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Abstract

We consider stationary surfaces of prescribed mean curvature in R® —
shortly called H-surfaces — with part of their boundary varying on a
smooth support manifold S with non-empty boundary. We allow that
the H-surface meets the support manifold non-perpendicularly and pre-
sume the H-surface to be continuous up to the boundary. Then we show:

If S belongs to C? resp. C**, then the H-surface belongs to C*** for any

a € (0, %) resp. chz up to the boundary. The latter conclusion is opti-

mal by an example due to S. Hildebrandt and J.C.C. Nitsche. Our result
extends a known theorem for the special case of minimal surfaces. In
addition, we present asymptotic expansions at boundary branch points.

Mathematics Subject Classification 2000: 53A10, 49N60, 49Q05, 35C20

Let S be a differentiable, two-dimensional manifold in R?® with boundary
0S. Writing

BT ={w=(u,v)=u+iv: |w/ <1, v>0}, I:=(-1,1)CdB"

for the upper unit half-disc in R? ~ C and the straight part of its boundary,
we consider surfaces of prescribed mean curvature or shortly H-surfaces on BT,
i.e. solutions of the problem

x € C2(B+,R3) N C°%B+,R3) N Hi(BT,R?),
Ax = 2H(x)x, A X, in BT, (1)

|X’U«| = |XU‘7 <Xu7xv> :0 il’l B+,
which satisfy the free boundary condition
x(I) c SUIS. (2)

Here H}(BT,R3) denotes the Sobolev-space of measurable mappings x : BT —
R3, which are quadratically integrable together with their first derivatives. In
addition, A = 88722 + 66—52 stands for the Laplace operator in R? and y A z,
(y,z) denote the cross-product and the scalar product in R3, respectively; the
latter notation will be used for vectors in C3, too. Finally, H € C°(R3 R) is
a precribed function. In (1), the system in the second line is called Rellich’s
system and the third line contains the conformality relations.



As is well-known, the restriction x| of a solution of (1) to the set
R :={w e BT : Vx(w):= (x,(w),x,(w)) # 0}

of regular points describes a surface with mean curvature H = H o x. We
emphasize that singular points with Vx(w) = 0, so-called branch points, are
specifically allowed. This is natural from the viewpoint of the calculus of vari-
ations: If Q € C1(R3,R?) is a vector field with divQ = 2H, then solutions of
(1) appear as stationary points of the functional

Ea(y) = [ {519% + (@).yu v} dude 3)
B+

where so-called inner and outer variations y of x are allowed. Roughly speak-
ing, inner variation means a perturbation in the parameters (u,v) and outer
variations are perturbations in the space that retain the boundary condition
(2); see [DHT] Section 1.4 for the exact definitions in the minimal surface case
Q = 0. For our purposes, it suffices to give the exact definition of outer varia-
tions:

Definition 1. Let x € C°(B+,R3) N H(B*,R3) fulfill the boundary condition
(2). A perturbation x&) (w) = x(w) + ep(w,e), 0 < ¢ < 1, is called outer
variation of x, if ¢(-,e) belongs to
= OBt \ I
Ax = {y e Hi(pt Ry . Y "X omIBTA }

y(w) €S for a.a wel

for any e, if the family of Dirichlet’s integrals

D(¢(¢)) == / (16u(w. )2 + |6, (w,2)2) dudo, 0<e<1,

Bt

is uniformly bounded in €, and if ¢(-,e) — ¢(-,0) € HI(BT,R?) (¢ — 0+)
holds true a.e. on BT. The function ¢y := ¢(-,0) is to be termed direction of
the variation.

Definition 2. A solution x : Bt — R3 of (1)-(2) is called stationary free

‘H-surface, if we have

1

for any outer variation x(®) = x+e¢(-, ), 0 < e < 1. The quantity dEq(x, ¢y)
is called the first variation of Fq at x in the direction ¢.

Now we are able to formulate our main result:

Theorem 1. Let S C R? be a differentiable two-manifold and assume a vector-
field Q € CH(R3,R?) to be given such that

[(Q,n)| <1 onSUIS (4)

is satisfied; heren : SUOS — R3 denotes a unit normal field on S which we lo-
cally extend continuously to dS. In addition, let x € C*(BT,R3)NC°(B+,R*)N
HY(B*,R3) be a stationary free H-surface with H = %din.



(i) If S € C?, then we have x € CY*(BY UI,R3) for any o € (0, 1).

(i) If S € C*P and Q € CLP(R3,R3) for some B € (0,1), then we have
x € CL2(BYUIR?).

Remark 1. For minimal surfaces, i.e. the special case Q = 0, the result of
Theorem 1 is due to R. Ye [Y]. Under higher regularity assumptions on S -
namely S € C® in case (i), S € C* in case (ii) - these results for minimal
surfaces were already proved by S. Hildebrandt and J.C.C. Nitsche [HN1], [HN2].
In [HN2] the authors present an example showing the optimality of the regularity
proved in Theorem 1 (ii).

Remark 2. In the minimal surface case, the assumption x € C°(BT,R?) in
Theorem 1 becomes redundant provided S satisfies an additional uniformity con-
dition. This is the famous continuity result for stationary minimal surfaces up
to the free boundary, which is due to M. Griter, S. Hildebrandt, J.C.C. Nitsche
[GHN1]J; see also G. Dziuk [Dz] regarding an analogue result for support surfaces
without boundary. Concerning H-surfaces, it is an open question whether sta-
tionarity implies continuity up to the boundary. However, there is an affirmative
answer in the special case of vector-fields Q satisfying

(Q,n) =0 on SUIS;

see [GHN2] for support surfaces without boundary, in [M2] the case of support
surfaces with boundary is shortly treated. In addition, minimality — instead of
the weaker assumption of stationarity — implies continuity up to the boundary
under very mild assumptions on S and a smallness condition for Q; see [DHT]
Section 2.5 or [M3] Section 1.3.

Remark 3. In the general case (Q,n) £ 0 on S U IS the only results for
stationary H-surfaces known to the author are addressed to the case of support

surfaces with empty boundary S = 0, see [HJ], [Ha], [M/].
Our second theorem is concerned with boundary branch points:

Theorem 2. Let the assumptions of Theorem 1 (i) be satisfied and let wy € I
be a branch point of the stationary free H-surface x. If x : BY — R3 is non-
constant, then there exist an integer m > 1 and a vector a € C3\ {0} with
(a,a) = 0, such that we have the representation

X (W) = a(w — w)™ 4+ o(Jlw — we|™)  as w — wp. (5)

Remark 4. The proof of Theorem 2 can be found at the end of the paper; for
branch points wg € I with x(wg) € S the asymptotic expansion (5) has been
already proved in [M4] Theorem 1.13. The usual direct consequences as finiteness
of boundary branch points in B+ N B.(0) for any v € (0,1) and continuity of
the surface normal of x up to the branch points follow; see e.g. [M4] Remarks
5.1 and 5.2.

Starting with the proof of Theorem1 (i) and (ii), it suffices to show that

for any wy € I there exists some § > 0 such that x € C**(B; (wp), R?) with
p € (0,3) or u= 3, respectively. Here we abbreviated

Bs(wp) :={w=u+iveC : Jw—wy| <},

By (wo) := {w = u+iv € Bs(wg) : v > 0}.



Since this result is included in Theorem 1.3 of [M4] for wy € I with x¢ :=
x(wp) € S, we may assume xg € 95. We localize around x( which is possible
according to the assumption x € C°(B+,R3). After a suitable rotation and
translation we can presume xo = 0 as well as the existence of some neighbour-
hood U = U(xg) C R? and functions v € C?([—r,r]), ¥ € C*(B.-(0)), r > 0,
with

10) = £4(0) =0, %(0) = Vu(0) =0 (©

such that we have the local representations
Snu={p=@"p%p*) e QxR : p*> (', p?*},
asnU ={p=(p".p*p*) eT xR : p* =9 (p",p?)},
where we abbreviated
Q= {(p".p%) € B(0) : p*>~(p")},
L= {(p',p*) € B:(0) : p* =~(p")}.

Now choose § > 0 with |x(w)| < r for all w € Bj (wp). Since the system

(7)

(8)

(1) is conformally invariant, we may reparametrize le over B+ without
5 (wo
renaming and obtain
x(BY)c B, :={peR®: |p|<r}, x(0) = 0. (9)

In the following, we will repeatedly scale r > 0 down — sometimes without
further command — always assuming (9) to be satisfied.
Next we define

q=q(p) = Q*(P) — Y (", p*)Q" (P) — Y2 (", p*)Q*(P), (10)
where Q', Q%, @3 are the components of Q. Note that the smallness condition
(4) and the normalization (6) imply g € C1(B,) as well as

lg(p)| < qo <1 forallpeB, (11)
for sufficiently small r > 0; here gy € (0, 1) denotes some suitable constant.
Writing + := d%'y, we set

2= —ippal — i + i

12
22 = (1 —igy)zl, + (¥ + iq)2? + (Y1 + Yp2¥)z3, on BT. (12)

Here we abbreviated 1,; = 1, (2!, 2?), v = v(z'), and ¢ = ¢(x), and we used

one of the Wirtinger derivatives xJ, = %—”fj defined by the operators

E,,1(9f¢9> E,flpi+¢§)

ow ' 2\0u Ov/' Oow  2\0u v/’

As a first important observation we infer the following

Proposition 1. The mapping z := (2', 2) : Bt — R3 belongs to C*(B+,C?)N

Lo(B*,C?) and satisfies the weak boundary condition

/ (AMw), Imz(w)) du

e

lim i(r)lf =0 forallx € CHBTUI,R?), (13)
o—r

where we set I, :={w =u+1iv € BY : v=p} for p > 0.



Proof. The claimed regularity of z is obvious by definition. In order to prove
(13), we set n(s) := ¥ (s,7v(s)) and t(s) := (1,%(s),n(s)), s € (—r,7). Then t(s)
is tangential to 05 at the point (s,v(s),n(s)). If we choose a € CX(BT UI)
arbitrarily, the stationarity of x yields

. 1 — 0N
Ql_1>r(1)1+ at(z'), x, + Q(x) A xy ) du = 0; (14)
IQ
this can be proved by combining the flow argument in [DHT] pp. 32-33 with
[M1] Lemma 3. Now we set ¢ := (t(z!),x, + Q(x) A x,,) and claim

2Im2? = —( + (Q* — Q") (23 — Yzl — Ypea’) on BT, (15)
where we again abbreviated Q7 = Q7 (x), etc. Indeed, we compute
¢ = ay+ Q% — Q2+l + Q% — Q'a7) +iial + Q' — Q%)

= ay +925 — (Q° — v Q' — Q) (@l — Fw) + (W1 +Yp2)a
+(Q2 - ’le)({L‘i - "/}pl*ri - prxi) on B+7
having 7 = ¢,1 + ¢,2% in mind. Hence, the definition (12) of z? yields (15).

Next we note the inequality

/[x3 —p(zt, 2P du < cg/ |Vx|*dudv < co, &€ (0,1), (16)
I, B+
with some constant ¢ > 0. This is an easy consequence of the boundary condition
23 = (2!, 2?) on I and the boundedness of |V1)|.

Now let A = (A\1,\2) € CH(B* UI,R?) be chosen arbitrarily. Then we
estimate

lim inf / (A(w),Imz(w)) du
0—0
’ 2
= lim inf / (/\1 Im 2z + Ay Im 22) du
0—0

e

1
U iy g 4’ / M+ A2(Q? = 4QY)] 23 — Yl — pea?] du

0—0

2

2

_hmmf ‘/ 3 — (2t 2 )]8—[)\1—&-)\2(@ —4Q")] du

§111Qn_>i(1)1fi/ (2% — ¥(a!, 2?)] du-/{%p1+>\2(@2*7@1)]}2 du

IQ
(16)
< 11m1nfcg(1+/|Vx|2du>

with an adjusted constant ¢ > 0. Using x € H3(B*,R3), one can easily prove
that the right hand side of this inequality vanishes (see e.g. [M4] Proposition 2.1).
O



In order to be able to relate the auxiliary function z with x we also need the
following result:

Proposition 2. The mapping z = (2!, 2?) defined in (12) fulfils the relations
c Vx| < |z| < ¢|Vx| on Bt (17)
with some constant ¢ > 0.

Proof. The right-hand inequality in (17) is obvious by definition. In order to
prove the left-hand inequality we write (12) as

1
z=A(x)- (ig’) +b(x)22 on Bt (18)
with ” _ .
— 1Y 4 —1YPp2
A = P ’ b:= : p . 19
<1 —iqy Py £ %2’&) <7 + Zq) =

Pick 0 < € < 1 — qp arbitrarily. According to the normalization (6) we may
choose r = r(g) > 0 sufficiently small to ensure

|det A(p)| >1—e>0 forpcB,. (20)

In particular, the inverse A~1(p) exists on B,., and we conclude

(i%’) = Afl(x) .z — A—1(X) ~b(x)a:12u on Bt (21)
Computing
Al. b= 1 < q—i[¢p1¢p2+(l+¢2z)"¥] )
det A Q(wpl + %21) + i(d’zﬂ - %W) ’

the smallness (11) of ¢, inequality (20), and the normalization (6) imply
A (p)-b(p)| < qo+¢c forpeB;

with sufficiently small » = r(g) > 0. Finally, we write the conformality relations
in (1) as (Xy, Xy) = 0 in BT, which yields

|27, [* < |og,|* + |23 > on BT
With these estimates we conclude
Vi0eh 2+ 23,2 < clz| + (g + &)V/]xh, 12 + |23,> on BY

from (21), where ¢ > 0 denotes a constant. Choosing e.g. € = 1_2‘10, we hence

obtain the claimed estimate (13) with an aligned ¢ > 0. O

Combining Propositions 1 and 2, we arrive at the following



Lemma 1. Let z = (2',22) be defined by (12). Set B := B1(0), B~ := B\
(BT UI) and consider the reflected function

{ z(w), we Bt
z(w) == _ € CYB\I1,C*)NLy(B,C?. (22)
z(w), weB

Then there exists h € Lo (B, C?) such that z solves the equation

/ (2, pm) + [2]*(h,)) dudv =0 for all € C)(B,C*) N Hy(B,C?). (23)
B

Proof. The assertion follows from the estimate
2| < c|z|*> on B\ I, (24)

which we will prove below. Indeed, defining

z(w)| 22y, for w e B\ I with |z(w 0
) BT 0
0, otherwise
we infer z(w) = |z(w)|*h(w) away from isolated points in B\ I, because

points w € BT with |z(w)| = 0 are exactly the isolated branch points of x.
If we multiply this relation with an arbitrary ¢ € C!(B,C?), integrate over
B(ig) :={w € B* : +v > g} and apply Gauss’ integral theorem as well as the
boundary condition, Proposition 1, we arive at (23) for such . By a standard
approximation argument we can also allow ¢ € CO(B,C?) N H3(B,C?) in (23).

By showing (24), the proof will be completed. To this end, we reflect x
trivially across I,

x(w), weBTUI

%(w) = { B . (25)

x(w), we€ B~

Defining A, b € C1(B,) by (19) and having (18) in mind, we now may write 2
as

z2=A(x)- (i%’) +b(%)#2 on BT (26)
e 72=A(x)- (i%’) +b(x)2% on B. (27)

On the other hand, Rellich’s system in (1) can be written as
Xuw = HiH(X) %z A%, on BE (28)
Differentiating (26), (27) and applying (28), we obtain
|7 < c|VX[*> on B\ I

with some constant ¢ > 0. Hence, Proposition2 yields the asserted relation
(24). O

Now the crucial step in the proof of Theorem 1 is the following



Lemma 2. For any p € (0,1), the mapping z defined in Lemma 1 can be ex-
tended to a mapping of class C*(B,C?) with the property Imz =0 on I.

Proof. We attempt to recover the steps in Section 3 of [M4], which were used
there to prove an analogue result, namely Lemma 3.4.

1. At first, we prove x € C?(B,R?) for some 8 € (0,1). To this end, we
consider the function

:%3 _ jl
= { ¢( (29)

Note that y € C°(B) N H3(B) is satisfied according to the boundary con-
dition (2). Choose any disc B,(wg) CC B and define y = (y',4?) €
C>(B,y(wo), R?)NCY(B,(wp), R?) as harmonic vector with boundary val-
ues

y!=a', y*=x on 0B, (wo).

Setting

_(—ilx—v?) _
go.—( iy ) on B, (wo), :=0 on B\ B,(wp),

we obtain an admissible test function ¢ € C%(B,C?)NHj (B, C?) for (23).
We now insert ¢ and the relations (26), (27) for z into (23) and use the
special form (19) of A and b. Writing & := (21, 23), we then find

(1 d(r) / €2 dudo < (g0 +d(r)) / €] 82| dudo

B (wo) By (wo)

+c / |y w| |Xw| dudv + / |1z |h| || du dv
By (wo) By (wo)
where ¢ > 0 is a constant and d(r), 0 < r < 1, denotes some (possibly
varying) positive function satisfying d(r) — 0(r — 0+). By our global
assumption (9), the maximum principle, and the normalization (0,0) = 0

we further get |¢| < d(r). Using the conformality relations as well as
Proposition 2 we hence conclude

(1—gqo—d(r)) / %o |* dudv < c / |Vw! |Xw| dudv.
Be(wﬂ) By(wﬂ)
Applying the inequality of Cauchy-Schwarz and assuming d(r) < 3(1—qp),

we finally arrive at

|V%|? dudv < ¢ / IVy[>dudv for all discs By(wy) CC B.

BQ(WO) BQ(WO)
(30)
Note that there is a constant ¢ > 0 with

Vx| < V(@' x)| < c|VX| on B



due to the conformality relations and the condition V(0,0) = 0. Employ-
ing C. B. Morrey’s Dirichlet growth theorem, we hence infer x € C% (B, R?)
for some S € (0,1) from (30).

. Next we show: For any « € [0,28) and any compact subset K C B we
have

/|w —wo|"%z(w)*dudv < ¢ for all wy € K, (31)

where ¢ > 0 denotes a constant depending on « and K.

We fix some wy € K and define x as in (29). We consider
A

w) =

#00 = (0 o

According to part 1 of the proof we have x, 2! € C#(B) and conclude
[p(w)| < clw —wol?, we K. (32)

Moreover, we can estimate (remember & = (21, 2%))

(2, %) (€0l = d(r)[%w|? = (g0 + d(r))[€,,]127,

- 3y
> (L go— d(r)lEul® > ol - go—d(r)faf? in B,

where we retained the notation of part 1 and used Proposition 2.
Now we choose some & € (0,8), 0o := 3dist(K,dB), and set

07 =46y, 0<|w—wy| <d
y(w) = lw—wo|™* =5, ¢ <|w—wo| < do
0, (50§ |’LU—U)0|

Then ¢ := y1p € C2(B,C?)NH; (B, C?) is admissible in (23) and relations
(32), (33) as well as |(h, )| < d(r) yield

e(1—qo—d(r)) /7|i|2 dudv < ¢ / lw — wo| = 1P|2| du dv.

B §<|w—wo|<do
(34)
We assume d(r) < (1 — qo) and apply the inequalities

/7|2|2dudv > / |w—w0|7°‘|2\2dudv750_0‘/|2\2dudv
B 6<\w—wg|<60 B
and

lw — wo| 1P|z dudv < g |w — wo|™*|2|? du dv

§<|w—wp|<do §<|w—wo|<8o

1
+— / lw — wo| =228 du dv
2e

§<|w—wo|<8o



with sufficiently small e > 0 to (34). Having [ |2|> dudv < +oo as well
as 20 > « in mind, we arrive at

lw — wo|~*|2]* dudv < ¢

§<|w—wp|<do

with some constant ¢ > 0 which is independent of wy € K and ¢ € (0, dp).
For § — 0+ we obtain the asserted estimate (31).

3. Finally, it turns out that (31) is valid for o = 1. This can be proved
exactly as in [M4] Proposition 3.3 via an induction argument using the
representation formula of Pompeiu and Vekua, namely

sw) =y -+ [F ™ o wen c—erm @39)
B

with some holomorphic vector y : B — C2. Hence 2 is locally bounded in
B. By applying E. Schmidt’s inequality (see e.g. [DHT] pp. 219-221) to
a local version of (35), we conclude z € C*(B,C?) for any u € (0,1), as
asserted. The property Im(z) = 0 on [ is now an immediate consequence
of Proposition 1. O

As the last preliminaries towards the proof of Theorem 1 we need two further
lemmata; the first one is due to E. Heinz, S. Hildebrandt, and J.C.C. Nitsche and
we present it in a special appropriate form:

Lemma 3. (Heinz—Hildebrandt—Nitsche)

(a) Let f € CO(B*,C) be given such that its square f> has a continuous
extension to BT UI. Then f can be extended to a continuous function
fecC’(BtuUIC).

(b) Let f € C°([—00,00],C) be given with some oo € (0,1). Suppose that
Re(f) - Im(f) = 0 on [—o0, 00] is satisfied and that there exist numbers
¢>0, a€(0,1] with

2 (ur) = f2(u2)| < clur —ual**  for all uy, us € [—00, 00]- (36)
Then we have f € C*([—00, 00],C).
Proof. We refer to the Lemmata 3 and 4 in [DHT] Section 2.7. O

The second of the announcend lemmata contains a regularity result for gen-
eralized analytic functions; we give its proof for the sake of completeness:

Lemma 4. Let z € C1(B*T,C)NC°(B*T UI,C) be a solution of
2z =g in BT, Imz=h on[—00,00] (37)
for some g € (0,1). Then there hold:

(a) If g € C°(BT UI,C) and h € C*([—00, 00]) for some o € (0,1), then we
have z € C*(Bg (0),C) for any o € (0, 0o)-

10



(b) If g € C*(BYUI,C) and h € CY([—p, g]) for some o € (0,1), then we
have z € C»*(BZ(0),C) for any o € (0, 0p)-

Proof. 1. We first prove assertion (a). Fix some g € (0,00) and choose a
test function ¢ € C2°(B) with ¢ =1 in B,(0) and ¢ = 0 in B\ Be+e (0)
2

as well as a simply connected domain B}, (0) C G C Bf, (0) with C2-

boundary. Let o : B — G be a conformaf mapping. Then the function
Z:=(¢z) oo € CY(B,C)NC°(B,C) solves a boundary value problem
Z3=¢ onB, ImzZ=~h onB, (38)
where § € C°(B,C), h € C*(0B) ist satisfied; here one has to use the
well-known Kellogg-Warschawski theorem on the boundary behaviour of
conformal mappings, see e.g. [P]. By subtracting a holomorphic function
in B with boundary values h we may assume h = 0; note that this holomor-

phic function belongs to C*(B,C) by a well-known result of I.1. Privalov.
Now, any solution of (38) with h = 0 has the form

) — — 2 (9 e g [ 9O =
z(w)——ﬂB/defdn ﬂ!lwcdfdn+zo’ we B, (39)

with some constant zy € R; see Theorem 2 in [S] Chap. IX, §4. Defining
the Vekua-Operator

1 .
T[g)(w) = —W/f(_ﬂ?udsdn, weC,
B
we may rewrite (39) as

3(w) = T[)(w) + T3] (%) +2, weB.

Well-known estimates for the Vekua-operator (see [V] Chap. I, §6) now
show Z € C®(B) and hence z € C®(Bg (0),C). This proves (a).

2. For the proof of claim (b) we repeat the construction above and note that,
by (a), the right hand sides in (38) satisfy § € C%(B,C), h € CY*(dB).
Subtracting a holomorphic function with boundary values i~z, which be-
longs to C1%(B,C) by Privalov’s theorem, we may again assume h=0.
According to Theorem 2 in [S] Chap. IX, §4 (see also [V] Chap. I, §8)
the solution (39) of this problem belongs to C*(B,C) and we conclude

z € CL2(B{(0),C), as asserted.

O

We are now prepared to give the proof of our main result, Theorem 1. To
this end, we define a further auxiliary function, namely

2% = —(YHig)rh +(1—igy)a? + (P2 — P y)ad, € CH(BT,C)NH; (BT, C) (40)

with ¢ = q(x), ¥ = ¥(2'), ¥ = ¥ps (2!, 2%); remember the definitions of 1, 7,
and ¢ in (7), (8), and (10). If we set ¢ := (z,23) = (21,2%,2%) : BT — C3, we
have the identity

¢(w) = B(x(w)) - x(w), we BT, (41)

11



where we abbreviated
—ithp — ity i
B:=| 1—igy H4+ig vp+pd| e C (B, C?). (42)
—(¥+iq) 1—igy tpz — Py
Note that
detB=i(1+4*)(1—¢*+|Vy|*) #0 on B,

is true according to the smallness condition (11). Hence, the inverse B~!(p)
exists for any p € B, and we have B~! € C1(B,.,C3%3).

We intend to employ the conformality relations, which now can be written
as

0= (xu,xu) = (B (x)¢, BT (x)¢) = (¢, C(x)¢) on BT (43)

with the matrix C = (¢;j)i j=1,23 := B~7 B~ € C*(B,,C3*3). A lengthy but
straightforward computation yields

1—¢?

I
Ci2 = .q(d)pz 71/}]31;” = (21

(1+92)(1 —¢>+[VY]?) ’
€13 = = .Q(wpl erpﬂ) = 31,

(L+42) (1 =+ [Vy]?) (44)

14+4% + (Y2 — Yp)°

C22

1+42)2(1 — ¢ + [VY[2)

Con  — _(wpl +¢p2ﬁ)(¢p2 _wpl;y) — ¢
2 A+322Q -+ [Vy]r) %
1+ '72 + (1;[}1)1 + 111;)2“'7)2

(1+42)2(1— ¢ + [VY[2)

C33

In particular, we have C : B, — R3*3. We are now ready to give the

Proof of Theorem 1. 1. We write (43) in the form

3 2
0= E cjkzjzk = 033(23)2 + 2(01321 + 02322)23 + E cjkzjzk on BT,
jk=1 jk=1

where we abbreviated c;;, = cj; ox. Since c33 > 0 holds on B, due to (44),
we may rewrite this identity as

2 . 5 2 . 5 2 .

- - b

(z3—|- E i?ﬂ) = ( g izj) — E IE232% on BT, (45)
= €33 = €33 oo €33

By Lemma 2, we may extend the right hand side of (45) to a continuous
function on BT U I. Lemma3 (a) thus yields that also 23 + Z?Zl B
and, again due to Lemma 2, ¢ = (2!, 22, 2%) can be extended continuously
to BT U I. The definition (41) of ¢ as well as det B # 0 now imply

x € C1(BT UIL,R3).
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2. Now we prove part (i) of the theorem. For fixed gy € (0,1) and any
w € (0,1) the right hand side of (45) belongs to C*([—go, 0], C) according
to Lemma?2 and x € C*(B* U I,R3). In addition, the imaginary part of
the right hand side vanishes on [—gg, go] due to Im(z!) = Im(2?) = 0 on
I (see again Lemma?2) and to C : B, — R3*3 as shown above. Hence,
the function f = 23 + 25:1 227 € C°(I,C) satisfies the assumptions of
Lemma 3 (b) for any a € (0, 1). We conclude f € C%([—go, 00}, C) and by
Lemma 2 also ¢ € C([—go, 00}, C?) for any o € (0, 1). If we differentiate
(41) w.r.t. w and apply Rellich’s system (28) we obtain

(=g on B" with some ge CY(BTUI,C?).

Consequently, we may apply Lemma4 (a) to ¢ and find ¢ € C*(Bg (0),C?)
as well as x € C1*(Bj (0),R?) for any o € (0, g9) and any o € (0, 1). Since
we localized around an arbitrary point wg € I, the proof of Theorem 1 (a)
is completed.

3. For the proof of Theorem 1 (ii) we assume S € C%#, Q € CVP(R3 R?)
with some 3 € (0,1). Then we also have B € C1#(B,,R3*3) and by part
(i) we know x € Cb% (BT, R3). Set v := min{}, 8}, define z = (2!, 22) by
(12) and differentiate these equations w.r.t. @w. Then we obtain

Zw = 80 on BT, Imz=0 onl/

with some gy € C?(BT U I,C?). From Lemma4 (b) we thus conclude
z € CY([—p,0],C?) for any o € (0,1). In particular, the right hand
side of equation (45) belongs to C'([—p, 0],C) and Lemma3 (b) shows
¢ e C%([—Q, 0],C3) for any ¢ € (0,1). Now Lemma4 (a) can be applied
to get ¢ € C2(BZ(0),C?) and we finally arrive at x € C12 (BT U I,R?),
as asserted. O

We conclude the paper with the

Proof of Theorem 2. We choose a branch point wg € I and assume x(wg) € 95;
compare Remark4 above. We localize as above — note especially wy — 0 —
and define z = (21, 2?) by (12). Reflecting z as in (22), the resulting function
2 : B — C? satisfies 2 € C*(B\ I,C?)NC%(B,C?) and Imz = 0 on I according
to Lemma 2.

Now choose an arbitrary domain D CC B with piecewise smooth boundary.
Then the arguments leading to formula (23) in Lemma 1 yield

1

% (z, p) dw = / (2, pw) + |2|*(h,¢)) dudv for all ¢ € C'(B,C?);

oD D

here h : B — C2 denotes some bounded function. According to the boundedness
of z on D we find a constant ¢ > 0 such that

‘ j((i,ga) dw‘ < 2/ (lpw| + cle])|z] dudv  for all ¢ € C'(B,C?).
oD D

13



The Hartman-Wintner technique — see e.g. Theorem 1 in [DHT] Section 3.1 —
now implies the existence of some m € N and some vector b € C2\ {0} such
that

#(w) = bw™ + o(|w|™) asw — 0. (46)

Note here that z cannot vanish identically in B since, otherwise, we would have
Vx = 0 near wq due to Proposition 2; this is impossible by our assumption x #
const as can be easily seen by employing the well known asymptotic expansions
at interior branch points.

Next we define 22 by (40) and consider ¢ = (21,22, 23) = (z,2?), which can
be extended to a continuous function on By (0) for any o € (0, 1), according to
part 2 in the proof of Theorem 1. In addition, we recall the relation (45), where
the quantities c;; = ¢;, o x are continuous functions on BT.

Now we multiply (45) by w™?™ and let w € B{ (0) tend to 0. Due to (46),
the right hand side and hence also the left hand side converges. Applying (46)
again as well as a variant of Lemma3 (i), we find w="23(w) — b3 as w — 0
with some limit b € C. Setting b := (b, b?) € C3, we conclude

¢(w) =bw™ + o(Jw|™) as w — 0. (47)

This relation finally yields the announced expansion (5) according to x,, =
(B~ 1ox)(; see (41) and recall det B # 0. The relation (a,a) = 0 is now a direct
consequence of the conformality relations and (5). O
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