On $C^{1, \frac{1}{2}}$-regularity of \mathcal{H}-surfaces with a free boundary
by
Frank Müller

On $C^{1, \frac{1}{2}}$-regularity of \mathcal{H}-surfaces with a free boundary

Frank Müller

April 3, 2013

Abstract

We consider stationary surfaces of prescribed mean curvature in \mathbb{R}^{3} shortly called \mathcal{H}-surfaces - with part of their boundary varying on a smooth support manifold S with non-empty boundary. We allow that the \mathcal{H}-surface meets the support manifold non-perpendicularly and presume the \mathcal{H}-surface to be continuous up to the boundary. Then we show: If S belongs to C^{2} resp. $C^{2, \mu}$, then the \mathcal{H}-surface belongs to $C^{1, \alpha}$ for any $\alpha \in\left(0, \frac{1}{2}\right)$ resp. $C^{1, \frac{1}{2}}$ up to the boundary. The latter conclusion is optimal by an example due to S. Hildebrandt and J.C.C. Nitsche. Our result extends a known theorem for the special case of minimal surfaces. In addition, we present asymptotic expansions at boundary branch points.

Mathematics Subject Classification 2000: 53A10, 49N60, 49Q05, 35C20

Let S be a differentiable, two-dimensional manifold in \mathbb{R}^{3} with boundary ∂S. Writing

$$
B^{+}:=\{w=(u, v)=u+i v:|w|<1, v>0\}, \quad I:=(-1,1) \subset \partial B^{+}
$$

for the upper unit half-disc in $\mathbb{R}^{2} \simeq \mathbb{C}$ and the straight part of its boundary, we consider surfaces of prescribed mean curvature or shortly \mathcal{H}-surfaces on B^{+}, i.e. solutions of the problem

$$
\begin{align*}
& \mathbf{x} \in C^{2}\left(B^{+}, \mathbb{R}^{3}\right) \cap C^{0}\left(\overline{B^{+}}, \mathbb{R}^{3}\right) \cap H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right), \\
& \Delta \mathbf{x}=2 \mathcal{H}(\mathbf{x}) \mathbf{x}_{u} \wedge \mathbf{x}_{v} \quad \text { in } B^{+} \tag{1}\\
& \left|\mathbf{x}_{u}\right|=\left|\mathbf{x}_{v}\right|, \quad\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle=0 \quad \text { in } B^{+}
\end{align*}
$$

which satisfy the free boundary condition

$$
\begin{equation*}
\mathbf{x}(I) \subset S \cup \partial S \tag{2}
\end{equation*}
$$

Here $H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right)$ denotes the Sobolev-space of measurable mappings $\mathbf{x}: B^{+} \rightarrow$ \mathbb{R}^{3}, which are quadratically integrable together with their first derivatives. In addition, $\Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ stands for the Laplace operator in \mathbb{R}^{2} and $\mathbf{y} \wedge \mathbf{z}$, $\langle\mathbf{y}, \mathbf{z}\rangle$ denote the cross-product and the scalar product in \mathbb{R}^{3}, respectively; the latter notation will be used for vectors in \mathbb{C}^{3}, too. Finally, $\mathcal{H} \in C^{0}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ is a precribed function. In (1), the system in the second line is called Rellich's system and the third line contains the conformality relations.

As is well-known, the restriction $\left.\mathbf{x}\right|_{\mathcal{R}}$ of a solution of (1) to the set

$$
\mathcal{R}:=\left\{w \in B^{+}: \nabla \mathbf{x}(w):=\left(\mathbf{x}_{u}(w), \mathbf{x}_{v}(w)\right) \neq \mathbf{0}\right\}
$$

of regular points describes a surface with mean curvature $H=\mathcal{H} \circ \mathbf{x}$. We emphasize that singular points with $\nabla \mathbf{x}(w)=\mathbf{0}$, so-called branch points, are specifically allowed. This is natural from the viewpoint of the calculus of variations: If $\mathbf{Q} \in C^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ is a vector field with $\operatorname{div} \mathbf{Q}=2 \mathcal{H}$, then solutions of (1) appear as stationary points of the functional

$$
\begin{equation*}
E_{\mathbf{Q}}(\mathbf{y}):=\int_{B^{+}}\left\{\frac{1}{2}|\nabla \mathbf{y}|^{2}+\left\langle\mathbf{Q}(\mathbf{y}), \mathbf{y}_{u} \wedge \mathbf{y}_{v}\right\rangle\right\} d u d v \tag{3}
\end{equation*}
$$

where so-called inner and outer variations \mathbf{y} of \mathbf{x} are allowed. Roughly speaking, inner variation means a perturbation in the parameters (u, v) and outer variations are perturbations in the space that retain the boundary condition (2); see [DHT] Section 1.4 for the exact definitions in the minimal surface case $\mathbf{Q} \equiv \mathbf{0}$. For our purposes, it suffices to give the exact definition of outer variations:

Definition 1. Let $\mathbf{x} \in C^{0}\left(\overline{B^{+}}, \mathbb{R}^{3}\right) \cap H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right)$ fulfill the boundary condition (2). A perturbation $\mathbf{x}^{(\varepsilon)}(w):=\mathbf{x}(w)+\varepsilon \phi(w, \varepsilon), 0 \leq \varepsilon \ll 1$, is called outer variation of \mathbf{x}, if $\phi(\cdot, \varepsilon)$ belongs to

$$
\mathcal{A}_{\mathbf{x}}:=\left\{\mathbf{y} \in H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right): \begin{array}{l}
\mathbf{y}=\mathbf{x} \text { on } \partial B^{+} \backslash I \\
\mathbf{y}(w) \in S \text { for a.a. } w \in I
\end{array}\right\}
$$

for any ε, if the family of Dirichlet's integrals

$$
D(\phi(\cdot, \varepsilon)):=\int_{B^{+}}\left(\left|\phi_{u}(w, \varepsilon)\right|^{2}+\left|\phi_{v}(w, \varepsilon)\right|^{2}\right) d u d v, \quad 0 \leq \varepsilon \ll 1
$$

is uniformly bounded in ε, and if $\phi(\cdot, \varepsilon) \rightarrow \phi(\cdot, 0) \in H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right)(\varepsilon \rightarrow 0+)$ holds true a.e. on B^{+}. The function $\phi_{0}:=\phi(\cdot, 0)$ is to be termed direction of the variation.

Definition 2. A solution $\mathbf{x}: \overline{B^{+}} \rightarrow \mathbb{R}^{3}$ of (1)-(2) is called stationary free \mathcal{H}-surface, if we have

$$
\delta E_{\mathbf{Q}}\left(\mathbf{x}, \phi_{0}\right):=\lim _{\varepsilon \rightarrow 0+} \frac{1}{\varepsilon}\left[E_{\mathbf{Q}}\left(\mathbf{x}^{(\varepsilon)}\right)-E_{\mathbf{Q}}(\mathbf{x})\right] \geq 0
$$

for any outer variation $\mathbf{x}^{(\varepsilon)}=\mathbf{x}+\varepsilon \phi(\cdot, \varepsilon), 0 \leq \varepsilon \ll 1$. The quantity $\delta E_{\mathbf{Q}}\left(\mathbf{x}, \phi_{0}\right)$ is called the first variation of $E_{\mathbf{Q}}$ at \mathbf{x} in the direction ϕ_{0}.

Now we are able to formulate our main result:
Theorem 1. Let $S \subset \mathbb{R}^{3}$ be a differentiable two-manifold and assume a vectorfield $\mathbf{Q} \in C^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ to be given such that

$$
\begin{equation*}
|\langle\mathbf{Q}, \mathbf{n}\rangle|<1 \quad \text { on } S \cup \partial S \tag{4}
\end{equation*}
$$

is satisfied; here $\mathbf{n}: S \cup \partial S \rightarrow \mathbb{R}^{3}$ denotes a unit normal field on S which we locally extend continuously to ∂S. In addition, let $\mathbf{x} \in C^{2}\left(B^{+}, \mathbb{R}^{3}\right) \cap C^{0}\left(\overline{B^{+}}, \mathbb{R}^{3}\right) \cap$ $H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right)$ be a stationary free \mathcal{H}-surface with $\mathcal{H}:=\frac{1}{2} \operatorname{div} \mathbf{Q}$.
(i) If $S \in C^{2}$, then we have $\mathbf{x} \in C^{1, \alpha}\left(B^{+} \cup I, \mathbb{R}^{3}\right)$ for any $\alpha \in\left(0, \frac{1}{2}\right)$.
(ii) If $S \in C^{2, \beta}$ and $\mathbf{Q} \in C^{1, \beta}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ for some $\beta \in(0,1)$, then we have $\mathbf{x} \in C^{1, \frac{1}{2}}\left(B^{+} \cup I, \mathbb{R}^{3}\right)$.

Remark 1. For minimal surfaces, i.e. the special case $\mathbf{Q} \equiv \mathbf{0}$, the result of Theorem 1 is due to R. Ye [Y]. Under higher regularity assumptions on S namely $S \in C^{3}$ in case (i), $S \in C^{4}$ in case (ii) - these results for minimal surfaces were already proved by S. Hildebrandt and J.C.C. Nitsche [HN1], [HN2]. In [HN2] the authors present an example showing the optimality of the regularity proved in Theorem 1 (ii).
Remark 2. In the minimal surface case, the assumption $\mathbf{x} \in C^{0}\left(\overline{B^{+}}, \mathbb{R}^{3}\right)$ in Theorem 1 becomes redundant provided S satisfies an additional uniformity condition. This is the famous continuity result for stationary minimal surfaces up to the free boundary, which is due to M. Grüter, S. Hildebrandt, J.C.C. Nitsche [GHN1]; see also G. Dziuk [Dz] regarding an analogue result for support surfaces without boundary. Concerning \mathcal{H}-surfaces, it is an open question whether stationarity implies continuity up to the boundary. However, there is an affirmative answer in the special case of vector-fields \mathbf{Q} satisfying

$$
\langle\mathbf{Q}, \mathbf{n}\rangle=0 \quad \text { on } S \cup \partial S ;
$$

see [GHN2] for support surfaces without boundary, in [M2] the case of support surfaces with boundary is shortly treated. In addition, minimality - instead of the weaker assumption of stationarity - implies continuity up to the boundary under very mild assumptions on S and a smallness condition for \mathbf{Q}; see [DHT] Section 2.5 or [M3] Section 1.3.

Remark 3. In the general case $\langle\mathbf{Q}, \mathbf{n}\rangle \not \equiv 0$ on $S \cup \partial S$ the only results for stationary \mathcal{H}-surfaces known to the author are addressed to the case of support surfaces with empty boundary $\partial S=\emptyset$, see [HJ], [Ha], [M4].

Our second theorem is concerned with boundary branch points:
Theorem 2. Let the assumptions of Theorem 1 (i) be satisfied and let $w_{0} \in I$ be a branch point of the stationary free \mathcal{H}-surface \mathbf{x}. If $\mathbf{x}: \overline{B^{+}} \rightarrow \mathbb{R}^{3}$ is nonconstant, then there exist an integer $m \geq 1$ and a vector $\mathbf{a} \in \mathbb{C}^{3} \backslash\{\mathbf{0}\}$ with $\langle\mathbf{a}, \mathbf{a}\rangle=0$, such that we have the representation

$$
\begin{equation*}
\mathbf{x}_{w}(w)=\boldsymbol{a}\left(w-w_{0}\right)^{m}+o\left(\left|w-w_{0}\right|^{m}\right) \quad \text { as } w \rightarrow w_{0} . \tag{5}
\end{equation*}
$$

Remark 4. The proof of Theorem 2 can be found at the end of the paper; for branch points $w_{0} \in I$ with $\mathbf{x}\left(w_{0}\right) \in S$ the asymptotic expansion (5) has been already proved in [M4] Theorem 1.13. The usual direct consequences as finiteness of boundary branch points in $\overline{B^{+}} \cap B_{r}(0)$ for any $r \in(0,1)$ and continuity of the surface normal of \mathbf{x} up to the branch points follow; see e.g. [M4] Remarks 5.1 and 5.2.

Starting with the proof of Theorem 1 (i) and (ii), it suffices to show that for any $w_{0} \in I$ there exists some $\delta>0$ such that $\mathbf{x} \in C^{1, \mu}\left(\overline{B_{\delta}^{+}\left(w_{0}\right)}, \mathbb{R}^{3}\right)$ with $\mu \in\left(0, \frac{1}{2}\right)$ or $\mu=\frac{1}{2}$, respectively. Here we abbreviated

$$
\begin{aligned}
& B_{\delta}\left(w_{0}\right):=\left\{w=u+i v \in \mathbb{C}:\left|w-w_{0}\right|<\delta\right\} \\
& B_{\delta}^{+}\left(w_{0}\right):=\left\{w=u+i v \in B_{\delta}\left(w_{0}\right): v>0\right\}
\end{aligned}
$$

Since this result is included in Theorem 1.3 of [M4] for $w_{0} \in I$ with $\mathbf{x}_{0}:=$ $\mathbf{x}\left(w_{0}\right) \in S$, we may assume $\mathbf{x}_{0} \in \partial S$. We localize around \mathbf{x}_{0} which is possible according to the assumption $\mathbf{x} \in C^{0}\left(\overline{B^{+}}, \mathbb{R}^{3}\right)$. After a suitable rotation and translation we can presume $\mathbf{x}_{0}=\mathbf{0}$ as well as the existence of some neighbourhood $\mathcal{U}=\mathcal{U}\left(\mathbf{x}_{0}\right) \subset \mathbb{R}^{3}$ and functions $\gamma \in C^{2}([-r, r]), \psi \in C^{2}\left(\overline{B_{r}(0)}\right), r>0$, with

$$
\begin{equation*}
\gamma(0)=\frac{d}{d s} \gamma(0)=0, \quad \psi(0)=\nabla \psi(0)=0 \tag{6}
\end{equation*}
$$

such that we have the local representations

$$
\begin{align*}
& S \cap \mathcal{U}=\left\{\mathbf{p}=\left(p^{1}, p^{2}, p^{3}\right) \in \Omega \times \mathbb{R}: p^{3}>\psi\left(p^{1}, p^{2}\right)\right\} \\
& \partial S \cap \mathcal{U}=\left\{\mathbf{p}=\left(p^{1}, p^{2}, p^{3}\right) \in \Gamma \times \mathbb{R}: p^{3}=\psi\left(p^{1}, p^{2}\right)\right\} \tag{7}
\end{align*}
$$

where we abbreviated

$$
\begin{align*}
\Omega & :=\left\{\left(p^{1}, p^{2}\right) \in B_{r}(0): p^{2}>\gamma\left(p^{1}\right)\right\} \\
\Gamma & :=\left\{\left(p^{1}, p^{2}\right) \in B_{r}(0): p^{2}=\gamma\left(p^{1}\right)\right\} \tag{8}
\end{align*}
$$

Now choose $\delta>0$ with $|\mathbf{x}(w)|<r$ for all $w \in \overline{B_{\delta}^{+}\left(w_{0}\right)}$. Since the system (1) is conformally invariant, we may reparametrize $\left.\mathbf{x}\right|_{\overline{B_{\delta}^{+}\left(w_{0}\right)}}$ over $\overline{B^{+}}$without renaming and obtain

$$
\begin{equation*}
\mathbf{x}\left(\overline{B^{+}}\right) \subset \mathcal{B}_{r}:=\left\{\mathbf{p} \in \mathbb{R}^{3}:|\mathbf{p}|<r\right\}, \quad \mathbf{x}(0)=\mathbf{0} \tag{9}
\end{equation*}
$$

In the following, we will repeatedly scale $r>0$ down - sometimes without further command - always assuming (9) to be satisfied.

Next we define

$$
\begin{equation*}
q=q(\mathbf{p}):=Q^{3}(\mathbf{p})-\psi_{p^{1}}\left(p^{1}, p^{2}\right) Q^{1}(\mathbf{p})-\psi_{p^{2}}\left(p^{1}, p^{2}\right) Q^{2}(\mathbf{p}), \tag{10}
\end{equation*}
$$

where Q^{1}, Q^{2}, Q^{3} are the components of \mathbf{Q}. Note that the smallness condition (4) and the normalization (6) imply $q \in C^{1}\left(\overline{\mathcal{B}_{r}}\right)$ as well as

$$
\begin{equation*}
|q(\mathbf{p})| \leq q_{0}<1 \quad \text { for all } \mathbf{p} \in \overline{\mathcal{B}_{r}} \tag{11}
\end{equation*}
$$

for sufficiently small $r>0$; here $q_{0} \in(0,1)$ denotes some suitable constant.
Writing $\dot{\gamma}:=\frac{d}{d s} \gamma$, we set

$$
\begin{align*}
& z^{1}:=-i \psi_{p^{1}} x_{w}^{1}-i \psi_{p^{2}} x_{w}^{2}+i x_{w}^{3} \\
& z^{2}:=(1-i q \dot{\gamma}) x_{w}^{1}+(\dot{\gamma}+i q) x_{w}^{2}+\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right) x_{w}^{3} \quad \text { on } B^{+} . \tag{12}
\end{align*}
$$

Here we abbreviated $\psi_{p^{j}}=\psi_{p^{j}}\left(x^{1}, x^{2}\right), \gamma=\gamma\left(x^{1}\right)$, and $q=q(\mathbf{x})$, and we used one of the Wirtinger derivatives $x_{w}^{j}=\frac{\partial x^{j}}{\partial w}$ defined by the operators

$$
\frac{\partial}{\partial w}:=\frac{1}{2}\left(\frac{\partial}{\partial u}-i \frac{\partial}{\partial v}\right), \quad \frac{\partial}{\partial \bar{w}}:=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right) .
$$

As a first important observation we infer the following
Proposition 1. The mapping $\mathbf{z}:=\left(z^{1}, z^{2}\right): B^{+} \rightarrow \mathbb{R}^{3}$ belongs to $C^{1}\left(B^{+}, \mathbb{C}^{2}\right) \cap$ $L_{2}\left(B^{+}, \mathbb{C}^{2}\right)$ and satisfies the weak boundary condition

$$
\begin{equation*}
\liminf _{\varrho \rightarrow 0}\left|\int_{I_{\varrho}}\langle\boldsymbol{\lambda}(w), \operatorname{Im} \mathbf{z}(w)\rangle d u\right|=0 \quad \text { for all } \boldsymbol{\lambda} \in C_{c}^{1}\left(B^{+} \cup I, \mathbb{R}^{2}\right), \tag{13}
\end{equation*}
$$

where we set $I_{\varrho}:=\left\{w=u+i v \in B^{+}: v=\varrho\right\}$ for $\varrho>0$.

Proof. The claimed regularity of \mathbf{z} is obvious by definition. In order to prove (13), we set $\eta(s):=\psi(s, \gamma(s))$ and $\mathbf{t}(s):=(1, \dot{\gamma}(s), \dot{\eta}(s)), s \in(-r, r)$. Then $\mathbf{t}(s)$ is tangential to ∂S at the point $(s, \gamma(s), \eta(s))$. If we choose $\alpha \in C_{c}^{1}\left(B^{+} \cup I\right)$ arbitrarily, the stationarity of \mathbf{x} yields

$$
\begin{equation*}
\lim _{\varrho \rightarrow 0+} \int_{I_{\varrho}} \alpha\left\langle\mathbf{t}\left(x^{1}\right), \mathbf{x}_{v}+\mathbf{Q}(\mathbf{x}) \wedge \mathbf{x}_{u}\right\rangle d u=0 \tag{14}
\end{equation*}
$$

this can be proved by combining the flow argument in [DHT] pp. 32-33 with [M1] Lemma 3. Now we set $\zeta:=\left\langle\mathbf{t}\left(x^{1}\right), \mathbf{x}_{v}+\mathbf{Q}(\mathbf{x}) \wedge \mathbf{x}_{u}\right\rangle$ and claim

$$
\begin{equation*}
2 \operatorname{Im} z^{2}=-\zeta+\left(Q^{2}-\dot{\gamma} Q^{1}\right)\left(x_{u}^{3}-\psi_{p^{1}} x_{u}^{1}-\psi_{p^{2}} x_{u}^{2}\right) \quad \text { on } B^{+} \tag{15}
\end{equation*}
$$

where we again abbreviated $Q^{j}=Q^{j}(\mathbf{x})$, etc. Indeed, we compute

$$
\begin{aligned}
\zeta= & x_{v}^{1}+Q^{2} x_{u}^{3}-Q^{3} x_{u}^{2}+\dot{\gamma}\left(x_{v}^{2}+Q^{3} x_{u}^{1}-Q^{1} x_{u}^{3}\right)+\dot{\eta}\left(x_{v}^{3}+Q^{1} x_{u}^{2}-Q^{2} x_{u}^{1}\right) \\
= & x_{v}^{1}+\dot{\gamma} x_{v}^{2}-\left(Q^{3}-\psi_{p^{1}} Q^{1}-\psi_{p^{2}} Q^{2}\right)\left(x_{u}^{2}-\dot{\gamma} x_{u}^{1}\right)+\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right) x_{v}^{3} \\
& +\left(Q^{2}-\dot{\gamma} Q^{1}\right)\left(x_{u}^{3}-\psi_{p^{1}} x_{u}^{1}-\psi_{p^{2}} x_{u}^{2}\right) \quad \text { on } B^{+}
\end{aligned}
$$

having $\dot{\eta}=\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}$ in mind. Hence, the definition (12) of z^{2} yields (15).
Next we note the inequality

$$
\begin{equation*}
\int_{I_{\varrho}}\left[x^{3}-\psi\left(x^{1}, x^{2}\right)\right]^{2} d u \leq c \varrho \int_{B^{+}}|\nabla \mathbf{x}|^{2} d u d v \leq c \varrho, \quad \delta \in(0,1), \tag{16}
\end{equation*}
$$

with some constant $c>0$. This is an easy consequence of the boundary condition $x^{3}=\psi\left(x^{1}, x^{2}\right)$ on I and the boundedness of $|\nabla \psi|$.

Now let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in C_{c}^{1}\left(B^{+} \cup I, \mathbb{R}^{2}\right)$ be chosen arbitrarily. Then we estimate

$$
\begin{aligned}
& \liminf _{\varrho \rightarrow 0}\left|\int_{I_{\varrho}}\langle\boldsymbol{\lambda}(w), \operatorname{Im} \mathbf{z}(w)\rangle d u\right| \\
& \quad=\liminf _{\varrho \rightarrow 0}\left|\int_{I_{\varrho}}\left(\lambda_{1} \operatorname{Im} z^{1}+\lambda_{2} \operatorname{Im} z^{2}\right) d u\right|^{2} \\
& \quad \stackrel{(14),(15)}{=} \liminf _{\varrho \rightarrow 0} \frac{1}{4}\left|\int_{I_{\varrho}}\left[\lambda_{1}+\lambda_{2}\left(Q^{2}-\dot{\gamma} Q^{1}\right)\right]\left[x_{u}^{3}-\psi_{p^{1}} x_{u}^{1}-\psi_{p^{2}} x_{u}^{2}\right] d u\right|^{2} \\
& \quad=\liminf _{\varrho \rightarrow 0} \frac{1}{4}\left|\int_{I_{\varrho}}\left[x^{3}-\psi\left(x^{1}, x^{2}\right)\right] \frac{\partial}{\partial u}\left[\lambda_{1}+\lambda_{2}\left(Q^{2}-\dot{\gamma} Q^{1}\right)\right] d u\right|^{2} \\
& \quad \leq \liminf _{\varrho \rightarrow 0} \frac{1}{4} \int_{I_{\varrho}}\left[x^{3}-\psi\left(x^{1}, x^{2}\right)\right]^{2} d u \cdot \int_{I_{\varrho}}\left\{\frac{\partial}{\partial u}\left[\lambda_{1}+\lambda_{2}\left(Q^{2}-\dot{\gamma} Q^{1}\right)\right]\right\}^{2} d u \\
& \quad(16) \\
& \quad \leq \liminf _{\varrho \rightarrow 0} c \varrho\left(1+\int_{I_{\varrho}}|\nabla \mathbf{x}|^{2} d u\right) .
\end{aligned}
$$

with an adjusted constant $c>0$. Using $\mathbf{x} \in H_{2}^{1}\left(B^{+}, \mathbb{R}^{3}\right)$, one can easily prove that the right hand side of this inequality vanishes (see e.g. [M4] Proposition 2.1).

In order to be able to relate the auxiliary function \mathbf{z} with \mathbf{x} we also need the following result:

Proposition 2. The mapping $\mathbf{z}=\left(z^{1}, z^{2}\right)$ defined in (12) fulfils the relations

$$
\begin{equation*}
c^{-1}|\nabla \mathbf{x}| \leq|\mathbf{z}| \leq c|\nabla \mathbf{x}| \quad \text { on } B^{+} \tag{17}
\end{equation*}
$$

with some constant $c>0$.
Proof. The right-hand inequality in (17) is obvious by definition. In order to prove the left-hand inequality we write (12) as

$$
\begin{equation*}
\mathbf{z}=\mathbf{A}(\mathbf{x}) \cdot\binom{x_{w}^{1}}{x_{w}^{3}}+\mathbf{b}(\mathbf{x}) x_{w}^{2} \quad \text { on } B^{+} \tag{18}
\end{equation*}
$$

with

$$
\mathbf{A}:=\left(\begin{array}{cc}
-i \psi_{p^{1}} & i \tag{19}\\
1-i q \dot{\gamma} & \psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}
\end{array}\right), \quad \mathbf{b}:=\binom{-i \psi_{p^{2}}}{\dot{\gamma}+i q} .
$$

Pick $0<\varepsilon<1-q_{0}$ arbitrarily. According to the normalization (6) we may choose $r=r(\varepsilon)>0$ sufficiently small to ensure

$$
\begin{equation*}
|\operatorname{det} \mathbf{A}(\mathbf{p})| \geq 1-\varepsilon>0 \quad \text { for } \mathbf{p} \in \overline{\mathcal{B}_{r}} . \tag{20}
\end{equation*}
$$

In particular, the inverse $\mathbf{A}^{-1}(\mathbf{p})$ exists on $\overline{\mathcal{B}_{r}}$, and we conclude

$$
\begin{equation*}
\binom{x_{w}^{1}}{x_{w}^{3}}=\mathbf{A}^{-1}(\mathbf{x}) \cdot \mathbf{z}-\mathbf{A}^{-1}(\mathbf{x}) \cdot \mathbf{b}(\mathbf{x}) x_{w}^{2} \quad \text { on } B^{+} \tag{21}
\end{equation*}
$$

Computing

$$
\mathbf{A}^{-1} \cdot \mathbf{b}=\frac{1}{\operatorname{det} \mathbf{A}}\binom{q-i\left[\psi_{p^{1}} \psi_{p^{2}}+\left(1+\psi_{p^{2}}^{2}\right) \dot{\gamma}\right]}{q\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right)+i\left(\psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}\right)}
$$

the smallness (11) of q, inequality (20), and the normalization (6) imply

$$
\left|\mathbf{A}^{-1}(\mathbf{p}) \cdot \mathbf{b}(\mathbf{p})\right| \leq q_{0}+\varepsilon \quad \text { for } \mathbf{p} \in \overline{\mathcal{B}_{r}}
$$

with sufficiently small $r=r(\varepsilon)>0$. Finally, we write the conformality relations in (1) as $\left\langle\mathbf{x}_{w}, \mathbf{x}_{w}\right\rangle=0$ in B^{+}, which yields

$$
\left|x_{w}^{2}\right|^{2} \leq\left|x_{w}^{1}\right|^{2}+\left|x_{w}^{3}\right|^{2} \quad \text { on } B^{+} .
$$

With these estimates we conclude

$$
\sqrt{\left|x_{w}^{1}\right|^{2}+\left|x_{w}^{3}\right|^{2}} \leq c|\mathbf{z}|+\left(q_{0}+\varepsilon\right) \sqrt{\left|x_{w}^{1}\right|^{2}+\left|x_{w}^{3}\right|^{2}} \quad \text { on } B^{+}
$$

from (21), where $c>0$ denotes a constant. Choosing e.g. $\varepsilon=\frac{1-q_{0}}{2}$, we hence obtain the claimed estimate (13) with an aligned $c>0$.

Combining Propositions 1 and 2, we arrive at the following

Lemma 1. Let $\mathbf{z}=\left(z^{1}, z^{2}\right)$ be defined by (12). Set $B:=B_{1}(0), B^{-}:=B \backslash$ $\left(B^{+} \cup I\right)$ and consider the reflected function

$$
\hat{\mathbf{z}}(w):=\left\{\begin{array}{ll}
\mathbf{z}(w), & w \in B^{+} \tag{22}\\
\overline{\mathbf{z}(\bar{w}),} & w \in B^{-}
\end{array} \in C^{1}\left(B \backslash I, \mathbb{C}^{2}\right) \cap L_{2}\left(B, \mathbb{C}^{2}\right) .\right.
$$

Then there exists $\mathbf{h} \in L_{\infty}\left(B, \mathbb{C}^{2}\right)$ such that $\hat{\mathbf{z}}$ solves the equation

$$
\begin{equation*}
\int_{B}\left(\left\langle\hat{\mathbf{z}}, \varphi_{\bar{w}}\right\rangle+|\hat{\mathbf{z}}|^{2}\langle\mathbf{h}, \varphi\rangle\right) d u d v=0 \quad \text { for all } \varphi \in C_{c}^{0}\left(B, \mathbb{C}^{2}\right) \cap H_{2}^{1}\left(B, \mathbb{C}^{2}\right) . \tag{23}
\end{equation*}
$$

Proof. The assertion follows from the estimate

$$
\begin{equation*}
\left|\hat{\mathbf{z}}_{\bar{w}}\right| \leq c|\hat{\mathbf{z}}|^{2} \quad \text { on } B \backslash I, \tag{24}
\end{equation*}
$$

which we will prove below. Indeed, defining

$$
\mathbf{h}(w):=\left\{\begin{array}{ll}
|\hat{\mathbf{z}}(w)|^{-2} \hat{\mathbf{z}}_{\bar{w}}, & \text { for } w \in B \backslash I \text { with }|\hat{\mathbf{z}}(w)| \neq 0 \\
0, & \text { otherwise }
\end{array} \in L_{\infty}\left(B, \mathbb{C}^{2}\right)\right.
$$

we infer $\hat{\mathbf{z}}_{\bar{w}}(w)=|\hat{\mathbf{z}}(w)|^{2} \mathbf{h}(w)$ away from isolated points in $B \backslash I$, because points $w \in B^{+}$with $|\mathbf{z}(w)|=0$ are exactly the isolated branch points of \mathbf{x}. If we multiply this relation with an arbitrary $\varphi \in C_{c}^{1}\left(B, \mathbb{C}^{2}\right)$, integrate over $B_{(\varrho)}^{ \pm}:=\left\{w \in B^{ \pm}: \pm v>\varrho\right\}$ and apply Gauss' integral theorem as well as the boundary condition, Proposition 1, we arive at (23) for such φ. By a standard approximation argument we can also allow $\varphi \in C_{c}^{0}\left(B, \mathbb{C}^{2}\right) \cap H_{2}^{1}\left(B, \mathbb{C}^{2}\right)$ in (23).

By showing (24), the proof will be completed. To this end, we reflect \mathbf{x} trivially across I,

$$
\hat{\mathbf{x}}(w):=\left\{\begin{array}{ll}
\mathbf{x}(w), & w \in B^{+} \cup I \tag{25}\\
\mathbf{x}(\bar{w}), & w \in B^{-}
\end{array} .\right.
$$

Defining $\mathbf{A}, \mathbf{b} \in C^{1}\left(\overline{\mathcal{B}_{r}}\right)$ by (19) and having (18) in mind, we now may write $\hat{\mathbf{z}}$ as

$$
\begin{equation*}
\hat{\mathbf{z}}=\mathbf{A}(\hat{\mathbf{x}}) \cdot\binom{\hat{x}_{w}^{1}}{\hat{x}_{w}^{3}}+\mathbf{b}(\hat{\mathbf{x}}) \hat{x}_{w}^{2} \quad \text { on } B^{+} \tag{26}
\end{equation*}
$$

and as

$$
\begin{equation*}
\hat{\mathbf{z}}=\overline{\mathbf{A}(\hat{\mathbf{x}})} \cdot\binom{\hat{x}_{w}^{1}}{\hat{x}_{w}^{3}}+\overline{\mathbf{b}(\hat{\mathbf{x}})} \hat{x}_{w}^{2} \quad \text { on } B^{-} . \tag{27}
\end{equation*}
$$

On the other hand, Rellich's system in (1) can be written as

$$
\begin{equation*}
\hat{\mathbf{x}}_{w \bar{w}}= \pm i \mathcal{H}(\hat{\mathbf{x}}) \hat{\mathbf{x}}_{\bar{w}} \wedge \hat{\mathbf{x}}_{w} \quad \text { on } B^{ \pm} . \tag{28}
\end{equation*}
$$

Differentiating (26), (27) and applying (28), we obtain

$$
\left|\hat{\mathbf{z}}_{\bar{w}}\right| \leq c|\nabla \hat{\mathbf{x}}|^{2} \quad \text { on } B \backslash I
$$

with some constant $c>0$. Hence, Proposition 2 yields the asserted relation (24).

Now the crucial step in the proof of Theorem 1 is the following

Lemma 2. For any $\mu \in(0,1)$, the mapping $\hat{\mathbf{z}}$ defined in Lemma 1 can be extended to a mapping of class $C^{\mu}\left(B, \mathbb{C}^{2}\right)$ with the property $\operatorname{Im} \hat{\mathbf{z}}=\mathbf{0}$ on I.

Proof. We attempt to recover the steps in Section 3 of [M4], which were used there to prove an analogue result, namely Lemma 3.4.

1. At first, we prove $\hat{\mathbf{x}} \in C^{\beta}\left(B, \mathbb{R}^{3}\right)$ for some $\beta \in(0,1)$. To this end, we consider the function

$$
\chi:=\left\{\begin{array}{ll}
\hat{x}^{3}-\psi\left(\hat{x}^{1}, \hat{x}^{2}\right) & \text { on } B^{+} \cup I \tag{29}\\
-\hat{x}^{3}+\psi\left(\hat{x}^{1}, \hat{x}^{2}\right) & \text { on } B^{-}
\end{array} .\right.
$$

Note that $\chi \in C^{0}(B) \cap H_{2}^{1}(B)$ is satisfied according to the boundary condition (2). Choose any disc $B_{\varrho}\left(w_{0}\right) \subset \subset B$ and define $\mathbf{y}=\left(y^{1}, y^{2}\right) \in$ $C^{\infty}\left(B_{\varrho}\left(w_{0}\right), \mathbb{R}^{2}\right) \cap C^{0}\left(\overline{B_{\varrho}\left(w_{0}\right)}, \mathbb{R}^{2}\right)$ as harmonic vector with boundary values

$$
y^{1}=\hat{x}^{1}, \quad y^{2}=\chi \quad \text { on } \partial B_{\varrho}\left(w_{0}\right)
$$

Setting

$$
\varphi:=\binom{-i\left(\chi-y^{2}\right)}{\hat{x}^{1}-y^{1}} \quad \text { on } \overline{B_{\varrho}\left(w_{0}\right)}, \quad \varphi:=\mathbf{0} \quad \text { on } B \backslash \overline{B_{\varrho}\left(w_{0}\right)},
$$

we obtain an admissible test function $\varphi \in C_{c}^{0}\left(B, \mathbb{C}^{2}\right) \cap H_{2}^{1}\left(B, \mathbb{C}^{2}\right)$ for (23). We now insert $\boldsymbol{\varphi}$ and the relations (26), (27) for $\hat{\mathbf{z}}$ into (23) and use the special form (19) of \mathbf{A} and \mathbf{b}. Writing $\boldsymbol{\xi}:=\left(\hat{x}^{1}, \hat{x}^{3}\right)$, we then find

$$
\begin{gathered}
(1-d(r)) \int_{B_{\varrho}\left(w_{0}\right)}\left|\boldsymbol{\xi}_{w}\right|^{2} d u d v \leq\left(q_{0}+d(r)\right) \int_{B_{\varrho}\left(w_{0}\right)}\left|\boldsymbol{\xi}_{w}\right|\left|\hat{x}_{w}^{2}\right| d u d v \\
+c \int_{B_{\varrho}\left(w_{0}\right)}\left|\mathbf{y}_{w}\right|\left|\hat{\mathbf{x}}_{w}\right| d u d v+\int_{B_{\varrho}\left(w_{0}\right)}|\hat{\mathbf{z}}|^{2}|\mathbf{h}||\boldsymbol{\varphi}| d u d v
\end{gathered}
$$

where $c>0$ is a constant and $d(r), 0<r \ll 1$, denotes some (possibly varying) positive function satisfying $d(r) \rightarrow 0(r \rightarrow 0+)$. By our global assumption (9), the maximum principle, and the normalization $\psi(0,0)=0$ we further get $|\boldsymbol{\varphi}| \leq d(r)$. Using the conformality relations as well as Proposition 2 we hence conclude

$$
\left(1-q_{0}-d(r)\right) \int_{B_{\varrho}\left(w_{0}\right)}\left|\hat{\mathbf{x}}_{w}\right|^{2} d u d v \leq c \int_{B_{\varrho}\left(w_{0}\right)}\left|\mathbf{y}_{w}\right|\left|\hat{\mathbf{x}}_{w}\right| d u d v
$$

Applying the inequality of Cauchy-Schwarz and assuming $d(r) \leq \frac{1}{2}\left(1-q_{0}\right)$, we finally arrive at

$$
\begin{equation*}
\int_{B_{\varrho}\left(w_{0}\right)}|\nabla \hat{\mathbf{x}}|^{2} d u d v \leq c \int_{B_{\varrho}\left(w_{0}\right)}|\nabla \mathbf{y}|^{2} d u d v \quad \text { for all discs } B_{\varrho}\left(w_{0}\right) \subset \subset B \tag{30}
\end{equation*}
$$

Note that there is a constant $c>0$ with

$$
c^{-1}|\nabla \hat{\mathbf{x}}| \leq\left|\nabla\left(\hat{x}^{1}, \chi\right)\right| \leq c|\nabla \hat{\mathbf{x}}| \quad \text { on } B
$$

due to the conformality relations and the condition $\nabla \psi(0,0)=0$. Employing C. B. Morrey's Dirichlet growth theorem, we hence infer $\hat{\mathbf{x}} \in C^{\beta}\left(B, \mathbb{R}^{3}\right)$ for some $\beta \in(0,1)$ from (30).
2. Next we show: For any $\alpha \in[0,2 \beta)$ and any compact subset $K \subset B$ we have

$$
\begin{equation*}
\int_{B}\left|w-w_{0}\right|^{-\alpha}|\hat{\mathbf{z}}(w)|^{2} d u d v \leq c \quad \text { for all } w_{0} \in K \tag{31}
\end{equation*}
$$

where $c>0$ denotes a constant depending on α and K.
We fix some $w_{0} \in K$ and define χ as in (29). We consider

$$
\boldsymbol{\psi}(w):=\binom{-i\left(\chi(w)-\chi\left(w_{0}\right)\right)}{\hat{x}^{1}(w)-\hat{x}^{1}\left(w_{0}\right)}, \quad w \in B .
$$

According to part 1 of the proof we have $\chi, \hat{x}^{1} \in C^{\beta}(B)$ and conclude

$$
\begin{equation*}
|\boldsymbol{\psi}(w)| \leq c\left|w-w_{0}\right|^{\beta}, \quad w \in K \tag{32}
\end{equation*}
$$

Moreover, we can estimate (remember $\boldsymbol{\xi}=\left(\hat{x}^{1}, \hat{x}^{3}\right)$)

$$
\begin{align*}
\left\langle\hat{\mathbf{z}}, \boldsymbol{\psi}_{\bar{w}}\right\rangle & \geq\left|\boldsymbol{\xi}_{w}\right|^{2}-d(r)\left|\hat{\mathbf{x}}_{w}\right|^{2}-\left(q_{0}+d(r)\right)\left|\boldsymbol{\xi}_{w}\right|\left|\hat{x}_{w}^{2}\right| \\
& \geq\left(1-q_{0}-d(r)\right)\left|\boldsymbol{\xi}_{w}\right|^{2} \geq c\left(1-q_{0}-d(r)\right)|\hat{\mathbf{z}}|^{2} \quad \text { in } B, \tag{33}
\end{align*}
$$

where we retained the notation of part 1 and used Proposition 2.
Now we choose some $\delta \in\left(0, \delta_{0}\right), \delta_{0}:=\frac{1}{2} \operatorname{dist}(K, \partial B)$, and set

$$
\gamma(w):= \begin{cases}\delta^{-\alpha}-\delta_{0}^{-\alpha}, & 0 \leq\left|w-w_{0}\right|<\delta \\ \left|w-w_{0}\right|^{-\alpha}-\delta_{0}^{-\alpha}, & \delta \leq\left|w-w_{0}\right|<\delta_{0} \\ 0, & \delta_{0} \leq\left|w-w_{0}\right|\end{cases}
$$

Then $\phi:=\gamma \boldsymbol{\psi} \in C_{c}^{0}\left(B, \mathbb{C}^{2}\right) \cap H_{2}^{1}\left(B, \mathbb{C}^{2}\right)$ is admissible in (23) and relations (32), (33) as well as $|\langle\mathbf{h}, \boldsymbol{\psi}\rangle| \leq d(r)$ yield

$$
\begin{equation*}
c\left(1-q_{0}-d(r)\right) \int_{B} \gamma|\hat{\mathbf{z}}|^{2} d u d v \leq c \int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha-1+\beta}|\hat{\mathbf{z}}| d u d v \tag{34}
\end{equation*}
$$

We assume $d(r) \leq \frac{1}{2}\left(1-q_{0}\right)$ and apply the inequalities

$$
\int_{B} \gamma|\hat{\mathbf{z}}|^{2} d u d v \geq \int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha}|\hat{\mathbf{z}}|^{2} d u d v-\delta_{0}^{-\alpha} \int_{B}|\hat{\mathbf{z}}|^{2} d u d v
$$

and

$$
\begin{aligned}
\int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha-1+\beta}|\hat{\mathbf{z}}| d u d v \leq & \frac{\varepsilon}{2} \int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha}|\hat{\mathbf{z}}|^{2} d u d v \\
& +\frac{1}{2 \varepsilon} \int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha-2+2 \beta} d u d v
\end{aligned}
$$

with sufficiently small $\varepsilon>0$ to (34). Having $\int_{B}|\hat{\mathbf{z}}|^{2} d u d v<+\infty$ as well as $2 \beta>\alpha$ in mind, we arrive at

$$
\int_{\delta<\left|w-w_{0}\right|<\delta_{0}}\left|w-w_{0}\right|^{-\alpha}|\hat{\mathbf{z}}|^{2} d u d v \leq c
$$

with some constant $c>0$ which is independent of $w_{0} \in K$ and $\delta \in\left(0, \delta_{0}\right)$. For $\delta \rightarrow 0+$ we obtain the asserted estimate (31).
3. Finally, it turns out that (31) is valid for $\alpha=1$. This can be proved exactly as in [M4] Proposition 3.3 via an induction argument using the representation formula of Pompeiu and Vekua, namely

$$
\begin{equation*}
\hat{\mathbf{z}}(w)=\mathbf{y}(w)-\frac{1}{\pi} \int_{B} \frac{|\hat{\mathbf{z}}(\zeta)|^{2} \mathbf{h}(\zeta)}{\zeta-w} d \xi d \eta, \quad w \in B ; \quad \zeta=\xi+i \eta \tag{35}
\end{equation*}
$$

with some holomorphic vector $\mathbf{y}: B \rightarrow \mathbb{C}^{2}$. Hence $\hat{\mathbf{z}}$ is locally bounded in B. By applying E. Schmidt's inequality (see e.g. [DHT] pp. 219-221) to a local version of (35), we conclude $\hat{\mathbf{z}} \in C^{\mu}\left(B, \mathbb{C}^{2}\right)$ for any $\mu \in(0,1)$, as asserted. The property $\operatorname{Im}(\hat{\mathbf{z}})=\mathbf{0}$ on I is now an immediate consequence of Proposition 1.

As the last preliminaries towards the proof of Theorem 1 we need two further lemmata; the first one is due to E. Heinz, S. Hildebrandt, and J.C.C. Nitsche and we present it in a special appropriate form:

Lemma 3. (Heinz-Hildebrandt-Nitsche)

(a) Let $f \in C^{0}\left(B^{+}, \mathbb{C}\right)$ be given such that its square f^{2} has a continuous extension to $B^{+} \cup I$. Then f can be extended to a continuous function $f \in C^{0}\left(B^{+} \cup I, \mathbb{C}\right)$.
(b) Let $f \in C^{0}\left(\left[-\varrho_{0}, \varrho_{0}\right], \mathbb{C}\right)$ be given with some $\varrho_{0} \in(0,1)$. Suppose that $\operatorname{Re}(f) \cdot \operatorname{Im}(f)=0$ on $\left[-\varrho_{0}, \varrho_{0}\right]$ is satisfied and that there exist numbers $c>0, \alpha \in(0,1]$ with

$$
\begin{equation*}
\left|f^{2}\left(u_{1}\right)-f^{2}\left(u_{2}\right)\right| \leq c\left|u_{1}-u_{2}\right|^{2 \alpha} \quad \text { for all } u_{1}, u_{2} \in\left[-\varrho_{0}, \varrho_{0}\right] \tag{36}
\end{equation*}
$$

Then we have $f \in C^{\alpha}\left(\left[-\varrho_{0}, \varrho_{0}\right], \mathbb{C}\right)$.
Proof. We refer to the Lemmata 3 and 4 in [DHT] Section 2.7.
The second of the announcend lemmata contains a regularity result for generalized analytic functions; we give its proof for the sake of completeness:

Lemma 4. Let $z \in C^{1}\left(B^{+}, \mathbb{C}\right) \cap C^{0}\left(B^{+} \cup I, \mathbb{C}\right)$ be a solution of

$$
\begin{equation*}
z_{\bar{w}}=g \quad \text { in } B^{+}, \quad \operatorname{Im} z=h \quad \text { on }\left[-\varrho_{0}, \varrho_{0}\right] \tag{37}
\end{equation*}
$$

for some $\varrho_{0} \in(0,1)$. Then there hold:
(a) If $g \in C^{0}\left(B^{+} \cup I, \mathbb{C}\right)$ and $h \in C^{\alpha}\left(\left[-\varrho_{0}, \varrho_{0}\right]\right)$ for some $\alpha \in(0,1)$, then we have $z \in C^{\alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}\right)$ for any $\varrho \in\left(0, \varrho_{0}\right)$.
(b) If $g \in C^{\alpha}\left(B^{+} \cup I, \mathbb{C}\right)$ and $h \in C^{1, \alpha}([-\varrho, \varrho])$ for some $\alpha \in(0,1)$, then we have $z \in C^{1, \alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}\right)$ for any $\varrho \in\left(0, \varrho_{0}\right)$.

Proof. 1. We first prove assertion (a). Fix some $\varrho \in\left(0, \varrho_{0}\right)$ and choose a test function $\phi \in C_{c}^{\infty}(B)$ with $\phi=1$ in $\overline{B_{\varrho}(0)}$ and $\phi=0$ in $B \backslash B_{\frac{\varrho+\varrho_{0}}{2}}(0)$ as well as a simply connected domain $B_{\frac{\varrho+\varrho_{0}}{2}}^{+}(0) \subset G \subset B_{\varrho_{0}}^{+}(0)$ with C^{2} boundary. Let $\sigma: B \rightarrow G$ be a conformal mapping. Then the function $\tilde{z}:=(\phi z) \circ \sigma \in C^{1}(B, \mathbb{C}) \cap C^{0}(\bar{B}, \mathbb{C})$ solves a boundary value problem

$$
\begin{equation*}
\tilde{z}_{\bar{w}}=\tilde{g} \quad \text { on } B, \quad \operatorname{Im} \tilde{z}=\tilde{h} \quad \text { on } \partial B \tag{38}
\end{equation*}
$$

where $\tilde{g} \in C^{0}(\bar{B}, \mathbb{C}), \tilde{h} \in C^{\alpha}(\partial B)$ ist satisfied; here one has to use the well-known Kellogg-Warschawski theorem on the boundary behaviour of conformal mappings, see e.g. [P]. By subtracting a holomorphic function in B with boundary values \tilde{h} we may assume $\tilde{h} \equiv 0$; note that this holomorphic function belongs to $C^{\alpha}(\bar{B}, \mathbb{C})$ by a well-known result of I. I. Privalov. Now, any solution of (38) with $\tilde{h} \equiv 0$ has the form

$$
\begin{equation*}
\tilde{z}(w)=-\frac{1}{\pi} \int_{B} \frac{\tilde{g}(\zeta)}{\zeta-w} d \xi d \eta-\frac{w}{\pi} \overline{\int_{B}} \frac{\tilde{g}(\zeta)}{1-\bar{w} \zeta} d \xi d \eta+z_{0}, \quad w \in \bar{B} \tag{39}
\end{equation*}
$$

with some constant $z_{0} \in \mathbb{R}$; see Theorem 2 in [S] Chap. IX, $\S 4$. Defining the Vekua-Operator

$$
T[\tilde{g}](w):=-\frac{1}{\pi} \int_{B} \frac{\tilde{g}(\zeta)}{\zeta-w} d \xi d \eta, \quad w \in \mathbb{C}
$$

we may rewrite (39) as

$$
\tilde{z}(w)=T[\tilde{g}](w)+\overline{T[\tilde{g}]\left(\frac{1}{\bar{w}}\right)}+z_{0}, \quad w \in \bar{B}
$$

Well-known estimates for the Vekua-operator (see [V] Chap. I, §6) now show $\tilde{z} \in C^{\alpha}(\bar{B})$ and hence $z \in C^{\alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}\right)$. This proves (a).
2. For the proof of claim (b) we repeat the construction above and note that, by (a), the right hand sides in (38) satisfy $\tilde{g} \in C^{\alpha}(\bar{B}, \mathbb{C}), \tilde{h} \in C^{1, \alpha}(\partial B)$. Subtracting a holomorphic function with boundary values \tilde{h}, which belongs to $C^{1, \alpha}(\bar{B}, \mathbb{C})$ by Privalov's theorem, we may again assume $\tilde{h} \equiv 0$. According to Theorem 2 in [S] Chap. IX, $\S 4$ (see also [V] Chap. I, § 8) the solution (39) of this problem belongs to $C^{1, \alpha}(\bar{B}, \mathbb{C})$ and we conclude $z \in C^{1, \alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}\right)$, as asserted.

We are now prepared to give the proof of our main result, Theorem 1. To this end, we define a further auxiliary function, namely

$$
\begin{equation*}
z^{3}:=-(\dot{\gamma}+i q) x_{w}^{1}+(1-i q \dot{\gamma}) x_{w}^{2}+\left(\psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}\right) x_{w}^{3} \in C^{1}\left(B^{+}, \mathbb{C}\right) \cap H_{2}^{1}\left(B^{+}, \mathbb{C}\right) \tag{40}
\end{equation*}
$$

with $q=q(\mathbf{x}), \dot{\gamma}=\dot{\gamma}\left(x^{1}\right), \psi_{p^{j}}=\psi_{p^{j}}\left(x^{1}, x^{2}\right)$; remember the definitions of ψ, γ, and q in (7), (8), and (10). If we set $\zeta:=\left(\mathbf{z}, z^{3}\right)=\left(z^{1}, z^{2}, z^{3}\right): B^{+} \rightarrow \mathbb{C}^{3}$, we have the identity

$$
\begin{equation*}
\boldsymbol{\zeta}(w)=\mathbf{B}(\mathbf{x}(w)) \cdot \mathbf{x}_{w}(w), \quad w \in B^{+}, \tag{41}
\end{equation*}
$$

where we abbreviated

$$
\mathbf{B}:=\left(\begin{array}{ccc}
-i \psi_{p^{1}} & -i \psi_{p^{2}} & i \tag{42}\\
1-i q \dot{\gamma} & \dot{\gamma}+i q & \psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma} \\
-(\dot{\gamma}+i q) & 1-i q \dot{\gamma} & \psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}
\end{array}\right) \in C^{1}\left(\overline{\mathcal{B}_{r}}, \mathbb{C}^{3 \times 3}\right) .
$$

Note that

$$
\operatorname{det} \mathbf{B}=i\left(1+\dot{\gamma}^{2}\right)\left(1-q^{2}+|\nabla \psi|^{2}\right) \neq 0 \quad \text { on } \overline{\mathcal{B}_{r}}
$$

is true according to the smallness condition (11). Hence, the inverse $\mathbf{B}^{-1}(\mathbf{p})$ exists for any $\mathbf{p} \in \overline{\mathcal{B}_{r}}$ and we have $\mathbf{B}^{-1} \in C^{1}\left(\overline{\mathcal{B}_{r}}, \mathbb{C}^{3 \times 3}\right)$.

We intend to employ the conformality relations, which now can be written as

$$
\begin{equation*}
0=\left\langle\mathbf{x}_{w}, \mathbf{x}_{w}\right\rangle=\left\langle\mathbf{B}^{-1}(\mathbf{x}) \boldsymbol{\zeta}, \mathbf{B}^{-1}(\mathbf{x}) \boldsymbol{\zeta}\right\rangle=\langle\boldsymbol{\zeta}, \mathbf{C}(\mathbf{x}) \boldsymbol{\zeta}\rangle \quad \text { on } B^{+} \tag{43}
\end{equation*}
$$

with the matrix $\mathbf{C}=\left(c_{i j}\right)_{i, j=1,2,3}:=\mathbf{B}^{-T} \cdot \mathbf{B}^{-1} \in C^{1}\left(\overline{\mathcal{B}_{r}}, \mathbb{C}^{3 \times 3}\right)$. A lengthy but straightforward computation yields

$$
\begin{align*}
& c_{11}=-\frac{1-q^{2}}{1-q^{2}+|\nabla \psi|^{2}}, \\
& c_{12}=\frac{q\left(\psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}\right)}{\left(1+\dot{\gamma}^{2}\right)\left(1-q^{2}+|\nabla \psi|^{2}\right)}=c_{21}, \\
& c_{13}=-\frac{q\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right)}{\left(1+\dot{\gamma}^{2}\right)\left(1-q^{2}+|\nabla \psi|^{2}\right)}=c_{31}, \\
& c_{22}=\frac{1+\dot{\gamma}^{2}+\left(\psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}\right)^{2}}{\left(1+\dot{\gamma}^{2}\right)^{2}\left(1-q^{2}+|\nabla \psi|^{2}\right)}, \tag{44}\\
& c_{23}=-\frac{\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right)\left(\psi_{p^{2}}-\psi_{p^{1}} \dot{\gamma}\right)}{\left(1+\dot{\gamma}^{2}\right)^{2}\left(1-q^{2}+|\nabla \psi|^{2}\right)}=c_{32}, \\
& c_{33}=\frac{1+\dot{\gamma}^{2}+\left(\psi_{p^{1}}+\psi_{p^{2}} \dot{\gamma}\right)^{2}}{\left(1+\dot{\gamma}^{2}\right)^{2}\left(1-q^{2}+|\nabla \psi|^{2}\right)} .
\end{align*}
$$

In particular, we have $\mathbf{C}: \overline{\mathcal{B}_{r}} \rightarrow \mathbb{R}^{3 \times 3}$. We are now ready to give the
Proof of Theorem 1. 1. We write (43) in the form

$$
0=\sum_{j, k=1}^{3} c_{j k} z^{j} z^{k}=c_{33}\left(z^{3}\right)^{2}+2\left(c_{13} z^{1}+c_{23} z^{2}\right) z^{3}+\sum_{j, k=1}^{2} c_{j k} z^{j} z^{k} \quad \text { on } B^{+},
$$

where we abbreviated $c_{j k}=c_{j k} \circ \mathbf{x}$. Since $c_{33}>0$ holds on $\overline{\mathcal{B}_{r}}$ due to (44), we may rewrite this identity as

$$
\begin{equation*}
\left(z^{3}+\sum_{j=1}^{2} \frac{c_{j 3}}{c_{33}} z^{j}\right)^{2}=\left(\sum_{j=1}^{2} \frac{c_{j 3}}{c_{33}} z^{j}\right)^{2}-\sum_{j, k=1}^{2} \frac{c_{j k}}{c_{33}} z^{j} z^{k} \quad \text { on } B^{+} . \tag{45}
\end{equation*}
$$

By Lemma 2, we may extend the right hand side of (45) to a continuous function on $B^{+} \cup I$. Lemma 3 (a) thus yields that also $z^{3}+\sum_{j=1}^{2} \frac{c_{j 3}}{c_{33}} z^{j}$ and, again due to Lemma $2, \boldsymbol{\zeta}=\left(z^{1}, z^{2}, z^{3}\right)$ can be extended continuously to $B^{+} \cup I$. The definition (41) of ζ as well as $\operatorname{det} \mathbf{B} \neq 0$ now imply $\mathbf{x} \in C^{1}\left(B^{+} \cup I, \mathbb{R}^{3}\right)$.
2. Now we prove part (i) of the theorem. For fixed $\varrho_{0} \in(0,1)$ and any $\mu \in(0,1)$ the right hand side of (45) belongs to $C^{\mu}\left(\left[-\varrho_{0}, \varrho_{0}\right], \mathbb{C}\right)$ according to Lemma 2 and $\mathbf{x} \in C^{1}\left(B^{+} \cup I, \mathbb{R}^{3}\right)$. In addition, the imaginary part of the right hand side vanishes on $\left[-\varrho_{0}, \varrho_{0}\right]$ due to $\operatorname{Im}\left(z^{1}\right)=\operatorname{Im}\left(z^{2}\right)=0$ on I (see again Lemma 2) and to $\mathbf{C}: \overline{\mathcal{B}_{r}} \rightarrow \mathbb{R}^{3 \times 3}$ as shown above. Hence, the function $f=z^{3}+\sum_{j=1}^{2} \frac{c_{j 3}}{c_{33}} z^{j} \in C^{0}(I, \mathbb{C})$ satisfies the assumptions of Lemma 3 (b) for any $\alpha \in\left(0, \frac{1}{2}\right)$. We conclude $f \in C^{\alpha}\left(\left[-\varrho_{0}, \varrho_{0}\right], \mathbb{C}\right)$ and by Lemma 2 also $\zeta \in C^{\alpha}\left(\left[-\varrho_{0}, \varrho_{0}\right], \mathbb{C}^{3}\right)$ for any $\alpha \in\left(0, \frac{1}{2}\right)$. If we differentiate (41) w.r.t. \bar{w} and apply Rellich's system (28) we obtain

$$
\zeta_{\bar{w}}=\mathbf{g} \quad \text { on } B^{+} \quad \text { with some } \quad \mathbf{g} \in C^{0}\left(B^{+} \cup I, \mathbb{C}^{3}\right)
$$

Consequently, we may apply Lemma 4 (a) to $\boldsymbol{\zeta}$ and find $\boldsymbol{\zeta} \in C^{\alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}^{3}\right)$ as well as $\mathbf{x} \in C^{1, \alpha}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{R}^{3}\right)$ for any $\varrho \in\left(0, \varrho_{0}\right)$ and any $\alpha \in\left(0, \frac{1}{2}\right)$. Since we localized around an arbitrary point $w_{0} \in I$, the proof of Theorem 1 (a) is completed.
3. For the proof of Theorem 1 (ii) we assume $\mathcal{S} \in C^{2, \beta}, \mathbf{Q} \in C^{1, \beta}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ with some $\beta \in(0,1)$. Then we also have $\mathbf{B} \in C^{1, \beta}\left(\overline{\mathcal{B}_{r}}, \mathbb{R}^{3 \times 3}\right)$ and by part (i) we know $\mathbf{x} \in C^{1, \frac{1}{4}}\left(B^{+}, \mathbb{R}^{3}\right)$. Set $\gamma:=\min \left\{\frac{1}{4}, \beta\right\}$, define $\mathbf{z}=\left(z^{1}, z^{2}\right)$ by (12) and differentiate these equations w.r.t. \bar{w}. Then we obtain

$$
\mathbf{z}_{\bar{w}}=\mathbf{g}_{0} \quad \text { on } B^{+}, \quad \operatorname{Im} \mathbf{z}=\mathbf{0} \quad \text { on } I
$$

with some $\mathbf{g}_{0} \in C^{\gamma}\left(B^{+} \cup I, \mathbb{C}^{2}\right)$. From Lemma $4(\mathrm{~b})$ we thus conclude $\mathbf{z} \in C^{1, \gamma}\left([-\varrho, \varrho], \mathbb{C}^{2}\right)$ for any $\varrho \in(0,1)$. In particular, the right hand side of equation (45) belongs to $C^{1}([-\varrho, \varrho], \mathbb{C})$ and Lemma $3(\mathrm{~b})$ shows $\zeta \in C^{\frac{1}{2}}\left([-\varrho, \varrho], \mathbb{C}^{3}\right)$ for any $\varrho \in(0,1)$. Now Lemma 4 (a) can be applied to get $\boldsymbol{\zeta} \in C^{\frac{1}{2}}\left(\overline{B_{\varrho}^{+}(0)}, \mathbb{C}^{3}\right)$ and we finally arrive at $\mathbf{x} \in C^{1, \frac{1}{2}}\left(B^{+} \cup I, \mathbb{R}^{3}\right)$, as asserted.

We conclude the paper with the
Proof of Theorem 2. We choose a branch point $w_{0} \in I$ and assume $\mathbf{x}\left(w_{0}\right) \in \partial S$; compare Remark 4 above. We localize as above - note especially $w_{0} \mapsto 0-$ and define $\mathbf{z}=\left(z^{1}, z^{2}\right)$ by (12). Reflecting \mathbf{z} as in (22), the resulting function $\hat{\mathbf{z}}: B \rightarrow \mathbb{C}^{2}$ satisfies $\hat{\mathbf{z}} \in C^{1}\left(B \backslash I, \mathbb{C}^{2}\right) \cap C^{0}\left(B, \mathbb{C}^{2}\right)$ and $\operatorname{Im} \hat{\mathbf{z}}=\mathbf{0}$ on I according to Lemma 2.

Now choose an arbitrary domain $D \subset \subset B$ with piecewise smooth boundary. Then the arguments leading to formula (23) in Lemma 1 yield

$$
\frac{1}{2 i} \oint_{\partial D}\langle\hat{\mathbf{z}}, \boldsymbol{\varphi}\rangle d w=\int_{D}\left(\left\langle\hat{\mathbf{z}}, \boldsymbol{\varphi}_{\bar{w}}\right\rangle+|\hat{\mathbf{z}}|^{2}\langle\mathbf{h}, \boldsymbol{\varphi}\rangle\right) d u d v \quad \text { for all } \boldsymbol{\varphi} \in C^{1}\left(B, \mathbb{C}^{2}\right)
$$

here $\mathbf{h}: B \rightarrow \mathbb{C}^{2}$ denotes some bounded function. According to the boundedness of $\hat{\mathbf{z}}$ on D we find a constant $c>0$ such that

$$
\left|\oint_{\partial D}\langle\hat{\mathbf{z}}, \boldsymbol{\varphi}\rangle d w\right| \leq 2 \int_{D}\left(\left|\boldsymbol{\varphi}_{\bar{w}}\right|+c|\boldsymbol{\varphi}|\right)|\hat{\mathbf{z}}| d u d v \quad \text { for all } \boldsymbol{\varphi} \in C^{1}\left(B, \mathbb{C}^{2}\right) .
$$

The Hartman-Wintner technique - see e.g. Theorem 1 in [DHT] Section 3.1 now implies the existence of some $m \in \mathbb{N}$ and some vector $\hat{\mathbf{b}} \in \mathbb{C}^{2} \backslash\{\mathbf{0}\}$ such that

$$
\begin{equation*}
\hat{\mathbf{z}}(w)=\hat{\mathbf{b}} w^{m}+o\left(|w|^{m}\right) \quad \text { as } w \rightarrow 0 . \tag{46}
\end{equation*}
$$

Note here that $\hat{\mathbf{z}}$ cannot vanish identically in B since, otherwise, we would have $\nabla \mathbf{x} \equiv \mathbf{0}$ near w_{0} due to Proposition 2 ; this is impossible by our assumption $\mathbf{x} \not \equiv$ const as can be easily seen by employing the well known asymptotic expansions at interior branch points.

Next we define z^{3} by (40) and consider $\boldsymbol{\zeta}=\left(z^{1}, z^{2}, z^{3}\right)=\left(\mathbf{z}, z^{3}\right)$, which can be extended to a continuous function on $\overline{B_{\varrho}^{+}(0)}$ for any $\varrho \in(0,1)$, according to part 2 in the proof of Theorem 1. In addition, we recall the relation (45), where the quantities $c_{j k}=c_{j k} \circ \mathbf{x}$ are continuous functions on $\overline{B^{+}}$.

Now we multiply (45) by $w^{-2 m}$ and let $w \in \overline{B_{\varrho}^{+}(0)}$ tend to 0 . Due to (46), the right hand side and hence also the left hand side converges. Applying (46) again as well as a variant of Lemma 3 (i), we find $w^{-m} z^{3}(w) \rightarrow b^{3}$ as $w \rightarrow 0$ with some limit $b^{3} \in \mathbb{C}$. Setting $\mathbf{b}:=\left(\hat{\mathbf{b}}, b^{3}\right) \in \mathbb{C}^{3}$, we conclude

$$
\begin{equation*}
\boldsymbol{\zeta}(w)=\mathbf{b} w^{m}+o\left(|w|^{m}\right) \quad \text { as } w \rightarrow 0 . \tag{47}
\end{equation*}
$$

This relation finally yields the announced expansion (5) according to $\mathbf{x}_{w}=$ $\left(\mathbf{B}^{-1} \circ \mathbf{x}\right) \boldsymbol{\zeta}$; see (41) and recall $\operatorname{det} \mathbf{B} \neq 0$. The relation $\langle\mathbf{a}, \mathbf{a}\rangle=0$ is now a direct consequence of the conformality relations and (5).

References

[DHT] U. Dierkes, S. Hildebrandt, A. Tromba: Regularity of minimal surfaces. Grundlehren math. Wiss. 340. Springer, Berlin Heidelberg 2010.
[Dz] G. Dziuk: On the boundary behavior of partially free minimal surfaces. Manuscr. Math. 35, 105-123 (1981).
[GHN1] M. Grüter, S. Hildebrandt, J.C.C. Nitsche: On the boundary behavior of minimal surfaces with a free boundary which are not minima of the area. Manscr. Math. 35, 387-410 (1981).
[GHN2] M. Grüter, S. Hildebrandt, J.C.C. Nitsche: Regularity for surfaces of constant mean curvature with free boundaries. Acta Math. 156, 119-152 (1986).
[Ha] F.P. Hardt: Zur Regularität von H-Flächen mit freiem Rand. Math. Z. 150, 71-74 (1976).
[HJ] S. Hildebrandt, W. Jäger: On the regularity of surfaces with prescribed mean curvature at a free boundary. Math. Z. 118, 289-308 (1970).
[HN1] S. Hildebrandt, J.C.C. Nitsche: Minimal surfaces with free boundaries. Acta Math. 143, 251-272 (1979).
[HN2] S. Hildebrandt, J.C.C. Nitsche: Optimal regularity for minimal surfaces with free boundary. Manuscr. Math. 33, 357-364 (1981).
[M1] F. Müller: On the analytic continuation of H-surfaces across the free boundary. Analysis 22, 201-218 (2002).
[M2] F. Müller: On stable surfaces of prescribed mean curvature with partially free boundaries. Calc. Var. 24, 289-308 (2005).
[M3] F. Müller: Investigations on the regularity of surfaces with prescribed mean curvature and partially free boundaries. Habilitationsschrift, BTU Cottbus (2007).
[M4] F. Müller: On the regularity of H-surfaces with free boundaries on a smooth support manifold. Analysis 28, 401-419 (2008).
[P] C. Pommerenke: Boundary behaviour of conformal maps. Springer, Berlin Heidelberg 1992.
[S] F. Sauvigny: Partial differential equations 2-Functional analytic methods. Springer, Berlin Heidelberg 2006.
[V] I. N. Vekua: Generalized analytic functions. Pergamon Press, Oxford London New York Paris 1962.
[Y] R. Ye: Regularity of a minimal surface at its free boundary. Math. Z. 198, 261-275 (1988).

IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE BEITRÄGE:

	Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and NonConforming Functional A Posteriori Error Estimates for Elliptic Boundary Value Problems in Exterior Domains: Theory and Numerical Tests, 2013
Nr. 770	Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-Inequalities for Incompatible Square Tensor Fields with Mixed Boundary Conditions, 2013
Nr. 771:	Pauly, D.: On the Maxwell Inequalities for Bounded and Convex Domains, 2013
Nr. 772:	Pauly, D.: On Maxwell's and Poincarés Constants, 2013
Nr. 773	Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The problem university infinitesimal calculus courses and their demarcati from infinitesimal calculus in high schools" (1927), 2013
Nr. 774:	Yurko, V.: Spectral Analysis for Differential Operators Variable Orders on Star-type Graphs: General Case, 2014
Nr. 775:	Freiling, G., Yurko, V.: Differential Operators on Hedgehog-type Graphs with General Matching Conditions, 2014
Nr. 776:	Anjam, I., Pauly, D.: Functional A Posteriori Error Equalities for Conforming Mixed Approximations of Elliptic Problems, 2014
Nr. 777:	Pauly, D.: On the Maxwell Constants in 3D, 2014
Nr	Pozzi, P.: Computational Anisotropic Willmore Flow, 2014
Nr. 779:	Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the Theor of entire Functions, 2014
Nr. 780:	Blatt, S., Reiter. Ph.: Modeling repulsive forces on fibres via knot energies, 2014
Nr. 781	Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Henckylogarithmic strain energy. Part I: Constitutive issues and rankone convexity, 2014
Nr. 78	Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's early axiomatic deduction of a multiaxial nonlinear stressstrain relation based on logarithmic strain, 2014
Nr. 783	Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum, 2014
Nr. 784	Müller, F.: On $C^{1,1 / 2}$-regularity of H-surfaces with a fr boundary, 2014

