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Abstract

For a bounded and convex domain in three dimensions we show that the Maxwell
constants are bounded from below and above by Friedrichs’ and Poincaré’s con-
stants.
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1 Introduction

Let Ω ⊂ R3 be a bounded and convex domain. It is well known that, e.g., by Rellich’s
selection theorem using standard indirect arguments, the Poincaré∗ inequalities

∃ cp,◦ > 0 ∀u ∈
◦
H1 |u| ≤ cp,◦|∇u|, (1.1)

∃ cp > 0 ∀u ∈ H1 ∩ R⊥ |u| ≤ cp|∇u| (1.2)

hold. Here, cp,◦ and cp are the Poincaré constants, which satisfy

0 < cp,◦ = 1/
√
λ1 < 1/

√
µ2 = cp,

∗The estimate (1.1) is often called Friedrichs’/Steklov inequality as well.
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where λ1 is the first Dirichlet and µ2 the second Neumann eigenvalue of the Laplacian. By
〈 · , · 〉 and | · | we denote the standard inner product and induced norm in L2 and we will

write the usual L2-Sobolev spaces as H1 and
◦
H1, the latter is defined as the closure in H1

of smooth and compactly supported test functions. All spaces and norms are defined on
Ω. Moreover, we introduce the standard Sobolev spaces for the rotation and divergence
by R and D. As before, we will denote the closures of test vector fields in the respective

graph norms by
◦
R and

◦
D. An index zero at the lower right corner of the latter spaces

indicates a vanishing derivative, e.g.,

R0 := {E ∈ R : rotE = 0},
◦
D0 := {E ∈

◦
D : divE = 0}.

As Ω is convex, it is especially simply connected and has got a connected boundary.

Hence, the Neumann and Dirichlet fields of Ω vanish, i.e., R0 ∩
◦
D0 =

◦
R0 ∩ R0 = {0}. By

the Maxwell compactness properties, i.e., the compactness of the two embeddings

◦
R ∩ D ↪→ L2, R ∩

◦
D ↪→ L2,

(and again by a standard indirect argument) the Maxwell inequalities

∃ cm,t > 0 ∀E ∈
◦
R ∩ D |E| ≤ cm,t

(
| rotE|2 + | divE|2

)1/2
, (1.3)

∃ cm,n > 0 ∀H ∈ R ∩
◦
D |H| ≤ cm,n

(
| rotH|2 + | divH|2

)1/2
(1.4)

hold. To the best of the author’s knowledge, general bounds for the Maxwell constants
cm,t and cm,n are missing. On the other hand, at least estimates for cm,t and cm,n from above
are very important from the point of view of applications, such as preconditioning or a
priori and a posteriori error estimation for numerical methods.

In the paper at hand we will prove that

cp,◦ ≤ cm,t, cm,n ≤ cp ≤ diam(Ω)/π (1.5)

holds true. We note that (1.5) is already well known in two dimensions, even for general
Lipschitz domains Ω ⊂ R2 (except of the last inequality), but new in three dimensions.
Furthermore, the last inequality in (1.5) has been proved in the famous paper of Payne
and Weinberger [9], where also the optimality of the estimate was shown. This paper
contains a small mistake, which has been corrected in [2].

2 Results and Proofs

We start with an inequality for irrotational fields.

Lemma 1 For all E ∈ ∇
◦
H1 ∩ D and all H ∈ ∇H1 ∩

◦
D

|E| ≤ cp,◦| divE|, |H| ≤ cp| divH|.
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Proof Let ϕ ∈
◦
H1 with E = ∇ϕ. By (1.1) we get

|E|2 = 〈E,∇ϕ〉 = −〈divE,ϕ〉 ≤ | divE||ϕ| ≤ cp,◦| divE||∇ϕ| = cp,◦| divE||E|.

Let ϕ ∈ H1 with H = ∇ϕ and ϕ⊥R. Since H ∈
◦
D and by (1.2) we obtain

|H|2 = 〈H,∇ϕ〉 = −〈divH,ϕ〉 ≤ | divH||ϕ| ≤ cp| divH||∇ϕ| = cp| divH||H|,

completing the proof. �

Remark 2 Clearly, Lemma 1 extends to arbitrary Lipschitz domains Ω ⊂ RN , N ∈ N.

As usual in the theory of Maxwell’s equations, we need another crucial tool, the
Helmholtz decompositions of vector fields into irrotational and solenoidal vector fields.
For convex domains, these decompositions are very simple. We have

L2 = ∇
◦
H1 ⊕ rotR, L2 = ∇H1 ⊕ rot

◦
R, (2.1)

where ⊕ denotes the orthogonal sum in L2. We note

◦
R0 = ∇

◦
H1, R0 = ∇H1, D0(Ω) = rotR,

◦
D0 = rot

◦
R.

Moreover, with
◦
R :=

◦
R ∩ rotR, R := R ∩ rot

◦
R

we have
◦
R = ∇

◦
H1 ⊕

◦
R, R = ∇H1 ⊕R (2.2)

and see

rot
◦
R = rot

◦
R, rotR = rotR.

We note that all occurring spaces are closed subspaces of L2, which follows immediately
by the estimates (1.1)-(1.4). More details about the Helmholtz decompositions can be
found e.g. in [6].

To get similar inequalities for solenoidal vector fields as in Lemma 1 we need a crucial
lemma from [1, Theorem 2.17], see also [10, 5, 4, 3] for related partial results.

Lemma 3 Let E belong to
◦
R ∩ D or R ∩

◦
D. Then E ∈ H1 and

|∇E|2 ≤ | rotE|2 + | divE|2. (2.3)

We emphasize that for E ∈
◦
H1 and any domain Ω ⊂ R3

|∇E|2 = | rotE|2 + | divE|2 (2.4)

holds since −∆ = rot rot−∇ div. This formula is no longer valid if E has just the
tangential or normal boundary condition but for convex domains the inequality (2.3)
remains true.
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Lemma 4 For all vector fields E in
◦
R ∩ rotR or R ∩ rot

◦
R

|E| ≤ cp| rotE|.

Proof Let E ∈ rotR = rotR and Φ ∈ R with rot Φ = E. Then Φ ∈ H1 by Lemma 3

since R = R ∩
◦
D0. Moreover, Φ = rot Ψ can be represented by some Ψ ∈

◦
R. Hence, for

any constant vector a ∈ R3 we have 〈Φ, a〉 = 0. Thus, Φ belongs to H1 ∩ (R3)⊥. Then,

since E ∈
◦
R and by Lemma 3 we get

|E|2 = 〈E, rot Φ〉 = 〈rotE,Φ〉 ≤ | rotE||Φ| ≤ cp| rotE||∇Φ| ≤ cp| rotE|| rot Φ︸ ︷︷ ︸
=E

|.

If E ∈ rot
◦
R there exists Φ ∈

◦
R with rot Φ = E. Using (2.2) we decompose

E = E0 + Erot ∈ R0 ⊕R.

Then, rotErot = rotE and again by Lemma 3 we see Erot ∈ H1. Let a ∈ R3 such that

Erot − a ∈ H1 ∩ (R3)⊥. Since Φ ∈
◦
R, 〈rot Φ, H0〉 and 〈rot Φ, a〉 vanish. By Lemma 3

|E|2 = 〈rot Φ, E〉 = 〈rot Φ︸ ︷︷ ︸
=E

, Erot − a〉 ≤ |E||Erot − a| ≤ cp|E||∇Erot| ≤ cp|E|| rotErot︸ ︷︷ ︸
=rotE

|

holds, which completes the proof. �

Remark 5 It is well known that Lemma 4 holds in two dimensions for any Lipschitz
domain Ω ⊂ R2. This follows immediately from Lemma 1 if we take into account that
in two dimensions the rotation rot is given by the divergence div after 90◦-rotation of the
vector field to which it is applied.

Theorem 6 For all vector fields E ∈
◦
R ∩ D and H ∈ R ∩

◦
D

|E|2 ≤ c2p,0| divE|2 + c2p| rotE|2, |H|2 ≤ c2p| divH|2 + c2p| rotH|2

hold, i.e., cm,t, cm,n ≤ cp. Moreover, cp,0 ≤ cm,t, cm,n ≤ cp ≤ diam(Ω)/π.

Proof By the Helmholtz decomposition (2.1) we have

◦
R ∩ D 3 E = E∇ + Erot ∈ ∇

◦
H1 ⊕ rotR

with E∇ ∈ ∇
◦
H1 ∩ D and Erot ∈

◦
R ∩ rotR as well as divE∇ = divE and rotErot = rotE.

By Lemma 1 and Lemma 4 and orthogonality we obtain

|E|2 = |E∇|2 + |Erot|2 ≤ c2p,◦| divE|2 + c2p| rotE|2.

Similarly we have

R ∩
◦
D 3 H = H∇ +Hrot ∈ ∇H1 ⊕ rot

◦
R
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with H∇ ∈ H1 ∩
◦
D and Hrot ∈ R ∩ rot

◦
R as well as divH∇ = divH and rotHrot = rotH.

As before,
|H|2 = |H∇|2 + |Hrot|2 ≤ c2p| divH|2 + c2p| rotH|2.

This shows the upper bound. For the lower bound we look at (1.3) and (1.4) and obtain

1

c2m,t
= inf

06=E∈
◦
R∩D

| rotE|2 + | divE|2

|E|2
,

1

c2m,n
= inf

06=E∈R∩
◦
D

| rotE|2 + | divE|2

|E|2
.

Thus
1

c2m,t
,

1

c2m,n
≤ inf

06=E∈
◦
H1

| rotE|2 + | divE|2

|E|2
= inf

0 6=E∈
◦
H1

|∇E|2

|E|2
=

1

c2p,0
,

completing the proof. �

Remark 7

(i) It is unclear but most probable that cp,0 < cm,t < cm,n = cp holds. In forthcom-
ing publications [7, 8] we will show more and sharper estimates on the Maxwell
constants, showing additional and sharp relations between the Maxwell and the
Poincaré/Friedrichs/Steklov constants.

(ii) Our results extend also to all polyhedrons which allow the H1-regularity of the Maxwell

spaces
◦
R ∩ D and R ∩

◦
D or to domains whose boundaries consist of combinations

of convex boundary parts and polygonal parts which allow the H1-regularity. Is is

shown in [3, Theorem 4.1] that (2.3), even (2.4), still holds for all E ∈ H1 ∩
◦
R or

E ∈ H1 ∩
◦
D if Ω is a polyhedron†. We note that even some non-convex polyhedrons

admit the H1-regularity of the Maxwell spaces depending on the angle of the corners,
which are not allowed to by too pointy.
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