SS 24 Mathematik: Thema 9

Elementare Zinsrechnung

Zinssatz (Rendite) je Zinsperiode i = p% p = Prozentpunkte

Zinsfaktor (Aufzinsungsfaktor) q = 1 + i

Diskontfaktor (Abzinsungsfaktor) $v = 1/(1+i) = q^{-1}$

Laufzeit n Zinsperioden (Zeit<u>intervalle</u>) $j=1,\ldots,n$ zugehörige n+1 Zeitpunkte $j=0,1,\ldots,n$

 K_i Kapitalwert zum Zeitpunkt j (nach j Zinsperioden)

 K_0 Barwert (Startkapital, Gegenwartswert) K_n Endwert (Zielwert)

VORSICHT mit Bezeichnungen/Formeln bei der Zinsrechnung: Es ist auch üblich, den Prozentsatz i=p% als Zinsrate (interest rate) zu benennen und die Prozentzahl (Prozentpunkte) p als Zinssatz(!!!) oder als Zinsfu β . Dabei wird manchmal unklar definiert "p = Zinssatz (in Prozent)", obwohl damit kein Prozentsatz, sondern Prozentpunkte gemeint sind:

Bsp. 2 "p=3 (Prozentpunkte), i=3% ". Dann ist p die Zahl 3 mit der Maßeinheit " Prozentpunkte" (missverstehbar: "Prozent"), aber "i=3%" meint die dimensionslose Zahl 0.03=3/100=3 Prozent von 1.

Verwenden Sie bei "Prozentangaben" in der Zinsrechnung immer die Angabeform p Prozentpunkte, wenn Sie die Prozentzahl p meinen!

Zinsperioden konstanter Länge (meist Jahre)

77 Zinseszinsrechnung (Auflösen der Endwertformel)

 $K_0 > 0$

Endwert $K_n = K_0 \cdot q^n$

Barwert $K_0 = K_n \cdot q^{-n} = K_n \cdot v^n$

Zinsfaktor $q = (K_n/K_0)^{1/n}$ Rendite p% = i = q - 1

Laufzeit 1. $x = \frac{\ln(K_x/K_0)}{\ln q} = \frac{\ln K_x - \ln K_0}{\ln q}$ meist: $x \notin \mathbb{N}$

2. $n = \lceil x \rceil$ Zeitpunkt der ersten Überschreitung des Zielwerts

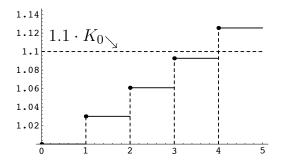
 K_x durch K_n , d.h. $K_n \ge K_x > K_{n-1}$

Bsp. 3a Gegeben:
$$K_0 > 0, p\% = 3\%, n = 5.$$
 Gefragt: $K_n = K_0 \cdot 1.03^5 (\approx K_0 \cdot 1.16)$

Bsp. 3b Gegeben:
$$K_n > 0, p\% = 3\%, n = 3.$$
 Gefragt: $K_0 = K_n / 1.03^3 (\approx K_n \cdot 0.89)$

Bsp. 3c Gegeben:
$$K_0 > 0, n = 12, K_n = 2K_0$$
. Gefragt: $i = p\%$
$$q = 2^{1/12}, p\% = 2^{1/12} - 1 (\approx 6\%)$$

Bsp. 3d Gegeben:
$$K_0 > 0, p\% = 3\%, K_x = 1.1K_0$$
. Gefragt: $n = \lceil x \rceil$



Skizze des Verlaufs der Kapitalhöhe bei $i=p\%=3\%, K_0=1$, und Zielwert $K_x=1.1\cdot K_0$. Zeitpunkt n der ersten Überschreitung des Zielwerts K_x durch $K_n: n=\lceil\frac{\ln 1.1}{\ln 1.03}\rceil=\lceil 3.22\rceil=4$, d.h. $K_4\geq K_x>K_3$.

Als Beispiel einer einfachen Anlageform auf Basis der Endwertformel (mit dem Spezialfall Bundesschatzbrief Typ B):

SS 24 Mathematik: Thema 9

78 Zinsstaffel (verschiedene Zinssätze in den einzelnen Zinsperioden)

$$i_j=p_j\%$$
 Zinssatz für Zinsperiode j
$$j=1,\dots,n$$
 $q_j=1+i_j$ Zinsfaktor für Zinsperiode j

Endwert
$$K_n = K_0 \cdot q_1 \cdot \ldots \cdot q_n = K_0 \cdot (q_{\text{eff}})^n$$

Effektiver Zinsfaktor $q_{\text{eff}} = (q_1 \cdot \ldots \cdot q_n)^{1/n} = (K_n/K_0)^{1/n}$

Effektiver Zinssatz
$$i_{\text{eff}} = p_{\text{eff}}\% = q_{\text{eff}} - 1$$

Faktoren sind vertauschbar: Eine "Zinsstaffel" entsteht ggf. durch sortieren!

Sollen im Gegensatz zu den Basisformeln Nr. 77 bei den Verzinsungen nicht nur einmalige, sondern auch fortlaufende Zahlungen berücksichtigt werden, so kann man auf folgende Formeln für Summen endlicher geometrischer Folgen (> Thema 4) zurückgreifen.

79 Endliche geometrische Summen

Bsp. 3 (Sparplan)

Ein zehnjähriger Sparplan setze sich aus folgenden Bestandteilen zusammen. Eine vorschüssige jährliche Einzahlung von 100 Euro (d.h. keine Einzahlung im letzten Jahr, also 10 Zahlungen), eine Verzinsung von 10% des Einzahlungsbetrags, wobei die erste Verzinsung nach dem ersten Jahr erfolgt. Als Gesamtsparbetrag ergibt sich

$$100 \cdot 1.1^{1} + \ldots + 100 \cdot 1.1^{10} = 100 \cdot 1.1 + 100 \cdot 1.1 \cdot 1.1^{1} + \ldots + 100 \cdot 1.1 \cdot 1.1^{9}$$
$$= 110 + 110 \cdot 1.1^{1} + \ldots + 110 \cdot 1.1^{9} = 1100(1.1^{10} - 1)$$
$$\approx 1753.12$$

Der systematische Einsatz der Formel für endliche geometrische Summen (▷ Nr. 79) für die Verzinsung fortlaufender konstanter Zahlungen ergibt folgende Basisformeln.

80 Regelmäßige konstante Zahlungen zu den einzelnen Zinsperioden

Endwert bei jährlichen Ratenzahlungen A über n Zinsperioden (Jahre)

Einzahlung A > 0, Auszahlung A < 0

$$E_n = E_0 \cdot q^n + A \cdot q^t \cdot \frac{q^n - 1}{q - 1}$$
 vorschüssig $t = 1$ nachschüssig $t = 0$

Bsp.
$$4a$$
 0 1 2 3 4 Zeitpunkte Laufzeit $n=3$ $-$ 3 Zinsperioden vorschüssig E_0+A A A 0 3 Raten & E_0 nachschüssig E_0 A A A 3 Raten & E_0 q^3 q^2 q^1 q^0 4 Zinsfaktoren

Barwert einer jährlichen Rente R über n Zinsperioden (Jahre)

$$B_n = R \cdot v^t \cdot \frac{1-v^n}{1-v} = \frac{R}{q^t \cdot q^{n-1}} \cdot \frac{q^n-1}{q-1}$$
 vorschüssig $t = 0$ nachschüssig $t = 1$

Bsp. 5a) Geg.
$$n=10, A>0, i=3\%,$$
 vorschüssige Zahlung. $E_{10}=?$ $q=1.03, E_{10}=0+A\cdot 1.03\cdot \frac{1.03^{10}-1}{0.03}~(\approx 11.81\cdot A)$

$$Bsp.~5b)$$
 Geg. $n=5, R>0, i=3\%,$ vorschüssige Zahlung. $B_5=?$ $q=1.03, B_5=R\cdot\frac{1.03^5-1}{1.03^4\cdot0.03}(\approx 4.72\cdot R)$

Bsp. 5c) Ein Betrag K>0 soll jährlich vorschüssig über 10 gleiche Raten der Höhe A angespart werden um dann ab dem folgenden Jahr durch eine vorschüssige jährliche Rente der Höhe R in 5 Jahren aufgebraucht zu werden. Kalkulationszinssatz i=3%. Welche Beziehung besteht zwischen A und R? $[1.03^5\approx 1.16, 1.03^{10}\approx 1.34]$

SS 24 Mathematik: Thema 9

Ansatz:
$$E_{10} = K = B_5$$
, also $A \cdot 1.03 \cdot \frac{1.03^{10} - 1}{0.03} = R \cdot \frac{1.03^5 - 1}{1.34^4 \cdot 0.03}$. Dies ergibt $A \cdot 1.03^5 \cdot \frac{1.03^{10} - 1}{1.03^5 - 1} = R$, d.h. $R/A = 1.03^5 (1.03^5 + 1) = 1.03^{10} + 1.03^5 \approx 2.5$