BV (£2,{0,1})-solution to (1.5)) satisfying some regularity
assumption, we can simplify (5.8) to a relation between the null sequences (e )reny and
(ak )ken that is more practical for numerical implementations.

Corollary 5.4. Suppose that
(A) G:Z - O is Lipschitz continuous.

(B) The inverse problem (1.5)) has a solution u, € BV (,{0,1}) such that curl S(u.) €
LP(Q) for some p > 2 and there exists an open bounded set A ¢ R® with a smooth
boundary satisfying {u. =1} = AnQ and H2(0ANON) = 0.

13



Furthermore, for any positive null sequence (ex)ken, let (g )ken be a positive null sequence
such that

52
limsup £ = 0. (5.11)
k—oo Of

Then, the assertions of Theorem [5.3 are valid.
Proof. By the hypothesis, we can apply item (ii) of Lemma and obtain a family

(we)es0 © K such that [we = us 1) = O(e) and limsup, ¢ Ec(we) < TV (us). Then, a
short calculation shows

1 2 1 2 2 ¢ 2
on | (wey, = wi)eurlys 72 (q) < on leurly | 7o (qy lwey, = wel 7220 () < o lwey, = w71 0

on account of the fact that 0 < w;, (z),u«(z) <1 for a.e. x € Q. Hence, condition (5.8) is
fulfilled if (5.1T) holds. 0

Let us point out that in Corollary the null sequence (gx)ren does not need to be
subordinate to the true solution w,. (or its approximating sequence) as in Theorem [5.3
which gives greater flexibility at a cost of assuming more regularity on the true solution.
Furthermore, we note from the condition ([5.11)) and the estimate ||w,, — “*”Ll(ﬂ) =0O(ex)
that e plays a similar role to the parameter § in Theorem

6 First-order analysis

Following [43| Sec. 3.2] we introduce a vector function
F:[0,1]xR* > R3,  F(u,s) = [vo(l-u)+v1(]s))uls, (6.1)
so that the operator A, : Hy(curl) - Hy(curl)* defined in can be expressed as
(Au(w),v) = [ Flu,culy)-curlvds  Vy,v e Holewl). (6.2)

Assumption 6.1. In addition to Assumption[3.1), we further assume that
(A5) vy € CH(R) and there exists a positive constant Cx such that

‘8.7:i(u, s)

5 <Cr foralluel0,1], seR>? i,je{1,2,3}.
5j

(A6) O = L*(D) where D c Q is an open subset, and G : H(curl) - O is the restriction
operator G(y) = y|p.

One example of v that satisfies (A5]) is (see also |43, Example 3.5])
vi(s) = vg — Bexp(-fs°) (6.3)

with constants 8 > 0 and 0 < 6 < 1. Denoting the Jacobian matrix function of F by
VsF : Qx[0,1] x R3 > R3*3 where

vi(ls)

5]

st(u,s)z(%fi(u,s)) = [vo(1-u) +v1(s)u]l +u s® s,
1<i,j<3

Sj

we see that (AB) implies V4 F is bounded for all u € [0,1] and s € R3. An immediate
consequence of (A5)) and (3.4)) is the following, which follows from a minor modification
of [43, Prop. 3.7].
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Lemma 6.1. For all u € [0,1] and all s,a € R3, it holds that
vi(s) +vi(ls]) |s| > v, VeF(u,8)a-a>vlal’.
Consequently,

[Q VsF(u,curly)v-vdx > y||vH%2(Q) Vue[0,1], y € Ho(curl) ,v e L*(Q).  (6.4)

6.1 Optimality system via directional differentiability

In this section, we establish a necessary optimality system for through the use of
the weak directional differentiability of the solution operator S : K — Z. To show this
property, let us first discuss the linearised equation associated with the saddle point system
(3-2). In the following, let @ € K, h € L®(Q) and y = S(a). We seek a unique solution
(2,0) € Z x H}(Q) to the linear saddle point problem

{ag(z,v) +b(v,0) = fag(v) Vv e Hy(curl), 65)

b(z,4) =0 Vi e Hy(Q),

where the bilinear form ag : Ho(curl)x Ho(curl) - R and the linear form f, 5 : Ho(curl) -
R are given as

ag(z,v):= fQ VsF(u,curly)curl z - curlv dz, (6.6)

frhg(v) = _/Q h(vo —v1(|curly|)) curly - curlv dx
for all z,v € Hy(curl). Strictly speaking, the Lagrange multiplier 6 is zero as fj, 4(V¢) =0
for all v € H}(Q). But we include it to retain the saddle point structure.
Lemma 6.2. Let u e K, h € L*(Q) and y = S(u). Then, there exists a unique solution
z=z(u,h)eZ,0=0ec HY(Q) to (6.5) satisfying

|20l e eurty < C 1] oo @) 191 Ereun) (6.7)

for a positive constant C' depending only on vy, v and €.

Proof. Since (6.5)) is a linear saddle point problem, to apply standard results [11, Thm. 1.1,
Cor. 1.1] it suffices to note that

{|CL:,;(Z,’U)| < C-'F Hz”H(curl) ”v”H(curl) Vz,ve HQ(CUI‘I), (6 8)

2 ~ 2
a’!j(zvz) 2Z||Curl‘z”L2(Q) 2ve 2 ”Z“H(curl) VzeZ,

|fh,?](v)‘ < QVO Hh||L°°(Q) Hg”H(curl) HUHH(curl) Vo e Ho(CUI‘I),

thanks to , , and . O

Lemma 6.3. Let u,u € K and y = S(u). Furthermore, let z = z(u,h) € Z denote the
unique solution to (6.5) with h =u—u e L*(Q). Then, the solution operator S : K - Z is
weakly directionally differentiable at @ in the direction u —1u, i.e.,

S(a+7(u-1u))-S(a)

T

—~zin Z asT|0.
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Proof. Let (73 )ren < (0,1] be a null sequence. Since K ¢ H(€) is convex,
Up, =U+TE(u—u) =mpu+ (1 -1)ue K VkeN.

Thus, for all k£ € N, the forward problem (3.2)) corresponding to data (u,,J) admits a
unique solution (yr,, ¢, ) € Z x H}(Q). By definition,

{<Au7,€ (yn) — Aa(),0) +b(v,ér, ~$) =0 Yo ¢ Hy(curl), 69)
b(yr, — Y, %) =0 V4 € Hy (92).
Choosing v = V(¢r, — ¢) yields that

¢r, —0=0 VkeN. (6.10)

For this reason, inserting v = y,, -~y € Z in and using the abbreviation v1(y) =
v1(|curly|), we obtain

0=(Au,, (yr) -~ Aa(9), yr, — Y)
= fQ (V()(l —u)curl (y,, —g) +a[vi(yn, )curly,, — 11 (y)curlg]) -curl (yr, —9) dx
+ T, fﬂ h(v1(y-,) - wo)curly,, - curl(y,, —y)dz.
From , and it follows that
1Y = Yl gz eurty < C leurl (Yr, =) | 20y < CTi Bl ooy VE €N,

Consequently, we can extract a non-relabelled subsequence of (7j)rey such that

Y-, >y in Ho(curl), curly, (z) — curly(z) a.e. in Q, Wn-9) | Y in Z, (6.11)
Tk

as k — oo. To identify the equation for Y, we notice that (6.1)—(6.2) and 1D yield

(F(un,, curlyy, ) = F(u,curly),curlv) 2y =0 Vv € Ho(curl). (6.12)

Invoking the integral form of the mean value theorem, a short calculation shows that
F(up,,curly,, ) — F(u,curly,, ) + F(u,curly,, ) - F(a,curly)
1
= 1h(vi(curlyy, |) — vo)curly,, + '[0 VsF(u,curl ((1-0)y,, +6y))curl (y,, —y)db.

From (6.11) and the dominated convergence theorem together with (A2) and (A5)), we
infer that

1
klim ; Vs F (@, curl (1 -0)y,, +60g)) curlvdf = Vs F(a,curlg) curlv  in L*(Q),
klim h(vi(|curly,, |) — vo)curlv = h(v; (Jcurl y|) — vp)curlv in L*(Q),

for any v € Hy(curl). Hence, dividing (6.12]) by 7, and then passing to the limit k — oo
shows that Y € Z satisfies

(h(u1(|cur1y|) —vp)curly + Vs F(u, curlg)curl Y, curlv) =0 Vv e Hy(curl),
L2(Q)
b(Y ) =0 Vi HY(Q).

It follows therefore that Y = z is the unique solution to (6.5)). Since Y = z is independent
of the choice of the subsequence of (71 )ren, we conclude that the assertion is valid. O
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Corollary 6.4. Let u,u € K and y = S(u). Furthermore, let z = z(u,h) € Z denote the
unique solution to (6.5)) with h =u—ue L*(Q). Then, the objective functional J. : KK - R

1s directionally differentiable at @ in the direction u —u with the directional derivative
1
5. (i~ ) = (5~ Y )12y + 0 | S vu-w)+ (2 -a)(w-u)de.  (6.13)
QT meN2
Proof. According to (A6]), we have that J.(v) = J¢(v) + aE.(v) with
1 2 8¢ 2 8
Jp(v) = 3 |1S(W) =ymlLpy. Ee(v) = /Q o |Vo|” + w_sq](v) dr VYvek.

Thanks to Lemma [6.3], standard arguments imply that

- Je(a+7(u—-1a))-J¢(a)
710 T

=(y- ymvz)LQ(D) in R.

Also, in view of (5.2)) and since u + 7(u —u) € K holds for all 7 € [0, 1], a straightforward
computation yields
m E.(u+1(u-1u))-E(u) [ 8

_ _ 8 (1 _ _ .
lle - Q?VU'V(U—U)+W—g(é—u)(u—u)daﬁ in R.

In conclusion, the assertion is valid. ]

For every @ € IC with the corresponding state y = S(u), let us now introduce the adjoint
system associated with (5.1]) as follows:

{a;(q, v) +b(v,p) = (¥~ Ym,v)r2(p) Vv € Hoy(curl), (6.14)

b(qaw) =0 Vw € H(%(Q)a
where the bilinear form ag; : Ho(curl) x Ho(curl) - R is defined as

ag(q,v) = (Vs F (U, curlg) curlg,curlv) p2qy  ¥q,v € Ho(curl).

*

It is easy to see that analogous properties to can be shown for ay(-, -). Hence, using
standard results for linear saddle point problems [11, Thm. 1.1, Cor. 1.1], we obtain the
following well-posedness result for (6.14]).

Lemma 6.5. Let @ € K with the corresponding state y = S(u). Then, there exists a unique
pair (q,p) € Z x H}(Q) to the adjoint system (6.14) associated with @ and satisfies the
estimate

Il a2 (curry + Hp”Hg(Q) <Cly-ymlr2p)
for a positive constant C depending only on vg, v and Q.

Employing the adjoint system (|6.14) and the established directional differentiability
result, let us now prove an optimality system for PFIP (5.1) in form of a variational
inequality:

Theorem 6.6. Let ul € K be a solution to the PFIP (j5.1) with the corresponding state
y% = S(u2). Furthermore, let (q,p) € Z x H} () denote the unique solution to (6.14)
associated with ug. Then, it holds that

1

fQ ((1/0 —vi(Jeurly?])) curlyS - curlq + 7T—€<§ —ue))(u—ue)d:ﬁ 6.15)

8
+/Q£Wg.v(u_ug)dxzo Vu e K.
i
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Proof. In view of Corollary and the optimality of u2,
8 8 /1
(Y2 = Yo 2) L2y + 0 f ZEvul V(u-u) + (5 -ul)(u-ul)dr 20 Vuek,
Qm mTeN2
(6.16)

where z € Z denote the unique solution to (6.5) with y = y& and h = u—ug € L*(Q).
Inserting v = z in the adjoint system (6.14]) leads to

(VsF(ul,curly) curlg, curl 2) g2y + 0(2,p) = (Y = Ym, 2) L2(D)-
Meanwhile, substituting (v, ) = (g,p) in (6.5)) (with y =y< and h = u —u?) yields
(VsF (ug, curly)curl z, curl @) g2y = fu-ug yo (@), 0(2z,p) =0.

Hence, the above equalities give

(Ye' = Ym, 2)L2(D) = fﬂ(u - ud)(vo — v1(|curly2|) )curl y< - curlq dzx , (6.17)
and (/6.15)) is an immediate consequence of (6.16])—(6.17)). O

6.2 Optimality system via shape calculus and its convergence

In this section, we derive an alternative optimality system for PFIP ([5.1)) via the domain
variation technique of shape calculus. Our main result is the convergence of this system
as € - 0, which leads to an optimality system for TVIP (4.1]).

Assumption 6.2. In addition to Assumption[6.1], we further assume
(A7) The domain Q is either a convex domain or a domain with CH-boundary.

(A8) The prescribed current density J satisfies J € H'(Q2) and the measurement vector
potential Y, additionally satisfies y,, € H'(Q).

We remark that (A8]) is required due to the domain variation methodology we employ
to derive optimality conditions. Moreover, (A7) together with (2.4) and (2.6]) implies that

[ #1510y < C(lewrl £l g2y + 1div Fl g2y ) VF € Ho(curl) n H(div),

and hence S(u) € H(Q) for any u € L'(;[0,1]). This improved regularity is needed to
prove the differentiability of certain transformed solutions (see Lemma in preparation
for the main result (Theorem [6.11).

The optimality conditions derived in this section involves domain variations, which is
performed with admissible transformations and their corresponding velocity fields.

Definition 6.1. The space Vaq of admissible velocity fields is defined as the set of all
Ve CO[-71,7] x Q,R3) where T > 0 is a fized small constant such that for all t € [-T,7],

(V1) V(t,-) 1 Q- R3, Vi(t,-) e CE(Q, R?) and there exists C >0 such that
IV (y)=V(, Z)“CO([,T’T]’RS) <Cly-z| Vy,ze Q.

(V2) V(t,z) -n(x)=0 for all x € I9N.
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Then, the space Toq of admissible transformations is defined as the set of corresponding
solutions to the ordinary differential equation

OTi(z) =V(Ti(z)), To(z) =z,
for V€ Vaq, which yields a mapping T : [~10,70] x Q@ - Q, Ti(z) := T(t,z), for some
70 € (0,7) sufficiently small.

Remark 6.1. By (38, Thm. 2.18] the transformation T : [~70,79] x Q — Q corresponding
to an admissible velocity field V € V,q is bijective and satisfies the properties

T and T ' e CO([—TO,TO];02(§§R3))7
which implies

ITs =T p oy = 0, T ~0ast—0,

B IHLm(Q)

where I(x) = x is the identity map. Moreover, by (38, Lem. 2.31 and Prop. 2.35], for any
compact set U c €, it holds that

|t (DT, -I) - DV (0) le,m(U) -0, (6.18)
#7160 = 1) = div V() |y 1. gy = O (6.19)
[T =1) = V(O o gy > 0 (6.20)

as t > 0, where 1 is the identity matriz, DT} is the Jacobian matriz of Ty and &(t,x) :=
& () :=det DTy(x).

While we recognise T;(Q2) = Q for all t € [-79, 79] due to (V2), in some of the calculations
below we use the notation Q; = T:(€2) for better clarity. Through the relation

V(foTy) =[(Vf) o Ty]DT; = DT (Vf) o Ty, (6.21)

it is clear that f e H'(Qy) iff foT; € HY(Q). In contrast, composition with the mapping
T, or T; ! modifies the curl operator in an undesirable way (see [26, §3] or [27} §4.4])

curly = DT, (DT T X D(y o T, o Th)  for y: 9y — R, (6.22)

where curl is the curl operator with respect to the transformed variables = Tj(z) and the
tensor product A X B for two second order tensors A = (ag)1<k,i<3 and B = (bg)1<k,1<3 18
defined as AX B = Z?,k:l €ijk Z?zl akby; with the antisymmetric tensor €;;. In particular,
y € H(curl; ) may not imply y o T; € H(curl;Q;). Although via the solution to
the state equation belongs to H'(Q), the expression for the curl operator is still
difficult to work with. On the other hand, the transformation

g=DIT; TyoT;! fory:Q-R? (6.23)
is curl preserving, i.e., it holds that (see [31, Cor. 3.58])
(curlg) o Ty = & 'DT curly  for y: Q - R, (6.24)

and so curly € L?(Q) if and only if curly € L?(Q;). Another advantage of (6.23) is that,
for given y, z € H(curl) with §:=DT; Ty o T, and 2:= DT, Tz 0 T;!, we have

/Q c/t_lr\lfj-fd’fzfgft(ngthurly-Dﬂ_Tz)dm = (curly, 2) 2 (q)-
t
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Hence, y € Hy(curl; Q) iff = DT, Ty o T; ' € Hy(curl; Q) and y € Ho(curl; Q;) iff DTy o
T; € Hy(curl; Q). Therefore, in the sequel we focus mainly on the transformation ((6.23))
for the vector potential y. Furthermore, we use the following notations

1 1
A(t) = ¢ DI/DT,, AT(0) = GDT DL, B(t) = ZDT, B7(1) =&DT;
t t
It is well-known that A(t), A~'(t), B(t) and B7'(t) are differentiable at ¢t = 0 with
derivatives |15, Chap. 9, Thm. 4.1 and equ. (4.26)]
A’(0) = =divV(0)I+DV(0) + (DV(0))" = —(471)’(0),
B'(0) = -divV(0)I + DV (0) = —(B")'(0).

Then, by Remark there exists a positive constant C' such that for all ¢ € (-7, 79) with
7o sufficiently small,

[ A ~ D) ey # 1A D) =D gy 176~ Dl
B0 D] gy B0 ~D) gy + 1Ty <€

Lemma 6.7. Let V €V,4 be given and T € T,q be the corresponding transformation. For
any t € [-10,70] and u € BV (,{0,1}), let u' :==wo T, . Then, it holds that

(6.25)

Hut —uHLl(Q) —-0ast—0.

Consequently, by Theorem and [2.4), if (y,9), (y', ¢") € H'(Q) x H}(Q) are unique
solutions of (3.2)) corresponding to data (u,J) and (ut,J), respectively, then

y' >y in H(Q), ¢ —~¢in H)(Q).
Proof. Suppose for the moment that u e WP(Q) for p > 1. For x € , the relation
u' () ~u(z) = fol Vu(z +s(T; H(x) —2)) - (T, (2) — x) ds
and the change of variable z = [(1 - s)I + sT; !](x) yields
o =l gy <17 Ty [ f [P0t 5T @) - )] i ds

1
N My [ [ TP et D - )T+ 5T ) dzds (620

- P
1! —IHLOO(Q) ||Vu||ip(m —0ast—0,

<cy

where the regularity of the corresponding velocity field V' € V,4 implies the boundedness of
the determinant, see [38, p. 69]. Now, for a fixed u € BV (£2,{0,1}), by following the start
of the proof of Theorem [5.2, we can construct a sequence (u.)es ¢ K ¢ H'() such that
ue — u strongly in L'(Q) as ¢ - 0 and limsup,. o F-(u.) < TV (u). Given an arbitrary
¢ > 0, there exists g9 = £9(¢) > 0 such that

¢
lueo = ul 1 (q) < 3 and  Er(ue,) <TV(u)+1.

Then, as HT{1 — 0 as t — 0, there exists 7 = 71((,g0) > 0 such that

1)

_ C €0
T -1 2 for all t € (-
7 =Ty < sV 2@vw + e T (=mem).
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where ¢, is the constant in (6.26]). Hence, for ¢ € (=71, 71) we find that

o =l gy < 1 = oy + oo = wlngoy + sty = 3

2¢ -1
St NS, |T; —IHLW(Q) <,
since & HVugOHiz(Q) <2(TV(u) +1) and Ve, | g1(g) < '/ [ Ve, | 2 (q)- Arbitrariness
of ¢ yields u! - u in L1(Q). O
Lemma 6.8. Let V €V, be given and T € T,q be the corresponding transformation. For
J e H'(Q) it holds that
Ht_l(J oTy—J) - (VJ)V(O)HLQ(Q) -0 ast—0.

Consequently, there exists a positive constant C such that for all t € (—79,70) with o
sufficiently small,

[T o Ti = )| 2 < C-

Proof. Fix i € {1,2,3} and denote by J; the ith component of J. For t € (-79,7), and
x € £, thanks to the relation

t (Jio Ty)(z) - Ji(z)) = VJi(z) - V(0,2)

= (Mo N (O Ty(z) -
= [ (9 s(Te) - ) - V()] 25 t

ds +Ji(x) - -V (0,2)),

we infer, similar to the proof of Lemma [6.7] that

Ht_l(Ji oTy—J;) =V V(O)H;(Q)

< T -1 e fO 1 ]Q VJi(z + s(Ty(x) - 2)) = VJi(2)[* da ds

+ ||VJiH2Lz(Q) Ht_l(Tt -1) - V(O)Hiw(ﬂ) )

The second term on the right-hand side tends to zero as ¢ - 0 by Remark while the
first term tends to zero as t — 0 by (6.25) and the dominated convergence theorem. [

Lemma 6.9. Let V €V,q be an admissible velocity with the corresponding transformation
T € Taq. Let ue LY(;[0,1]) and define u' := wo T; 1 with the unique solution (yt,¢') €
HY(Qy)x HY () to corresponding to data (ut,J), and we denote (u°,y°, ¢%) simply
by (u,y,¢). Then, there exists 7o > 0 such that the mappings

[-70,70) 2t = DT (y' o Ty) e H'(Q), [-70,70] 3t (¢' 0 Ty) € Hy()

are Gateauz differentiable at t = 0, with Gateauz derivatives Y[V := %(DTtT(ytOTt))‘t:O €

H'(Q) and ¢[V] = %(d)tOTt)‘t:O € H}(Q) that are the unique solution to the linear saddle
point problem

{ay(Y[V],U) +5(0,0[V]) = Guy.o(v) Vo e Ho(curl), (6.27)

b(Y[V],9) = Hy(v) Vip e HY(9),
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where ay(-,-) is defined as in (6.6), while Gy 4 4: Ho(curl) > R and Hy : Hy(Q2) » R are
defined as

Guy.e(v) = fﬂ A'(0)v -V - (vo(1 - u) + v1(Jcurly)u) (A’ (0) curly) - curl v dx

!

1

- [ UM(curly-B'(O)curly)curly-curlfvdx (6.28)
Q  |curly]

+va-(VJ)V(0)—B’(0)v-Jda:,
()= [ A0y Veda.

Proof. Thanks to the smoothness of V' € V,4, we can choose 7y sufficiently small so that
there exist positive constants cg, ..., cs, independent of ¢ such that

co<&<cr, el <A C<eslC,  [B)|+|BH)| < e (6.29)
hold for all t € [~7p,70] and for all non-zero ¢ € R®. We consider the functional
F :[~79,70] x Ho(curl) x H} (Q) - Hy(curl)* x H(Q),
F(t,(y,6)) = (Fi(t,(y,9)), F>(t, (. 9))) € Ho(curl)* x H(Q),
defined as
Fi(t, (y,0))[v] = fQ (vo(1 = u) +ur (|B(t)curly|)) A(t)curl y - curl v da
; fQA_l(t)v-qu—B_T(t)v-(JoTt)dx,
Folt, (g 0))[0] = [ y- A OV da.

Let (y',¢") e H'(Q:) x H} () denote the unique solution to (3.2)) on Q) corresponding
to data (u!,J), which by (3.10) satisfies

|y e o) + 19" |2,y < C |1 L2 (6.30)
0

for a positive constant C' depending only on v, v, 7 and ). For convenience, we set g :=
DT/ y' 0T}, so that from ([6.23) and ([6.24) we have the relation B(t)curlg® = (curly®) o T;.
By the classical transformation theorem and (6.21)), for every 1 € H}(Q), it holds that

B (t, (gtaﬁbtoTt))[w]:/Qét(ytoTt)‘DTt_TVlbdx :thyt-V(ont‘l)dﬁc‘:O.

Furthermore, for every v € Hy(curl; Q) < @ := DT, Tw o T; ! € Hy(curl; (), we obtain due

to (6.24]) that

Fi(t, (T, ¢" o Th)) [v]
= fQ (vo(1 - u') + vy (jeurly])) curly? - curl o+ @ - Vol = - J dZ = 0.
t

Hence,

F(ta (gt7¢t OE)) =0 Vte [_T07TO]-

22



Let YTy == ' —y € Ho(cur; Q) n H*(Q) and ®; := ¢' o Ty — ¢ € H}(Q). For arbitrary
v e Ho(curl; Q) and ¢ € H} (), we find that the difference 0 = F(¢, (3, ' o T,))[(v, )] -
F(0,(y,¢))[(v,v)] reads as (suppressing the t-dependence in the matrices and in &)
0= /Q(A’l’y“t—y)-vwda: = [QA’th-Vl/JJr(A’l—]I)y-dea;, (6.31)
0= fQ B o (JoTy-J)-J- (B -Dv+A w-v®, + (A -Dov-Vode  (6.32)
+ _/Q vo(l - u)(Acurl Y- curlv+ (A-I)curly - curl'v) dx
+ /Q 5u([u1(|Bcur1§t\)Bcur1§t - v1(|Beurly|)Beurly] - Bcurlv) dx
+ [qu(yl(|Bcurly|)Bcurly - y1(|cur1y|)curly) - Beurlv dx

+ L(f - 1)uvy (Jcurly|)curly - Beurlw + uvy (Jeurl y|)curly - (B - T)curl v dx
=:II+IQ+13+I4+I5,

where in the above we used the relation A(t) = & BT (t)B(t). We first consider v = V®; in
(6.32) and obtain due to curl vV =0,

[Vt 20y < C( B~ + A +[|J o Ty = J| 2 )a (6.33)

g I e o)

for some positive constant C' depending only on [[J|r2(q), c3 and ¢4 thanks to (3.10) and
(6.29). By virtue of the bounds (3.10f), (6.29) and (6.30]), as well as the property (3.6]) we

can infer the following:

L2 =C([B7 =1 g gy + AT =1 oy + 1 0 To = Tl g2y ) 0] g2y + fQA’lv Vb, da
Iy > fQ(l —wrpAcurl Ty - curlvde - C A -1 oo (g [curlv| p2(qy,

142 =C'|B =1 g (g [curlv| g2y ,

I5 > —C( 1€ =1 oo () + 1B =L Lo (@) ) leurl v g2(q)

for positive constants C' depending only on cy,...,cs, vy, v, ¥, @ and [J|2(q). For the

term I3, when choosing v = Y; = §* — y, we employ (3.5) and the relation 4 = ¢BTB to
deduce that

132AfuﬂBcurl(@Vt—y)F:[ngAcurth-curthdx

Hence, choosing v = Ty in (6.32)), and using the positivity of &, the positive-definiteness
of A(t) and the lower bound vy > v, as well as the estimates above leads to

Jeurl Ty | 720 < C( |B =Tl gy + A7 - HHLm(Q) + [T o Ty = J| 20 )

Tell 20

+ C( A =T pooay + 1B =Tl poo ) + 1€ = L oo @) ) lewrlTe] g2y (6.34)

+C‘_/QA1Tt-V<I>tdx .

On the one hand, from and the estimates and , we see that
‘fQ AT, 9, da | ’_[Q(]I— A Yy - VO, dz

sC( T -

(6.35)

Aoy * 1= By + 1T 0 T = T3y )-
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On the other hand, we infer from the first equality of (6.31) that
fQTt Vpda = /Q((]I— AYF) - Vdr Ve HA(Q).

Since DT}y o T; € H'(Q), see the discussion after Remark it holds that (I- A™1)g’ e
H'(Q), which implies the relation divY; = div((I-A™1)g?) € L*(2) holds with the estimate

Jdiv Tl 32y < C(J1= A7 |G gy + 1aiv@T-AT[5 0 0 ), (6.36)

where C' > 0 depends only on || y*| g1 (o) (which is bounded by |l 22y due to (6.30)) and
|DTt| 1.2y (which is bounded in ¢ due to Remark [6.1)). Hence, substituting (6.35]) into

(6.34), and adding (6.36) to the resulting inequality, by Young’s inequality applied to the
terms involving the L?(Q)-norm of Yy, we arrive at

leurl e 7 gy + 1div e |72y = K |t 720y
2 2 —112 ~1112
< O(IA-T13e(ay + 1B =T Zmoy + 1= A7 gy gy + 1= B 3oy )
+C( € =1U7m(y + 1T 0 T = T[F2(ay ),

for some positive constant K > 0 that can be chosen as small as one desires, with the
constant C' appearing twice above depending on K. Invoking (2.6)) and choosing K suffi-

ciently small, together with (2.4)), (6.25)), (6.33]), and Lemma we then infer the uniform

bounds

Ht-lnqu(Q) + Ht‘létHH&(Q) <C, (6.37)
so that along a non-relabelled subsequence
I, =~ Y[V]in HY(Q), t'®, —~¢[V]in HY(Q) (6.38)

for some functions Y [V] € H'(Q) and ¢[V] € H}(Q). Let us remark divY; # 0 due to the
definition of I, and so the Poincaré inequality for Z-valued functions cannot be used
to control the L?(Q)-norm of Y; arising on the right-hand side of . Therefore, it is
necessary to derive an estimate for divY; and in turn we require the regularity 7' € H*(Q;)
for all ¢ € [-79,7p], which is guaranteed with the assumption for the domain Q and
the continuous embedding .

Next, consider the vector function Z(s) = v1(|s|)s. Then, similar to the proof of
Lemma the integral form of the mean value theorem gives

1
Z(Bewl @) - Z(Beurly) = fo VZ(0Bcurly + (1 - 0) Beurl §) Beurl Y o,
1
Z(Bcurly) - Z(curly) = /0 VZ(Ccurly + (1 -¢)Beurly)(B -T)curly d¢,

From the definition , for fixed w € H'(Q), it is clear that curlu — curlu as ¢ — 0,
and since B(t) - I and Dy’ - Dy a.e. in Q as t — 0 (the latter due to Lemma , we
infer that Beurl§* = (curly?) o T} — curly a.e. in Q as t — 0. Moreover, since VF (u,s) =
vo(1 —w)l+uVZ(s), we deduce with the help of and the dominated convergence
theorem that

% i "6 VT (Cewly + (1- Q) Bl y)

- fQ VZ(curly)B'(0)curly - curlv dx .

B-1)

curly - Beurlv d( dx
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Similarly, since [01 B'VZ((1 - 0)Bcurly + fcurl T;)"Beurlvd® — VZ(curly) curlv in
L%(Q) by the dominated convergence theorem, we infer that

I 1 T
73 = /Q [0 VZ(#Bcurly + (1 - 0)Beurl ") Beurl Tt - Beurlv df dx
- A VZ(curly)curl Y[V] - curlv de .

Hence, dividing (6.31) and (6.32) by ¢ and sending ¢ — 0, applying the convergences in
Remark Lemmal@l and (6.38), we see that (Y [V],¢[V]) € HY(Q) x H}(Q) satisfies

0= [ Y[V]-v6-A'(0)y- Vi da,
0= fQ o (VI)V(0) + B'(0)J -v +v-V[V] - A'(0)v - Vo da
+ fﬂ vo(1 - w)eurl Y[V] - curlw + vp(1 — u) A’ (0)curly - curl v da
+ /Q u(VI(curly)curlY[V] + VI(curly)B'(O)curly) -curlv dx
+ fﬂ(ul/l(|curly])curly -curlv)divV (0) + (B")'(0)Z(curly) - curl v dx
for arbitrary ¢ € Hg(2) and v € Hy(curl), which is the linear saddle point problem

after noting the relation A’(0) = B’(0) + (B")’(0) + divV (0). Uniqueness of solutions to
(6.27)) follows easily from the coercivity estimate (6.4]) and the linearity of the problem. [J

Remark 6.2. The function ¢[V] is the material derivative of ¢, while the function Y[V ]
is related to the material derivative y[V] := %(y(t) o Tt)‘t:o of y via the formula

y[V]=Y[V]-(DV(0)"y, (6.39)
and the equations satisfied by y[V'] can be easily deduced from (6.27)).

We prove now an alternate necessary optimality system for PFIP (j5.1)) derived by the
method of domain variations.

Theorem 6.10. For fized a,e > 0, let ud € K be a solution to with correspond-
ing solution (y%,¢%) € Z x HI(Q) to . For every admissible velocity V € Vyq, let
(YO[V],¢2[V]) € HY(Q) x H}(Q) denote the unique solution to corresponding to
(ud,ys, ¢%). Then, it holds that

€

0= [ (2~ ym) - (V2V] = (DV(0) "y = (Tym)V (0)) + 5 2 = yinl* vV (0) d
(6.40)

+afg(%€|vfu?|2+g\Il(u?))divV(O)—VEVU?-(VV(O))Vu?dx YV € Voa.

Proof. Let V € V.4 be an admissible velocity with the corresponding transformation 7' €
Toa- We introduce the functional

g:(-10,70) > R, g(t):=J(ug o Tt_l) +ab.(ug o Tt_l).
Since ug € IC, by (6.21)) we have that

ulo T, e K Vte(-10,70).
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For this reason, as u € K is a solution to (5.1)), we have

9(0) <g(t) Vte(-70,70),

from which it follows that
0= 'O——dJ aort —dE aort 6.41
_g( )_ dt f(u&‘ ° t )‘t=0+ dt E(uz’:‘ o t )|t=0' ( . )

By a change of variables, the derivative of the first term is obtained as follows:

R
3 )‘t=0_dt2

d 1 .
= [ ) SO o T =y o Ty + 5 2 - g vV (0) do
(16.19)

= [ (2~ ) (V] = (DV(0) "2 - (Tym)V (0)) + 5 12 — g divV (0) do

«a — 2
[18Ge 0Ty o Ty -y o T g, (6.42)

where we have used (6.39) and the formula %ym oTy| ie0 = (Vym)V(0) for the last equality.
Meanwhile, the directional derivative %Eg(ug‘ OT[I)‘ 1o is obtained (cf. [25, Lem. 7.5]) as
follows:
d [0 — 76 (0% 7 (0% : (6% (6%
@ o)y = o [ (2 19usP + L) )divy (0) - 1eval - (9V/(0)) vl da-
(6.43)

In conclusion, the assertion follows from (6.41])—(6.43). O

Our main result on the convergence of the optimality system (6.40) as ¢ — 0 is formu-
lated as follows.

Theorem 6.11. For fized o > 0, let (ud)es0 € K be solutions to PFIP (5.1). For any
T € Taq with corresponding velocity field V € Vaq, there exists a non-relabelled subsequence
such that

ul - u® in L'(Q), Je(ud) - J(u®) in R, (6.44)
YAV~ Y [V]in H' (), OV = ¢ [V] in Ho (%), (6.45)
where u* € BV (,{0,1}) is a solution to TVIP (A1), and the pair (YO[V],9*[V]) €
Hy(curl) n HY(Q) x H}(Q) satisfies (6.27) corresponding to (u®,y®,$*). Furthermore, it
holds that
DJ.(u2)[V] = DJ(u*)[V] in R, (6.46)
where
DJ(u™)[V] = fD(ya —ym) - (Y[V]= (DV(0)) "y = (Vym)V (0)) da
| . .
+ [ S =yl divV(0) dz +a [ (divV(0) = - (TV(0))r) dDx ey

DX{uazl}

with p = DX fue=13l

as the generalised unit normal on the set {u® =1}.
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Remark 6.3. In general, u® o T;' may not belong to BV (9,{0,1}) for T € T.q, and
thus we cannot use u® o T; 't as a comparison function to deduce analogous statements
in Theorem for TVIP. However, if we assume O{u® = 1} is Lipschitz, then for any
¢ € CL(Q;R?) with |p| < 1 a.e. in Q = T,(Q), a short calculation shows

th(uo‘oTt_l)Jﬁ@ dz = fgf(t)uO‘DT;T:v(mﬂ)d:c

= - ﬂuazl} div(ﬁ(t)DTt‘l) . (¢ o Tt) dr + L{ua:l}[g(t)DTt—T . (¢ o Tt)]TLdHQ,

where the right-hand side can be bounded independently of ¢, which implies u® o T, €
BV (Q4,{0,1}). Denoting by (y**, ¢**) the unique solution to (3.2)) corresponding to data
(u* o T; 1, J), from the proofs of Lemma and Theorem e can identify Y[V]
and ¢°[V] as the Gaiteauz derivatives %(DTtT(yo"t o T))|t=0 and % ¢*' o Ty)|i=0, and
DJ(u®)[V] as the shape gradient for TVIP.

Proof. The first assertion (6.44]) is the conclusion of Theorem Let (y&,¢%) and
(y*, ) denote the unique solution of (3.2]) corresponding to data (u,J) and (u®,J),
respectively. Then, the assertions of Theorem and assumption (A5 imply that

Gue yo po (V) = Guo yo go (v),  Hyo () » Hyo (1)) Vv € Ho(curl), 1 e Hy(Q).
In particular, (A5) ensures that

o V1 (JcurlyZ|)

© " jentlyo] (curlyd @ curlyZ)curlv| < (Cr + 1p) [curlv| Vo € Hy(curl),
curl y¢

which allows us to pass to the limit with the help of the dominated convergence theorem.
Moreover, (3.10) and the smoothness of V € V,; imply

+ [ Hye

HGug‘,yg,¢g‘ H (curl)* H-1(Q) <C ”JHHl(Q)
for a positive constant C' independent of e. Since (Y.2[V],¢2[V]) € H(Q) x H(Q) is a
solution to the linear saddle point problem (6.27) with right-hand side (Gyo yo go, Hys ),

by Lemma and (2.4), we see that

HYea[V]HHl(Q) + HQZ)?[V]HH(%(Q) <C.

Hence, along a non-relabelled subsequence, we have the weak convergence YEO‘ - Y"‘[V] €
Hy(curl) n HY(Q), and ¢2[V] — ¢*[V] € H}(Q). One then finds from passing to the
limit in equations for (Y2[V],¢2[V]) that (Y[V],¢*[V]) satisfies corresponding
to (u®,y“, ¢*). This shows the second assertion .

For the last assertion concerning the convergence of the optimality conditions,
by the strong convergence of y& and Y.*[V] in L%(Q), it is easy to see that DJ(u2)[V] -
DJy(u®)[V]. Meanwhile, the convergence

DE:(u)[V]= |

Q
= [ (@ivV(0) = - (VV(0))12) diDX yemyy| = DTV (u)[V]

(% IVu + g\I'(u?))divV(O) —yevu® - (VV(0))Vul dz

can be deduced as a consequence of (6.44)) and the calculations in the proof of [20,
Thm. 4.2]. This completes the proof. ]
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A Gamma convergence of the Ginzburg—Landau functional

Lemma A.1. Let Q c R? be an open bounded domain with a Lipschitz boundary. For
>0, let E.(v) = %fQ 5 Vo + 21—61)(1 —-v)dz denote the Ginzburg—Landau functional.

(i) If (v-)eso € K is a sequence such that v, — vy strongly in L'(Q) and liminf. .o E.(v.) <
oo, then vg € BV (€,{0,1}) with TV (vg) < liminf._q E.(ve).

(ii) Let A c R? be an open bounded set with a smooth boundary DA satisfying Ha(OA N
00) =0, and let vg = xanq- Then, there is a family (v:)eso of Lipschitz continuous
functions on € such that [ve = vo| 1 gy = O(e), 0 <ve(x) <1 a.e. in  and satisfies
the properties [ovedz = [quodz =|ANQ| and limsup,_, E-(v:) < TV (v).

(ii1) Let (uc)eso € K be a sequence satisfying sup..g Ez(us) < oo. Then, there exists a
non-relabelled subsequence € - 0 and a limit function u such that u. - u strongly in
LY () with uwe BV (,{0,1}).

Items (i) and (ii) are also known as the liminf and limsup inequalities of Gamma
convergence, while item (iii) is called the compactness property. In the following we only
outline the modifications necessary to adapt [9, Props. 3.8, 3.11] for our consideration of
the potential ¥(s) = %s(l - 5). We point out that in the constant v and functional &,
used in [9] correspond in our present notation to v = e2 and &, = k.. For further details,
we also refer to [25, Sec. 6.2] and |37, Sec. 1B].

Proof. Ttem (i) follows directly from the proof of [9, Prop. 3.8] by replacing [9, equ. (3.58)]
with ¢(t) = Ot %\/2\11(8) ds which satisfies ¢(0) =0 and ¢(1) = 1. Notice that ¢’(¢) >0 for
all t € (0,1), and hence ¢ :[0,1] - [0,1] is strictly increasing and bijective. We denote by
¢ :[0,1] - [0, 1] the inverse of ¢ which is also strictly increasing.

Item (ii) follows directly from the proof of [9, Prop. 3.11] by replacing [9, equ. (3.65),
(3.66)] with

1 t> 1. = me,
* . 1 tZO’ —J1 1 .: t s
X(t)'_{() t<0, Ce(t) = §+§Sln(g—§) 0<t <,
0 t<O0.

A short calculation shows that [9, equ. (3.67)] is satisfied, i.e., eC/(t) = \/2¥({(t)) for
all t € [0,m:]. We mention that the convergence rate [ve —v| 1) = O(¢) is in fact a
consequence of the calculations in |9 p. 271].

For item (iii), we adopt some ideas from the proofs of [3, Prop. 4.1] and [30, Prop. 3].
Let (us)es0 € K be a sequence satisfying sup,, Ec(ue) < oo. We set we(z) := ¢(u-(z)) for
a.e. x € 0, where ¢ is the function defined in the proof of assertion (i). Then, Lipschitz
continuity of ¢ implies that Vw,. = ¢'(us)Vue = %\/Q‘Il(ue)Vua. Young’s inequality now
shows that

8 1 €
Vel < = [ Z9(u) + 5 Vucl do = Bu(us).

Together with the fact |we[p1qy < [Q] we find that (we)eso is a bounded sequence in

WhHL(Q) c BV (). BV compactness leads to the existence of a non-relabelled subsequence
and a limit w € BV (Q) such that w. -~ w in BV (), w. - w strongly in L!(Q) and a.e. in
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Q. The candidate limit of (uc)eso along that subsequence is u(x) := ¢(w(x)). Since ¢ has
bounded derivative on [0, 1] we infer

e =l 1 = o (w2) = ()] 1 gy < C a0 = w] 1y 0.

To deduce that the limit u belongs to BV (£,{0,1}) we simply apply item (i) since
liminf. o F-(ues) <limsup,_ g Ee(us) < sup..g Ee(u:) < oo. O
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