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Di↵erential Operators on Hedgehog-type Graphs
with General Matching Conditions

by
Gerhard Freiling and Vjacheslav Yurko

SM-UDE-775 2014



Eingegangen am 06.01.2014



Di↵erential Operators on Hedgehog-type Graphs with General
Matching Conditions

G. Freiling and V.Yurko

Abstract. We study boundary value problems on hedgehog-type graphs for second-order
ordinary di↵erential equations with general matching conditions. We establish properties
of the spectral characteristics and investigate the inverse spectral problem of recovering the
coe�cients of the di↵erential equation from the spectral data. For this inverse problem we
prove a uniqueness theorem and provide a procedure for constructing its solution.
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1. Introduction.

We study an inverse spectral problem for Sturm-Liouville di↵erential operators on so-
called hedgehog-type graphs with general matching conditions in the interior vertices. Inverse
spectral problems consist in recovering operators from their spectral characteristics. The main
results on inverse spectral problems for Sturm-Liouville operators on an interval are presented
in the monographs [1-3] and other works. Di↵erential operators on graphs (networks, trees)
often appear in natural sciences and engineering (see [4-9] and the references therein). Most
of the results in this direction are devoted to direct problems of studying properties of the
spectrum and the root functions for operators on graphs. Inverse spectral problems, because
of their nonlinearity, are more di�cult to investigate, and nowadays there exists only a small
number of papers in this area. In particular, inverse spectral problems of recovering coe�cients

of di↵erential operators on trees (i.e on graphs without cycles) were solved in [10-12]. Inverse
problems for Sturm-Liouville operators on graphs with a cycle were studied in [13-15] and
other papers but only in the case of so-called standard matching conditions. In particular, in
this case the uniqueness result was obtained in [14] for hedgehog-type graphs.

In the present paper we consider Sturm-Liouville operators on hedgehog-type graphs with
generalized matching conditions (see section 2 for definitions). This class of matching condi-
tions appears in applications and produces new qualitative di�culties in investigating non-
linear inverse coe�cient problems. For studying this class of inverse problems we develop the
ideas of the method of spectral mappings [16-17]. We prove a uniqueness theorem for this
class of nonlinear inverse problems, and provide a constructive procedure for their solution. In
order to construct the solution, we solve, in particular, an important auxiliary inverse prob-
lem for a quasi-periodic boundary value problem on the cycle with discontinuity conditions
in interior points. The obtained results are natural generalizations of the well-known results
on inverse problems for di↵erential operators on an interval and on graphs with standard
matching conditions.

We note that results and methods of the inverse spectral problem theory can be useful for
investigating inverse problems for partial di↵erential equations (see [3]). Inverse problems for
partial di↵erential equations are reflected in the monographs [18-21] and others.

The paper is organized as follows. In section 2 we introduce the main notions and give a
formulation of the inverse problem. In section 3 spectral properties are studied. Section 4 is
devoted to the solution of the inverse problem.

2. Formulation of the inverse problem.

2.1. Consider a compact graph G in Rm with the set of edges E = {e0, . . . , er},
where e0 is a cycle, E 0 = {e1, . . . , er} are boundary edges. Let {v1, . . . , vr+N

} be the set of
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vertices, where V = {v1, . . . , vr}, v
k

2 e
k

, are boundary vertices, and U = {v
r+1, . . . , vr+N

}
are internal vertices, U = E 0 \ e0 . The cycle e0 consists of N parts:

e0 =
N[

k=1

e
r+k

, e
r+k

= [v
r+k

, v
r+k+1], k = 1, N, v

r+N+1 := v
r+1.

Each boundary edge e
j

, j = 1, r has the initial point at v
j

, and the end point in the set
U. The set E 0 consists of N groups of edges: E 0 = E1 [ . . .[ E

N

, E
k

\ e0 = v
r+k

. Let r
k

be
the number of edges in E

k

; hence r = r1 + · · ·+ r
N

. Denote m0 = 1, m
k

= r1 + · · ·+ r
k

,
k = 1, N. Then

E
k

= {e
j

}, j = m
k�1 + 1,m

k

, v
r+k

=
mk\

j=mk�1+1

e
j

, k = 1, N.

Thus, the boundary edge e
j

2 E
k

can be viewed as the segment e
j

= [v
j

, v
r+k

]. For example,
the graph G with N = 3 and r = 4 is on fig.1.
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Let T
j

be the length of the edge e
j

, j = 1, r +N, and let T := T
r+1 + . . . + T

r+N

be
the length of the cycle e0 . Put b0 = 0, b

k

= T
r+1 + . . .+ T

r+k

, k = 1, N. Then b
N

= T.
Each edge e

j

, j = 1, r +N is parameterized by the parameter x
j

2 [0, T
j

], and x
j

= 0
corresponds to the vertex v

j

. The whole cycle e0 is parameterized by the parameter x 2
[0, T ], where x = x

r+j

+ b
j�1 for x

r+j

2 [0, T
r+j

], j = 1, N.
An integrable function Y on G may be represented as Y = {y

j

}
j=1,r+N

, where the
function y

j

(x
j

), x
j

2 [0, T
j

], is defined on the edge e
j

. The function y(x), x 2 [0, T ] on
the cycle e0 is defined by y(x) = y

r+j

(x
r+j

), j = 1, N.
2.2. Let Q = {q

j

}
j=1,r+N

be an integrable real-valued function on G ; Q is called the

potential. The function q(x), x 2 [0, T ] is defined by q(x) = q
r+j

(x
r+j

), j = 1, N. Denote
U
j

(Y ) := y0
j

(0) � h
j

y
j

(0), j = 1, r +N, U
r+N+1 := U

r+1, where h
j

are real numbers.
Consider the following di↵erential equation on G :

�y00
j

(x
j

) + q
j

(x
j

)y
j

(x
j

) = �y
j

(x
j

), x
j

2 [0, T
j

], j = 1, r +N, (1)

where � is the spectral parameter, the functions y
j

, y0
j

, j = 1, r +N, are absolutely con-
tinuous on [0, T

j

] and satisfy the following matching conditions in each internal vertex v
µ+1 ,

µ = r + 1, r +N :
y
µ+1(0) = ↵

j

y
j

(T
j

) for all e
j

2 E 0
µ�r+1,

U
µ+1(Y ) =

X

ej2E 0
µ�r+1

�
j

y0
j

(T
j

),

9
>=

>;
(2)

y
r+N+1 := y

r+1, hr+N+1 := h
r+1, EN+1 := E1, E 0

µ�r+1 := E
µ�r+1 [ e

µ

,
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where ↵
j

and b
j

are real numbers, and ↵
j

�
j

6= 0. For definiteness, let ↵
j

�
j

> 0. The
matching conditions (2) are a generalization of the standard matching conditions (see [14]),
where ↵

j

= �
j

= 1, h
j

= 0.
Let us consider the boundary value problem B0 on G for equation (1) with the matching

conditions (2) and with the following boundary conditions at the boundary vertices v1, . . . , vr :

U
j

(Y ) = 0, j = 1, r.

Denote by ⇤0 = {�
n0}n�0 the eigenvalues (counting with multiplicities) of B0 . Moreover,

we also consider the boundary value problems B
⌫1,...,⌫p , p = 1, r, 1  ⌫1 < . . . ⌫

p

 r for
equation (1) with the matching conditions (2) and with the boundary conditions

y
k

(0) = 0, k = ⌫1, . . . , ⌫p, U
j

(Y ) = 0, j = 1, r, j 6= ⌫1, . . . , ⌫p.

Denote by ⇤
⌫1,...,⌫p := {�

n,⌫1,...,⌫p}n�0 the eigenvalues (counting with multiplicities) of B
⌫1,...,⌫p .

It will be shown in Section 4 that an important role for solving inverse problems on graphs
is played by an auxiliary quasi-periodic boundary value problem on the cycle with discontinu-
ity conditions in interior points. The parameters of this auxiliary problem depend on the pa-
rameters of B0 . More precisely, let us introduce real numbers �

j

, ⌘
j

, (j = 1, N � 1), h,↵, �
by the formulae

�
j

=
r

↵
r+j

�
r+j

, ⌘
j

= �
j

h
r+j+1, j = 1, N � 1, h = h

r+1,

↵ = ↵
r+N

N�1Y

j=1

�
j

N�1Y

j=1

�
r+j

, � =
N�1Y

j=1

�
j

NY

j=1

�
r+j

.

9
>>>>=

>>>>;

(3)

Clearly, ↵� > 0, �
j

> 0, j = 1, N � 1. Using these parameters we consider the following
quasi-periodic discontinuity boundary value problem B on the cycle e0 :

�y00(x) + q(x)y(x) = �y(x), x 2 (0, T ), (4)

y(0) = ↵y(T ), y0(0)� hy(0) = �y0(T ), (5)

y(b
j

+ 0) = �
j

y(b
j

� 0), y0(b
j

+ 0) = ��1
j

y0(b
j

� 0) + ⌘
j

y(b
j

� 0), j = 1, N � 1, (6)

0 < b1 < . . . < b
N�1 < b

N

= T.

Let S(x,�) and C(x,�) be solutions of equation (4) satisfying discontinuity conditions (6)
and the initial conditions S(0,�) = C 0(0,�) = 0, S 0(0,�) = C(0,�) = 1. Put '(x,�) =
C(x,�) + hS(x,�). Eigenvalues {�

n

}
n�1 of B coincide with zeros of the characteristic

function
a(�) = ↵'(T,�) + �S 0(T,�)� (1 + ↵�). (7)

Put d(�) := S(T,�), Q(�) = ↵'(T,�) � �S 0(T,�). All zeros {z
n

}
n�1 of the entire func-

tion d(�) are simple, i.e. ḋ(z
n

) 6= 0, where ḋ(�) := d

d�

d(�). Denote M
n

= �d1(zn)

ḋ(z
n

)
,

where d1(�) := C(T,�). The sequence {M
n

}
n�1 is called the Weyl sequence. Put !

n

=
signQ(z

n

), ⌦ = {!
n

}
n�1.

We choose and fix one edge e
⇠i 2 E

i

from each block E
i

, i = 1, N, i.e. m
i�1 + 1  ⇠

i


m

i

. Denote by ⇠ := {k : k = ⇠1, . . . , ⇠N} the set of indices ⇠
i

, i = 1, N. Let ↵
j

and �
j

,
j = 1, r +N, be known a priori. The inverse problem is formulated as follows.

Inverse problem 1. Given 2N + r�N spectra ⇤
j

, j = 0, r , ⇤
⌫1,...,⌫p , p = 2, N, 1 

⌫1 < . . . < ⌫
p

 r, ⌫
j

2 ⇠, and ⌦, construct the potential Q on G and H := [h
j

]
j=1,r+N

.
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Obviously, in general it is not possible to recover also all coe�cients ↵
j

and �
j

. Note that
this inverse problem is a generalization of the classical inverse problems for Sturm-Liouville
operators on an interval or on graphs.

Example 1. Let N = 3, r = 4 (see fig.1).
Case 1. Take ⇠1 = 2, ⇠2 = 3, ⇠3 = 4. Then we specify ⌦ and the following spectra:
⇤0,⇤1,⇤2,⇤3,⇤4,⇤23,⇤24,⇤34,⇤234 .
Case 2. Take ⇠1 = 1, ⇠2 = 3, ⇠3 = 4. Then we specify ⌦ and the following spectra:
⇤0,⇤1,⇤2,⇤3,⇤4,⇤13,⇤14,⇤34,⇤134 .

Let us formulate the uniqueness theorem for the solution of Inverse Problem 1. For this
purpose together with q we consider a potential q̃. Everywhere below if a symbol ↵ denotes
an object related to q, then ↵̃ will denote the analogous object related to q̃.

Theorem 1. If ⇤
j

= ⇤̃
j

, j = 0, r, ⇤
⌫1,...,⌫p = ⇤̃

⌫1,...,⌫p , p = 2, N, 1  ⌫1 < . . . < ⌫
p

 r,

⌫
j

2 ⇠, and ⌦ = ⌦̃, then Q = Q̃ and H = H̃.

This theorem will be proved in section 4. We will also provide there a constructive pro-
cedure for the solution of Inverse problem 1. In section 3 we study properties of spectral
characteristics and prove some auxiliary assertions.

3. Properties of spectral characteristics.

3.1. Let S
j

(x
j

,�), C
j

(x
j

,�), j = 1, r +N, x
j

2 [0, T
j

], be the solutions of equation
(1) on the edge e

j

with the initial conditions

S
j

(0,�) = C 0
j

(0,�) = 0, S 0
j

(0,�) = C
j

(0,�) = 1. (8)

Put '
j

(x,�) = C
j

(x
j

,�)+h
j

S
j

(x
j

,�). For each fixed x
j

2 [0, T
j

], the functions S(⌫)
j

(x
j

,�),

C(⌫)
j

(x
j

,�), '(⌫)
j

(x
j

,�), j = 1, r +N, ⌫ = 0, 1, are entire in � of order 1/2 . Moreover,

h'
j

(x
j

,�), S
j

(x
j

,�)i ⌘ 1,

where hy, zi := yz0 � y0z is the Wronskian of y and z.

Lemma 1. The following relations hold for k = 1, N � 1, ⌫ = 0, 1 :

S(⌫)(b
k+1 � 0,�) = �

k

S(b
k

� 0,�)C(⌫)
r+k+1(Tr+k+1,�) + ��1

k

S 0(b
k

� 0,�)S(⌫)
r+k+1(Tr+k+1,�)

+⌘
k

S(b
k

� 0,�)S(⌫)
r+k+1(Tr+k+1,�), (9)

C(⌫)(b
k+1 � 0,�) = �

k

C(b
k

� 0,�)C(⌫)
r+k+1(Tr+k+1,�) + ��1

k

C 0(b
k

� 0,�)S(⌫)
r+k+1(Tr+k+1,�)

+⌘
k

C(b
k

� 0,�)S(⌫)
r+k+1(Tr+k+1,�), (10)

Indeed, fix k = 1, N � 1. Let x 2 [b
k

, b
k+1], i.e. x = x

r+k+1 + b
k

, x
r+k+1 2 [0, T

r+k+1].
Using the fundamental system of solutions S

r+k+1(xr+k+1,�), Cr+k+1(xr+k+1,�), on e
r+k+1 ,

one has

S(⌫)(x,�) = A(�)C(⌫)
r+k+1(xr+k+1,�) + B(�)S(⌫)

r+k+1(xr+k+1,�), ⌫ = 0, 1.

Taking initial conditions (8) for j = r+k+1 into account we find the coe�cients A(�) and
B(�), and arrive at (9). Relation (10) is proved similarly.

Let here and below � = ⇢2, ⌧ := Im ⇢ � 0, ⇧ := {⇢ : ⌧ � 0}, ⇧
�

:= {⇢ : arg ⇢ 2
[�, ⇡��]}, � 2 (0, ⇡/2). The following theorem describes the asymptotic behavior of S(x,�)
and C(x,�) on each interval x 2 (b

j

, b
j+1) (see [22]).
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Theorem 2. Fix j = 1, N � 1. For x 2 (b
j

, b
j+1), ⌫ = 0, 1, m = 1, 2, |⇢| ! 1,

S(⌫)(x,�) =
⇣ jY

k=1

⇠+
k

⌘ d⌫

dx⌫

⇣sin ⇢x
⇢

+
jX

k=1

X

1µ1<...<µkj

⇣ kY

i=1

⇠�
µi

⇠+
µi

⌘sin(⇢↵
µ1,...,µk

(x))

⇢

⌘

+O(⇢⌫+m�3e⌧x),

C(⌫)(x,�) =
⇣ jY

k=1

⇠+
k

⌘ d⌫

dx⌫

⇣
cos ⇢x+

jX

k=1

X

1µ1<...<µkj

⇣ kY

i=1

⇠�
µi

⇠+
µi

⌘
cos(⇢↵

µ1,...,µk
(x))

⌘

+O(⇢⌫+m�3e⌧x),

where

⇠±
j

:=
�
j

+ ��1
j

2
, ↵

µ1,...,µk
(x) := 2

kX

i=1

(�1)i�1b
µi + (�1)kx.

Using Theorem 2, we obtain for |⇢| ! 1, ⇢ 2 ⇧
�

:

a(�) =
(↵ + �)⇠

2
e�i⇢T [1], d(�) = � ⇠

2i⇢
e�i⇢T [1], ⇠ :=

N�1Y

j=1

⇠+
j

. (11)

Moreover,
a(�) = O(e⌧T ), d(�) = O(⇢�1e⌧T ), |⇢| ! 1, ⇢ 2 ⇧. (12)

3.2. Fix k = 1, r. Let �
k

= {�
kj

}
j=1,r+N

, be the solution of equation (1) satisfying
(2) and the boundary conditions

U
j

(�
k

) = �
jk

, j = 1, r, (13)

where �
jk

is the Kronecker symbol. Denote M
k

(�) := �
kk

(0,�), k = 1, r. The function
M

k

(�) is called the Weyl function with respect to the boundary vertex v
k

. Clearly,

�
kk

(x
k

,�) = S
k

(x
k

,�) +M
k

(�)'
k

(x
k

,�), x
k

2 [0, T
k

], k = 1, r, (14)

and consequently,
h'

k

(x
k

,�), �
kk

(x
k

,�)i ⌘ 1. (15)

Denote M1
kj

(�) := �
kj

(0,�) , M0
kj

(�) := �0
kj

(0,�) . Then

�
kj

(x
j

,�) = M1
kj

(�)S
j

(x
j

,�) +M0
kj

(�)'
j

(x
j

,�), x
j

2 [0, T
j

], j = 1, r +N, k = 1, r. (16)

In particular, M1
kk

(�) = 1 , M0
kk

(�) = M
k

(�). Substituting (16) into (2) and (13) we obtain a
linear algebraic system D

k

with respect to M ⌫

kj

(�) , ⌫ = 0, 1, j = 1, r +N. The determinant
�0(�) of D

k

does not depend on k and has the form

�0(�) = �(�)
⇣
a0(�) +

NX

k=1

X

1µ1<...<µkN

a
µ1...µk

(�)
kY

i=1

⇣ X

ej2Eµi

⌦
j

(�)
⌘⌘

, (17)

where

�(�) =
rY

j=1

(↵
j

'
j

(T
j

,�)), ⌦
j

(�) =
�
j

'0
j

(T
j

,�)

↵
j

'
j

(T
j

,�)
, (18)

a0(�) = a(�), a1(�) = ↵d(�). (19)
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We note that the coe�cients a0(�) and a
µ1...µk

(�) in (17) depend only on S(⌫)
j

(T
j

,�) and

C(⌫)
j

(T
j

,�), for j = r + 1, r +N, and (19) follows from Lemma 1. We do not need concrete
formulae for the other coe�cients a

µ1...µk
(�). The function �0(�) is entire in � of order

1/2 , and its zeros coincide with the eigenvalues of the boundary value problem B0. The
function �0(�) is called the characteristic function for the boundary value problems B0.
Let �

⌫1,...,⌫p(�), p = 1, r, 1  ⌫1 < . . . < ⌫
p

 r, be the function obtained from �0(�) by

the replacement of '(⌫)
j

(T
j

,�) with S(⌫)
j

(T
j

,�) for j = ⌫1, . . . , ⌫p , ⌫ = 0, 1. More precisely,

�
⌫1,...,⌫p(�) = �

⌫1,...,⌫p(�)
⇣
a0(�) +

NX

k=1

X

1µ1<...<µkN

a
µ1...µk

(�)

⇥
kY

i=1

⇣ X

ej2Eµi , j 6=⌫1,...,⌫p

⌦
j

(�) +
X

ej2Eµi , j=⌫1,...,⌫p

⌦0
j

(�)
⌘⌘

, (20)

where

�
⌫1,...,⌫p(�) =

rY

j=1, j 6=⌫1,...,⌫p

(↵
j

'
j

(T
j

,�))
Y

j=⌫1,...,⌫p

(↵
j

S
j

(T
j

,�)), ⌦0
j

(�) =
�
j

S 0
j

(T
j

,�)

↵
j

S
j

(T
j

,�)
. (21)

The function �
⌫1,...,⌫p(�) is entire in � of order 1/2 , and its zeros coincide with the eigen-

values of the boundary value problem B
⌫1,...,⌫p . The function �

⌫1,...,⌫p(�) is called the char-
acteristic function for the boundary value problem B

⌫1,...,⌫p .
Solving the algebraic system D

k

we get by Cramer’s rule: M s

kj

(�) = �s

kj

(�)/�0(�) ,

s = 0, 1, j = 1, r +N, where the determinant �s

kj

(�) is obtained from �0(�) by the
replacement of the column which corresponds to M s

kj

(�) with the column of free terms. In
particular,

M
k

(�) = ��
k

(�)

�0(�)
, k = 1, r. (22)

3.3. It is known (see [23]) that for each fixed j = 1, r +N, on the edge e
j

, there exists
a fundamental system of solutions of equation (1) {e

j1(xj

, ⇢), e
j2(xj

, ⇢)}, x
j

2 [0, T
j

], ⇢ 2
⇧, |⇢| � ⇢⇤ with the properties:

1) the functions e(⌫)
js

(x
j

, ⇢), ⌫ = 0, 1, are continuous for x
j

2 [0, T
j

], ⇢ 2 ⇧, |⇢| � ⇢⇤ ;

2) for each x
j

2 [0, T
j

], the functions e(⌫)
js

(x
j

, ⇢), ⌫ = 0, 1, are analytic for Im ⇢ > 0, |⇢| > ⇢⇤ ;
3) uniformly in x

j

2 [0, T
j

], the following asymptotical formulae hold

e(⌫)
j1 (xj

, ⇢) = (i⇢)⌫ exp(i⇢x
j

)[1], e(⌫)
j2 (xj

, ⇢) = (�i⇢)⌫ exp(�i⇢x
j

)[1], ⇢ 2 ⇧, |⇢| ! 1, (23)

where [1] = 1 +O(⇢�1).

Fix k = 1, r. One has

�
kj

(x
j

,�) = A1
kj

(⇢)e
j1(xj

, ⇢) + A0
kj

(⇢)e
j2(xj

, ⇢), x
j

2 [0, T
j

], j = 1, r +N. (24)

Substituting (24) into (2) and (13) we obtain a linear algebraic system D0
k

with respect to
A⌫

kj

(⇢) , ⌫ = 0, 1, j = 1, r +N. The determinant �(⇢) of D0
k

does not depend on k, and
has the form

�(⇢) =
⇣
�0 +O

⇣1
⇢

⌘⌘
⇢r+N exp

⇣
� i⇢

r+NX

j=1

T
j

⌘
, (25)

where �0 is the determinant obtained from �(⇢) by the replacement of e(⌫)
j1 (0, ⇢), e(⌫)

j1 (Tj

, ⇢),

e(⌫)
j2 (0, ⇢), e(⌫)

j2 (Tj

, ⇢) and h
j

with 1, 0, (�1)⌫ , (�1)⌫ and 0, respectively. We assume that
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�0 6= 0. This condition is called the regularity condition for matching. Di↵erential operators on
G which do not satisfy the regularity condition, possess qualitatively di↵erent properties in
connection with the formulation and investigation of inverse problems, and are not considered
in this paper; they require a separate investigation. We note that for classical Kirchho↵’s
matching conditions we have ↵

j

= �
j

= 1, h
j

= 0, and the regularity condition is satisfied
obviously. Solving the algebraic system D0

k

and using (23)-(25) we get for each fixed x
k

2
[0, T

k

) :

�(⌫)
kk

(x
k

,�) = (i⇢)⌫�1 exp(i⇢x
k

)[1], ⇢ 2 ⇧
�

, |⇢| ! 1. (26)

In particular, M
k

(�) = (i⇢)�1[1], ⇢ 2 ⇧
�

, |⇢| ! 1. Moreover, uniformly in x
k

2 [0, T
k

],

'(⌫)
k

(x
k

,�) =
1

2

⇣
(i⇢)⌫ exp(i⇢x

k

)[1] + (�i⇢)⌫ exp(�i⇢x
k

)[1]
⌘
, ⇢ 2 ⇧, |⇢| ! 1. (27)

Using (17), (27), (11) and (12), by the well-known method (see, for example, [24]), one can
obtain the following properties of the characteristic function �0(�) and the eigenvalues ⇤0

of the boundary value problem B0 .
1) For ⇢ 2 ⇧, |⇢| ! 1,

�0(�) = O
⇣
exp

⇣
⌧

r+NX

j=1

T
j

⌘⌘
.

2) There exist h > 0, C
h

> 0 such that

|�0(�)| � C
h

exp
⇣
⌧

r+NX

j=1

T
j

⌘

for ⌧ � h. Hence, the eigenvalues �
n0 = ⇢2

n0 lie in the domain 0  ⌧ < h.
3) The number N

⇠

of zeros of �0(�) in the rectangle ⇤
⇠

= {⇢ : ⌧ 2 [0, h], Re ⇢ 2
[⇠, ⇠ + 1]} is bounded with respect to ⇠.

4) For n ! 1,

⇢
n0 = ⇢0

n0 +O
⇣ 1

⇢0
n0

⌘
,

where �0
n0 = (⇢0

n0)
2 are the eigenvalues of the boundary value problem B0 with Q = 0 and

H = 0.
The characteristic functions �

⌫1,...,⌫p(�) have similar properties. In particular, for ⇢ 2
⇧, |⇢| ! 1,

�
⌫1,...,⌫p(�) = O

⇣
|⇢|�p exp

⇣
⌧

r+NX

j=1

T
j

⌘⌘
.

Using the properties of the characteristic functions and Hadamard’s factorization the-
orem [25, p.289], one gets that the specification of the spectrum ⇤0 uniquely determines
the characteristic function �0(�) , i.e. if ⇤0 = ⇤̃0 , then �0(�) ⌘ �̃0(�). Analogously,
if ⇤

⌫1,...,⌫p = ⇤̃
⌫1,...,⌫p , then �

⌫1,...,⌫p(�) ⌘ �̃
⌫1,...,⌫p(�). The characteristic functions can be

constructed as the corresponding infinite products (see [3] for details).

4. Solution of Inverse Problem 1.

In this section we provide a constructive procedure for the solution of Inverse problem 1,
and prove its uniqueness.

4.1. Fix k = 1, r, and consider the following auxiliary inverse problem on the edge e
k

,
which is called IP(k).
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IP(k). Given two spectra ⇤0 and ⇤
k

, construct q
k

(x
k

), x
k

2 [0, T
k

], and h
k

.

In IP(k) we construct the potential only on the edge e
k

, but the spectra bring a global
information from the whole graph. In other words, IP(k) is not a local inverse problem related
to the edge e

k

.
Let us prove the uniqueness theorem for the solution of IP(k).

Theorem 3. Fix k = 1, r. If ⇤0 = ⇤̃0 and ⇤
k

= ⇤̃
k

, then q
k

(x
k

) = q̃
k

(x
k

) , a.e. on

[0, T
k

], and h
k

= h̃
k

. Thus, the specification of two spectra ⇤0 and ⇤
k

uniquely determines

the potential q
k

on the edge e
k

, and the coe�cient h
k

.

Proof. Since ⇤0 = ⇤̃0, ⇤k

= ⇤̃
k

, it follows that

�0(�) ⌘ �̃0(�), �
k

(�) ⌘ �̃
k

(�),

and according to (22),
M

k

(�) = M̃
k

(�). (28)

Consider the functions

P k

1s(xk

,�) = (�1)s�1
⇣
'
k

(x
k

,�)�̃(2�s)
kk

(x
k

,�)� '̃(2�s)
k

(x
k

,�)�
kk

(x
k

,�)
⌘
, s = 1, 2. (29)

Using (15) we calculate

'
k

(x
k

,�) = P k

11(xk

,�)'̃
k

(x
k

,�) + P k

12(xk

,�)'̃0
k

(x
k

,�). (30)

It follows from (26), (27) and (29) that

P k

1s(xk

,�) = �1s +O(⇢�1), ⇢ 2 ⇧
�

, |⇢| ! 1, x
k

2 (0, T
k

]. (31)

According to (14) and (29),

P k

1s(xk

,�) = (�1)s�1
⇣⇣

'
k

(x
k

,�)S̃(2�s)
k

(x
k

,�)� '̃(2�s)
k

(x
k

,�)S
k

(x
k

,�)
⌘

+(M
k

(�)� M̃
k

(�))'
k

(x
k

,�)'̃(2�s)
k

(x
k

,�)
⌘
.

It follows from (28) that for each fixed x
k

, the functions P k

1s(xk

,�) are entire in � of
order 1/2. Together with (31) this yields P k

11(xk

,�) ⌘ 1 , P k

12(xk

,�) ⌘ 0. Substituting these
relations into (30) we get '

k

(x
k

,�) ⌘ '̃
k

(x
k

,�) for all x
k

and �, and consequently,

q
k

(x
k

) = q̃
k

(x
k

) a.e. on [0, T
k

], h
k

= h̃
k

.

Theorem 3 is proved.

Using the method of spectral mappings [16] for the Sturm-Liouville operator on the edge
e
k

one can get a constructive procedure for finding q
k

and h
k

. Here we only explain ideas
briefly; for details and proofs see [16]. Take a boundary value problem B̃0 with Q̃ = 0,
H̃ = 0. Take a fixed c1 > 0 such that |Im ⇢

n0|, |Im ⇢̃
n0| < c1 . In the ⇢ - plane we consider

the contour � (with counterclockwise circuit) of the form � = �+ [ ��, where �± = {⇢ :
±Im ⇢ = c1}. Denote

r̃
k

(x
k

, ⇢, ✓) =
h'̃

k

(x
k

,�), '̃
k

(x
k

, ✓)i
�� ✓

⇣
M

k

(✓)� M̃
k

(✓)
⌘
.

For each fixed x
k

2 (0, T
k

), the function '
k

(x
k

,�) is the unique solution of the following
linear integral equation

'̃
k

(x
k

,�) = '
k

(x
k

,�) +
1

2⇡i

Z

�

r̃
k

(x
k

,�, ✓)'
k

(x
k

, ✓) d✓. (32)
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Using the solution '
k

(x
k

,�) of equation (32) one can easily construct the coe�cients q
k

(x
k

)
and h

k

(for details see [3]).

4.2. In this subsection we study the following auxiliary inverse problem on the cycle e0 ,
which is called IP(0). Consider the boundary value problem B of the form (4)-(6), where
the parameters of B0 are defined by (3), and ↵, � are known.

IP(0). Given a(�), d(�) and ⌦ , construct q(x), x 2 [0, T ], h, �
j

and ⌘
j

, j =
1, N � 1.

This inverse problem is a generalization of the classical periodic inverse problem. Moreover,
for the standard matching conditions ( ↵

j

= �
j

= 1, h
j

= 0 ), IP(0) coincides with the classical
periodic inverse problem.

This inverse problem IP(0) was solved in [22], where the following theorem is established.

Theorem 4. The specification a(�), d(�) and ⌦ uniquely determines q(x), h, �
j

and

⌘
j

, j = 1, N � 1. The solution of IP(0) can be found by the following algorithm.

Algorithm 1.
1) Construct D(�) = a(�) + (1 + ↵�).
2) Find zeros {z

n

}
n�1 of the entire function d(�).

3) Calculate Q(z
n

) via
Q(z

n

) = !
n

p
D2(z

n

)� 4↵�.

4) Construct d1(zn) by

d1(zn) =
1

2↵
(D(z

n

) +Q(z
n

)).

5) Find ḋ(z
n

).

6) Calculate the Weyl sequence {M
n

}
n�1 via M

n

= �d1(zn)

ḋ(z
n

)
.

7) From the given data {z
n

,M
n

}
n�1 construct q(x), �

j

, ⌘
j

, j = 1, N � 1, by solving the
inverse Dirichlet problem with discontinuities inside the interval (see [26]).
8) Find S(T,�), S 0(T,�) and C(T,�).
9) Calculate h, using (7).

4.3. Let us go on to the solution of Inverse problem 1. Firstly, we give the proof of
Theorem 1.

Assume that ⇤
k

= ⇤̃
k

, k = 0, r, ⇤
⌫1,...,⌫p = ⇤̃

⌫1,...,⌫p , p = 2, N, 1  ⌫1 < . . . < ⌫
p

 r,

⌫
j

2 ⇠, and ⌦ = ⌦̃. Then one has

�
k

(�) ⌘ �̃
k

(�), k = 0, r,

�
⌫1,...,⌫p(�) ⌘ �̃

⌫1,...,⌫p(�), p = 2, N, 1  ⌫1 < . . . < ⌫
p

 r, ⌫
j

2 ⇠.

Moreover, according to (3), �
j

= �̃
j

, j = 1, N � 1, and ↵ = ↵̃, � = �̃. Using Theorem 3,
we get q

k

(x
k

) = q̃
k

(x
k

) a.e. on [0, T
k

] and h
k

= h̃
k

, k = 1, r, and consequently,

C
k

(x
k

,�) ⌘ C̃
k

(x
k

,�), S
k

(x
k

,�) ⌘ S̃
k

(x
k

,�), '
k

(x
k

,�) ⌘ '̃
k

(x
k

,�), k = 1, r. (33)

By virtue of (18), (21) and (33) one has

�(�) ⌘ �̃(�), �
⌫1,...,⌫p(�) ⌘ �̃

⌫1,...,⌫p(�), ⌦
j

(�) ⌘ ⌦̃
j

(�), ⌦0
j

(�) ⌘ ⌦̃0
j

(�), j = 1, r.

Using (17) and (20), we obtain, in particular, a0(�) = ã(�) , a1(�) = ã1(�). In view of (19),
this yields

a(�) = ã(�), d(�) = d̃(�).
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It follows from Theorem 4 that q
k

(x
k

) = q̃
k

(x
k

) a.e. on [0, T
k

], k = r + 1, r +N, and
h = h̃, ⌘

j

= ⌘̃
j

, j = 1, N � 1. Taking (3) into account, we get H = H̃. Theorem 1 is
proved.

The solution of Inverse problem 1 can be constructed by the following algorithm.

Algorithm 2. Given ⇤
k

, k = 0, r , ⇤
⌫1,...,⌫p , p = 2, N, 1  ⌫1 < . . . < ⌫

p

 r,
⌫
j

2 ⇠ , and ⌦.
1) Construct �

k

(�) and �
⌫1,...,⌫p(�).

2) Calculate �
j

, j = 1, N � 1, ↵ and �, using (3).
3) For each fixed k = 1, r, solve the inverse problem IP(k) and find q

k

(x
k

), x
k

2 [0, T
k

] on
the edge e

k

and h
k

.
4) For each fixed k = 1, r, construct C

k

(x
k

,�), S
k

(x
k

,�) and '
k

(x
k

,�), x
k

2 [0, T
k

].
5) Calculate a(�) and d(�), using (17), (19) and (20).
6) From the given a(�), d(�) and ⌦, construct q

k

(x
k

), [0, T
k

], k = r + 1, r +N, h and
⌘
j

, j = 1, N � 1.
7) Find H, using (3).

Acknowledgment. This research was supported in part by DAAD and by Grant 13-01-
00134 of the Russian Foundation for Basic Research.

REFERENCES

[1] Marchenko V.A., Sturm-Liouville operators and their applications. Naukova Dumka,
Kiev, 1977; English transl., Birkhäuser, 1986.
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