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Abstract
We discuss a completely forgotten work of the geologist G.F. Becker on the ideal

isotropic nonlinear stress-strain function [8]. In doing this we provide the original
paper from 1893 newly typeset in LATEX and with corrections of typographical errors
as well as an updated notation. Due to the fact that the mathematical modelling
of elastic deformations has evolved greatly since the original publication we give a
modern reinterpretation of Becker’s work, combining his approach with the current
framework of the theory of nonlinear elasticity.

Interestingly, Becker introduces a multiaxial constitutive law incorporating the
logarithmic strain tensor, more than 35 years before the quadratic Hencky strain
energy was introduced by Heinrich Hencky in 1929. Becker’s deduction is purely
axiomatic in nature. He considers the finite strain response to applied shear stresses
and spherical stresses, formulated in terms of the principal strains and stresses,
and postulates a principle of superposition for principal forces which leads, in a
straightforward way, to a unique invertible constitutive relation, which in today’s
notation can be written as

TBiot = 2G · dev3 log(U) +K · tr[log(U)] · 11
= 2G · log(U) + Λ · tr[log(U)] · 11 ,

where TBiot is the Biot stress tensor, log(U) is the principal matrix logarithm of
the right Biot stretch tensor U =

√
F TF , trX =

∑3
i=1Xi,i denotes the trace and

dev3X = X − 1
3 tr(X) · 11 denotes the deviatoric part of a matrix X ∈ R3×3.

Here, G is the shear modulus and K is the bulk modulus. For Poisson’s number
ν = 0 the formulation is hyperelastic and the corresponding strain energy

W ν=0
Becker(U) = 2G [< U, log(U)− 11 > +3 ]

has the form of the maximum entropy function.
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1 Introduction

1.1 Some reflections on constitutive assumptions in nonlinear elas-
ticity

The question of proper constitutive assumptions in nonlinear elasticity has puzzled many gen-
erations of researchers. The problem of finding simple enough constitutive assumptions which
are sufficient to characterize a physically plausible behaviour of “completely elastic” materials
was even called “das ungelöste Hauptproblem der endlichen Elastizitätstheorie” (the unsolved
main problem of finite elasticity theory) by C. Truesdell [79]. While such assumptions can
only lead to an idealized material behaviour, the merits of such an ideal model were already
described by H. Hencky in his 1928 article On the form of the law of elasticity for ideally elastic
materials [31, 55]:

Like so many mathematical and geometric concepts, it is a useful ideal, because
once its deducible properties are known it can be used as a comparative rule for
assessing the actual elastic behaviour of physical bodies. [. . . ] While it is certainly
a matter of empirical observation to determine how actual materials compare to the
ideally elastic body, the law itself acts as a measuring instrument which is extended
into the realm of the intellect, making it possible for the experimental researcher to
make systematic observations.

The range of applicability of such an idealized response, however, must necessarily be re-
stricted to minute strains, perhaps in the order of 1%, for otherwise we are to expect interference
with non-elastic effects like plastic deformations, microstructural instabilities or bifurcations.
Nonetheless, it should be formulated tensorially correct for arbitrarily large strains. It is also
clear that the restriction to small elastic strains does not imply that one can use linear elas-
ticity theory, nor that the ideal elastic response for larger stresses or strains is arbitrary. On
the contrary, our idealization should work, as an ideal model, for arbitrarily large strains.

In the past, a large number of possible basic assumptions for elastic materials have been
suggested in order to respond to the idealization described above. Among the most commonly
accepted are:

• hyperelasticity: the existence of a strain energy function W ,

• homogeneity: the strain energy W does not depend on the position in the body,

• simple material: the strain energy W = W (F ) depends only on the first deformation
gradient F ,

• objectivity: W (Q · F ) = W (F ) for all Q ∈ SO(3),

• isotropy: W (F ·Q) = W (F ) for all Q ∈ SO(3),

• unique (up to rotations) stress-free reference state U =
√
F TF = 11,
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Figure 1: Nonlinear behaviour of incompressible elastic materials in a simple tensile stress
test, drawing the Biot stress TBiot versus the principal stretch λ.

• linearization consistent with linear elasticity theory at the reference state,

• well-posedness of the corresponding linear elasticity model in statics and dynamics,

• correct stress response for extreme strains: σ → ∞ as V =
√
FF T → ∞ as well as

σ → −∞ as det(V )→ 0, where σ denotes the Cauchy stress tensor,

• second-order behaviour in agreement with Bell’s experimental observations [13], i.e. the
instantaneous elastic modulus E decreases for tension and increases in the case of com-
pression (c.f. Fig. 1, which shows the unsuitability of the Saint-Venant-Kirchhoff model),

• correct energetic behaviour for extreme strains in order to ensure invertibility of the
deformation gradient F : W →∞ for ‖F‖ → ∞ as well as W →∞ for det(F )→ 0,

• polyconvexity [4, 75, 77, 76, 23, 24], quasiconvexity [51, 76],

• Legendre-Hadamard-ellipticity [59],

• Baker-Ericksen inequalities [3].

Apart from these conditions there are several properties which, while not generally viewed
as necessary for an elasticity model, may be considered as constitutive assumptions for an
idealized material as well:

• superposition principle: T (V1 · V2) = T (V1) + T (V2) for all coaxial stretches V1 and V2
and some corresponding stress tensor T ;

• invertible stress-strain relation: the mapping E 7→ T (E) is invertible for some stress
tensor T and a corresponding work conjugate strain tensor E (if T is the Cauchy stress
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tensor, then this invertibitliy condition is satisfied e.g. for a variant of the compressible
Neo-Hooke energy [26]; if T is the Biot stress tensor, then this condition is Truesdell’s
invertible force stretch (IFS) relation [80, p. 156]);

• tension-compression symmetry: T (V −1) = −T (V ) for some stress tensor T (note that
the classical hyperelastic tension-compression symmetry W (F ) = W (F−1) is equivalent
to τ(V −1) = −τ(V ) for the Kirchhoff stress τ and the left stretch tensor V );

• plausible behaviour under simple homogeneous finite stresses (similar to linear elasticity):

– pure shear stresses of the form T =
( 0 s 0
s 0 0
0 0 0

)
should induce stretches of the form

V =
(
B11 B12 0
B12 B22 0

0 0 1

)
with det

(
B11 B12
B12 B22

)
= 1,

– spherical stresses of the form T =
(
a 0 0
0 a 0
0 0 a

)
should induce volumetric stretches of the

form V =
(
λ 0 0
0 λ 0
0 0 λ

)
;

e
1

e
2

e
3

e
1

e
2

e
3

A = 1 A = 1

Figure 2: Pure shear stress should induce
pure shear stretch, preserving
the area A.

Figure 3: Spherical stress should induce
purely volumetric stretch.

• ordered stresses (“greater stress corresponds to greater stretch”): (Ti−Tj) · (λi−λj) > 0
for all λi 6= λj and some stress tensor T , where Tk are the principal stresses, i.e. the
principal values of T , and λk are the principal stretches (note that the Baker-Ericksen
inequality can be stated as (σi− σj) · (λi− λj) > 0 for all λi 6= λj where σ is the Cauchy
stress tensor);

• simple volumetric-isochoric decoupling to ensure a suitable formulation of the incom-
pressibility constraint,

• minimal number of physically motivated and experimentally identifiable constitutive co-
efficients, e.g. only the two isotropic Lamé constants,

• clear physical interpretation of Poisson’s number ν for finite deformations: ν = 1
2 enforces

exact incompressibility (detF = 1) and ν = 0 implies no lateral contraction under
uniaxial tension (as in linear elasticity),
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• greatest possible extent of elastic determinacy [55, p. 19]: the stress response should
not depend on a specific reference state or previously applied deformations; a similar
condition was proposed by Murnaghan [52, 53], who argued that the dependence of the
stress response on a specific “position of zero strain” was tantamount to an “action at a
distance” and should therefore be avoided.

Several attempts to propose such an idealized model of elasticity can be found in the literature.
Becker’s deduction can be seen as an early example of such an attempt.

1.2 A modern interpretation of Becker’s development
Becker, in his development of a nonlinear law of elasticity, rejects many of his contemporaries’
approaches to the problem of finite elasticity. He starts his introduction with a description of
Hooke’s law, stating that apart from its original formulation (“Strain is proportionate to the
load, or the stress initially applied to an unstrained mass” (1, p. 337)) it is often interpreted
in a different way (“Strain is proportional to the final stress required to hold a strained mass
in equilibrium” (2, p. 337)). These two different interpretations of Hooke’s law for finite
deformations∗ can be expressed as

TBiot = 2G · dev3(U − 11) +K · tr[U − 11] · 11
= 2G · (U − 11) + Λ · tr[U − 11] · 11

(1)

and
σ = 2G · dev3(V − 11) +K · tr[V − 11] · 11

= 2G · (V − 11) + Λ · tr[V − 11] · 11
(2)

respectively, where U =
√
F TF is the right Biot stretch tensor, V =

√
FF T is the left Biot

stretch tensor, σ is the Cauchy stress tensor, TBiot is the Biot stress tensor, dev3X = X −
1
3 tr(X) · 11 denotes the deviatoric part of X ∈ R3×3, K is the bulk modulus and G,Λ are the
Lamé constants. According to Becker, it was already “universally acknowledged that either law
[(1), (2)] is applicable only to strains so small that their squares are negligible” (3, p. 337). He
gives a number of reasons for this rejection of Hooke’s law as a model for finite deformations,
including the fact that it allows for infinite distortions (detF = 0) under finite stresses (4,
p. 337). In addition, Becker states that Hooke’s law “rests entirely upon experiment”, i.e.
that there is no underlying framework necessitating the linearity of the stress-strain relation.
However, Becker also rejects the idea that the stress response could be discovered by “any
process of pure reason” alone†, an approach which he attributes to Barré de Saint-Venant. In
fact, in Becker’s time the elasticity models that had been developed through purely geometrical
considerations generally implied the so-called Cauchy relations [29, 61, 62], i.e. they determined
the lateral contraction independent of the specific material, corresponding to a fixed value ν = 1

4

∗The different possibilities of a Hookean law for finite deformations have been discussed in [86] and [6].
†As a proponent of the works of Immanuel Kant [9], it is consequential that Becker rejects the purely

empiricist approach as well the rationalist one.
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for Poisson’s number ν. As Becker points out in a footnote later on (31, p. 348), this value for
ν should only be regarded as a special case and not as a general law‡.

Instead, his approach to describe the deformation of an ideally elastic body can be sum-
marized as follows: motivated by geometric considerations he postulates a connection between
shear stresses and shear strains as well as between volumetric stresses and dilational strains.
He then shows that every homogeneous finite deformation can be decomposed into two shear
stretches and a purely dilational deformation. Finally Becker assumes that a law of super-
position holds for all coaxial finite strains, allowing him to reduce the problem of a general
stress-stretch relation to shears and dilations only.

Thus Becker makes a number of assumptions about the stress-stretch relation from which
he then deduces a law of elasticity. His final result is a stress-stretch relation which in today’s
notation can be written as

TBiot = 2G · dev3 log(U) +K · tr[log(U)] · 11
= 2G · log(U) + Λ · tr[log(U)] · 11 ,

where log(U) is the principal matrix logarithm of the right Biot stretch tensor U =
√
F TF .

In order to reproduce Becker’s approach in a more modern framework of elasticity theory
we will therefore interpret Becker’s implicit assumptions as axioms for a law of ideal elasticity.
While sections 2 and 3 summarize Becker’s motivation for these axioms as well as some of
his computations, a generalized deduction of Becker’s law of elasticity will be given in section
4. Finally, we will investigate some basic properties of the resulting stress-stretch relation in
section 5.

While the axioms are in fact sufficient to completely characterize an isotropic stress-stretch
relation uniquely up to two material parameters, it turns out that some of them may be
weakened considerably without changing the result.

2 Becker’s assumptions
In order to understand Becker’s approach it is important to distinguish his (often implicitly
stated) assumptions from his deduced results. Like Becker, we consider a unit cube in the
reference configuration Ω0 the edges of which are aligned with an orthogonal coordinate system
e1, e2, e3. Unless indicated otherwise, all matrix representations of linear mappings are given
with respect to this coordinate system.
‡This model, with a stress-strain law of the form

σ = G (V − 11) + G
2 tr(V − 11) · 11 = G [(V − 11) + 1

2 tr(V − 11) · 11] ,

is also called the rari-constant theory of isotropic elasticity. The elastic behaviour of many materials, including
metal, can not be described accurately by this one-parameter model.
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2.1 Basic assumptions
Becker’s most basic assumptions are that the stress-stretch relation is an analytic function (26,
p. 342) as well as isotropic∗ (5, p. 338) and that it is possible to “regard strains as functions
of load” (25, p. 341), i.e. that the strain-load mapping is invertible. Note that here and
throughout we will interpret Becker’s “initial stress” (which, for a unit cube, is equal to the
load) as the Biot stress tensor [20]

TBiot = U · S2 = J ·RT · σ · F−T ,

where F denotes the deformation gradient, F = RU is the polar decomposition [42] of F with
R ∈ SO(3) and U =

√
F TF ∈ PSym(3), J = detF = detU is the Jacobian determinant, σ

is the Cauchy stress tensor and S2 is the symmetric second Piola-Kirchhoff stress tensor. A
justification of this interpretation can be found in Appendix A.2. Note that in the isotropic
case, TBiot is a symmetric tensor as well [58].

2.2 Pure finite shear
One of Becker’s main assumptions is that “a simple finite shearing strain must result from the
action of two equal loads or initial stresses of opposite signs at right angles to one another” (13,
p. 339). This assumption is mostly motivated by geometric considerations: if the deformation
is a homogeneous pure shear of the form

F =

α 0 0
0 1

α
0

0 0 1

 , α > 1 , (3)

then the so-called planes of no distortion have a number of properties connected to the quan-
tity α. Becker then relates these properties of strain to certain properties of stress, thereby
establishing that the stress corresponding to the above shear deformation must be a pure shear
stress of the form

TBiot =

s 0 0
0 −s 0
0 0 0

 , s ∈ R . (4)

His arguments are largely based on the assumption that “[in] the particular case of a shear
(or a pure shear) there are two sets of planes on which the stresses are purely tangential, for
otherwise there could be no planes of zero distortion” (8, p. 338).
∗By isotropy, Becker means the absence of any directional information. He does not have a representation

theorem for isotropic tensor functions at his disposal; note that J. Finger’s influential monograph on isotropic
nonlinear elasticity in terms of the three principal invariants [25] was not published until 1894.
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Figure 4: Pure shear load and the corresponding shear deformation.

If a a Biot shear stress of the form (4) corresponds to a pure shear deformation of the form
(3), then the corresponding Cauchy stress tensor σ computes to

σ = 1
detU · U

−1 · F · TBiot · F T = 1 · F−1 · F · TBiot · F =

α s 0 0
0 − s

α
0

0 0 0

 . (5)

The principal Cauchy stresses are therefore σ1 = α s, σ2 = − s
α

and σ3 = 0. Note carefully that
Becker’s shear deformation is oriented differently: in his considerations, the contractile axis
(along the eigenvector to the smaller eigenvalue 1

α
) is aligned with the e1-axis. This difference

is reflected in Becker’s formula −σ1 α = σ2/α (9, p. 338). For our choice of axes, the
corresponding equality reads

−σ2 α = σ1/α .

A more detailed geometric description of this relation will be given in section 3. More
recent discussions of shear stresses and shear strains can be found in [21] and [65]. The so-
called planes of no distortion also play an important role in Becker’s treatment of the rupture
of rocks [7] as well as his later works on schistosity and slaty cleavage [10, 11], where properties
of the planes of no distortion are linked to failure criteria for deformations beyond the range of
elastic deformations. A summary of Becker’s work on yield criteria for rocks can be found in
[82], while the concept of planes of no distortion and its relation to the tangential shear strain
is described in a more detailed form in [27].

2.2.1 The planes of no distortion

Let F ∈ GL+(3) denote an invertible linear mapping. We call a plane E ⊂ R3 through the
origin an initial plane of no distortion if the restriction of F to E is a rotation, which is the
case if and only if 〈Fx, Fy〉 = 〈x, y〉 for all x, y ∈ E or, equivalently, if ‖Fx‖ = ‖x‖ for all
x ∈ E , where 〈·, ·〉 denotes the Euclidean inner product on R3. Furthermore, we call F ⊂ R3 a
final plane of no distortion if F is the image under F of an initial plane of no distortion, which
is the case if and only if ‖F−1x‖ = ‖x‖ for all x ∈ F . Since Becker’s considerations of such
planes are confined to the deformed (or final) configuration of a homogeneous deformation, we
will often refer to F simply as a plane of no distortion.
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Figure 5: An initial plane of no distortion is only rotated by the linear mapping F ,
preserving the angles between two vectors as well as their lengths.

The following basic existence property can be found in [27].

Proposition 2.1. Let F ∈ GL+(3). Then there exists a plane of no distortion for F if and
only if λ2 = 1, where λ1 > λ2 > λ3 denote the singular values of F .

Remark 2.2. If λ2 6= 1 for the second singular value λ2 of a linear mapping F ∈ GL+(3),
then instead of a plane there exists a surface of no distortion in the form of an elliptical cone
[27, p. 133] instead of a plane of no distortion. If, however, we generalize the term to mean
any plane F such that the restriction of F to F is a dilated rotation (also called a conformal
mapping) of the form λ ·Q with λ ∈ R+ and Q ∈ SO(3), then Proposition 2.1 shows that such
a plane exists for F ∈ GL+(3) if and only if the dilational factor λ is the second singular value
of F .

Remark 2.3. It was shown by J. Ball and R.D. James [5, Proposition 4] that the equality
λ2 = 1 holds if and only if the right Cauchy-Green tensor C = F TF corresponding to F is
expressible in the form

C = (11 + ξ ⊗ η) · (11 + η ⊗ ξ) = (11 + η ⊗ ξ)T · (11 + η ⊗ ξ)

with ξ, η ∈ R3, where ξ ⊗ η ∈ R3×3 denotes the tensor product of ξ and η. Thus there exists a
plane of no distortion for F ∈ GL+(3) if and only if there exists a rank-one tensor H ∈ R3×3

with
F TF = C = (11 +H)T · (11 +H) .

Since Becker only considers planes of no distortion for pure shear deformations, we will
assume from now on that F has the form

F =

α 0 0
0 1

α
0

0 0 1

 (6)
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with α > 1. Then clearly λ2 = 1, hence there are two distinct planes of no distortion which
can be determined by direct computation: for x = (x1, x2, x3)T ∈ R3 with ‖x‖ = 1 we can use
the equalities

x2
1 + x2

2 + x2
3 = ‖x‖2 =⇒ x2

3 = ‖x‖2 − x2
1 − x2

2

to find

‖Fx‖2 = α2x2
1 + 1

α2 x
2
2 + x2

3 = (α2 − 1)x2
1 +

( 1
α2 − 1

)
x2

2 + ‖x‖2 .

Thus the equality ‖Fx‖ = ‖x‖ is equivalent to

‖x‖2 = (α2 − 1)x2
1 +

( 1
α2 − 1

)
x2

2 + ‖x‖2

⇐⇒
(

1− 1
α2

)
x2

2 = (α2 − 1)x2
1 ⇐⇒ x2

2 = α2 x2
1 , (7)

hence every x ∈ R3 with ‖Fx‖ = ‖x‖ is of the form x = (s, ±α s, t)T with s, t ∈ R. Since
the final directions of no distortion are the images of those vectors, they in turn have the form
y = Ax = (±α s, s, t)T . Therefore, for every shear deformation of the form (6) with α > 1,
there are two initial planes of no distortion,

E+ =
{x1

x2
x3

 : x2 = α · x1

}
and E− =

{x1
x2
x3

 : x2 = −α · x1

}
, (8)

as well as two final planes of no distortion

F+ =
{x1

x2
x3

 : x1 = α · x2

}
and F− =

{x1
x2
x3

 : x1 = −α · x2

}
. (9)

To verify Becker’s claim that (10, p. 339)

“[in] a finite shearing strain of ratio α, it is easy to see that the normal to the planes
of no distortion makes an angle with the contractile axis of shear the cotangent of
which is α”,

we consider the direction of the contractile axis along the eigenvector (0, 1, 0)T = e2 corre-
sponding to the smallest eigenvalue 1

α
. Then the cotangent of the angle between this axis and

a vector n̂ = (y1, y2, y3)T with y1 6= 0 is given by y2
y1

. Since

n+ = (1,−α, 0)T and n− = (1, α, 0)T (10)

are normal vectors to the planes of no distortion F+ and F−, respectively, the cotangent of
the angle between these normals and the contractile axis is indeed given by ±α. Similarly, it
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is easy to see that the normals to the initial planes of no distortion E+ and E− form angles of
cotangent ± 1

α
with the contractile axis.

This definition of the planes of no distortion is also consistent with the definition by means
of the shear ellipsoid∗ given by C.K. Leith† in Structural geology [43]:

In a strain ellipsoid with three unequal principal axes there are only two cross-
sections which are circular in outline [. . . ] These planes [. . . ] are called “planes of
no distortion” because they preserve a circular cross-section similar to a section of
the original sphere. . .

The strain ellipsoid of the deformation with principal stretches α, α−1 and 1 is defined by the
equation

x2
1
α2 + x2

2
α−2 + x2

3 = 1 ,

where x1 and x2 denote coordinates with respect to the tensile axis and the contractile axis in
pure shear respectively. The planes F+ and F− are characterized by the equation x1 = ±αx2,
thus we can verify that their intersections with the ellipsoid are indeed circles of radius 1
centred at the origin (0, 0, 0)T :

x2
1
α2 + x2

2
α−2 + x2

3 = 1 ∧ x1 = ±αx2

=⇒ ‖
( x1
x2
x3

)
−
( 0

0
0

)
‖ = x2

1 + x2
2 + x2

3 = x2
1 + x2

2 + 1− x2
1
α2 − α

2x2
2

= x2
1 + x2

2 + 1− x2
2 − x2

1 = 1 .

2.2.2 Different characterizations of the planes of no distortion

The initial planes of no distortion can also be characterized in a number of different ways, for
example by means of the cofactor matrix Cof F : If the restriction of F to a plane is a rotation,
then

〈Fx, Fy〉 = 〈x, y〉
for all x, y in the plane. Then for all x, y in the plane with 〈x, y〉 = 0 we find

‖Fx× Fy‖2 = ‖Fx‖2 · ‖Fy‖2 − 2 · 〈Fx, Fy〉 = ‖x‖2 · ‖y‖2 − 2 · 〈x, y〉 = ‖x‖2 · ‖y‖2 .

Now let n denote a unit normal vector to the plane of no distortion. Then n can be represented
as n = x× y with unit vectors x, y in the plane and 〈x, y〉 = 0. Since, in general,

(Cof F ) (x× y) = Fx × Fy ,

we find
‖(Cof F )n‖2 = ‖(Cof F ) (x× y)‖2 = ‖Fx × Fy‖2 = ‖x‖2 · ‖y‖2 = 1 .

∗The shear ellipsoid is also discussed by Becker in the context of hyperbolic functions [12, p. xxxii].
†Equivalent, but more implicit definitions are given by Becker [7] and Griggs [27]
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Therefore the equality ‖(Cof F )n‖ = 1 is a necessary condition for a unit normal vector n to
be the normal to an initial plane of no distortion. We compute

Cof F = det(F ) · F−T = α · 1
α
·

α 0 0
0 1

α
0

0 0 1


−1

=


1
α

0 0
0 α 0
0 0 1


as well as

‖(Cof F )n‖2 = n2
1
α2 + α2n2

2 + n2
3 = n2

1
α2 + α2n2

2 + 1− n2
1 − n2

2

= 1 + ( 1
α2 − 1)n2

1 + (α2 − 1)n2
2 = 1 + ( 1

α2 − 1) (n2
1 − α2n2

2) ,

thus
‖(Cof F )n‖ = 1 ⇐⇒ 0 = ( 1

α2 − 1) (n2
1 − α2n2

2) ⇐⇒ n2
1 = α2n2

2

for α > 1, showing that the cotangent of the angle between n and the contractile axis is ± 1
α

.
Therefore the equality ‖(Cof F )n‖ = ‖n‖ = 1 holds only if n is a unit normal vector to a plane
of no distortion. Note that this equality also implies

0 = 〈(Cof F )n, (Cof F )n〉 − 〈n, n〉 = 〈(Cof F )T (Cof F )n− n, n〉 = 〈(Cof B − 11)n, n〉 ,

where B = FF T denotes the left Cauchy-Green deformation tensor.
Becker gives another important characterization of the planes of no distortion: “the planes

of no distortion [. . . ] are also the planes of maximum tangential strain” (17, p. 339). In
Becker’s Finite Homogeneous Strain, Flow and Rupture of Rocks [7], the tangential strain of
x ∈ R3 is defined as the tangent of the angle between x and Fx. Accordingly, the plane of
maximum tangential strain of a pure shear deformation F is defined as the plane containing
the undistorted axis as well as the line for which the tangential strain is maximal.

contractile

tensile

axis

1/a

1

1 a

axis

ϑ̃

x̃

F x̃

contractile

tensile

axis

1/a

1

1 a

axis

ϑ

x

Fx

Figure 6: The shear ellipsoid of a deformation F , showing an arbitrary tangential strain
tan ϑ̃ (left) and the maximum tangential strain tanϑ (right), which is realized for
the plane of no distortion.
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We will show that the planes of maximum tangential strain and the initial planes of no
distortion are, in fact, identical. Let x be of the form x = (x1, x2, 0)T with x2

1 + x2
2 = 1, i.e. we

assume that x is a unit vector orthogonal to the undistorted e3-axis. Then the angle ϑ between
x and Fx is given by

cosϑ = 〈x, Fx〉
‖x‖ · ‖Fx‖

= 〈x, Fx〉
‖Fx‖

.

The direction x of maximum tangential strain is characterized by the angle ϑ for which tanϑ
is maximal. In order to find x it is therefore sufficient to maximize

ϑ = arccos 〈x, Fx〉
‖Fx‖

= arccos
αx2

1 + 1
α
x2

2√
α2x2

1 + 1
α2 x2

2
,

since ϑ 7→ tanϑ is monotone. Using the equality x2
1 = 1− x2

2, we obtain

arccos 〈x, Fx〉
‖Fx‖

= arccos
α (1− x2

2) + 1
α
x2

2√
α2(1− x2

2) + 1
α2 x2

2
.

In order to find t ∈ [−1, 1] for which the function

f : [−1, 1]→ R , f(t) = arccos
α(1− t2) + 1

α
t2√

α2(1− t2) + 1
α2 t2

attains its maximum, we compute the first derivative of f to be

d
d t f(t) = (α2t2 − 1) + t2

α t(t2 − 1) ·

√
(α2−1)2t2(t2−1)
α4(t2−1)−t2√

α2 − (α4−1)t2
α2

.

Thus the possible extremal points of f are 0, ±1 and ± α√
1+α2 . Since f( α√

1+α2 ) = f(− α√
1+α2 )

as well as f(−1) = f(0) = f(1) = 0 and f(t) ≥ 0 for all t ∈ [−1, 1], the global maxima of f are
given by t = ± α√

1+α2 . Applying this result to our original problem, we find that the maximum

tangential strain is attained for the directions x̂± =
(√

1− α2

1+α2 , ± α√
1+α2 , 0

)T
.

Finally, in order to verify Becker’s claim that “the planes of no distortion [. . . ] are also the
planes of maximum tangential strain” (17, p. 339), we observe that

‖Fx̂±‖2 =
∥∥∥∥
α ·

√
1− α2

1+α2
1
α
· (± α√

1+α2 )
0

∥∥∥∥2
= α2 ·

(
1− α2

1 + α2

)
+ 1

1 + α2

= α2 + 1− α4

1 + α2 = α2 + 1− α2 = 1 = ‖x̂±‖ .

Thus the plane of maximum tangential strain is indeed the initial plane of no distortion.
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1

1/α

α

ϑ

x

Fx

Figure 7: Another visualization of the tangential strain: the shift between two parallel
vertical lines under the deformation is maximal along the plane of no distortion.

2.2.3 Simple glide deformation

A homogeneous deformation F is called simple glide if it has the form [63]

F =

1 γ 0
0 1 0
0 0 1

 ,

with γ ∈ R, γ > 0. Since F · (t, 0, s)T = (t, 0, s)T for all t, s ∈ R, the restriction of F to the
e1-e3-plane is the identity function, showing that it is the initial plane of no distortion as well
as the final plane of no distortion. We examine the right Cauchy-Green deformation tensor of

e1

e2

1 ϕ

γ

Figure 8: Simple glide deformation with shear angle tanϕ = γ/1; horizontal lines slide
relative to each other, vertical lines tilt to accomodate; originally right angles are
distorted, the shear strain measures the change of angles.

a simple glide, which is given by

C = F TF =

1 γ 0
γ 1 + γ2 0
0 0 1

 .
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The principal stretches λi are the singular values of F which, in turn, are the square roots of
the eigenvalues of C,

λ1 = 1
2(γ +

√
γ2 + 4) , λ2 = 1

2(γ +
√
γ2 − 4) , λ3 = 1 ,

and the principal axes are given by the corresponding eigenvectors of C:

v1 =

 2
γ +
√
γ2 + 4
0

 , v2 =

 −2
γ +
√
γ2 − 4
0

 , v1 =

0
0
1

 .

Since 1 < λ1 = 1
λ2 as well as λ3 = 1, we can interpret the simple glide as a rotated pure shear

with shear ratio α = λ1, where the direction of the tensile axis is v1 and the contractile axis is
given by v2. The cotangent of the angle ϑ between v2 and the e1-axis is

cot (ϑ) = −2
γ +
√
γ2 − 4

= −2
2 · λ2

= − 1
λ2

= −α .

Hence the angle between (1, 0, 0)T = e1 and the contractile axis is

cot (−ϑ) = − cot (ϑ) = α ,

yielding another angular characterization of the shear ratio α.

2.3 Dilation
Similarly to the connection between shear stress and shear stretches, Becker further assumes
that “dilational forces acting positively and equally in all directions” (19, p. 339) are “[the
loads] effecting dilation” (27, p. 342), i.e. that purely volumetric initial stresses correspond
to purely dilational stretches. More precisely, this assumption can be stated in the following
way: if the principal axes remain fixed, every Biot stress of the form TBiot = a · 11 with a ∈ R
corresponds to a deformation of the form F = λ · 11 with λ > 0. Again, this assumption is
stated only implicitly.

2.4 Superposition
Becker’s most important assumption is that of a law of superposition for coaxial deformations:
“the load sums correspond to the products of the strain ratios” (24, p. 341). For homogeneous,
coaxial stretch tensors U1, U2 this law can be stated as

TBiot(U1 · U2) = TBiot(U1) + TBiot(U2) ,

where TBiot(U) denotes the Biot stress tensor corresponding to the right Biot stretch tensor
U . Here, U1 and U2 are called coaxial if their principal axes coincide.
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2.4.1 The decomposition of stresses and strains

An important application of the law of superposition involves the additive decomposition of
stresses and the corresponding multiplicative decomposition of stretches. Consider an initial
load (i.e. a Biot stress tensor) of the form

TBiot
1 =

P 0 0
0 0 0
0 0 0

 .

In the case of isotropic materials, the corresponding stretches are identical for all directions
orthogonal to the x1-axis for symmetry reasons, which is the case if and only if the stretch
tensor corresponding to TBiot has the form

U1 =

a 0 0
0 b 0
0 0 b


for some a, b ∈ R+ with respect to the principal axes. Then, for h1 = (ab2) 1

3 and p =
(
a
b

) 1
3 , we

find

U1 =


(
ab2 · a2

b2

) 1
3 0 0

0
(
ab2 · b

a

) 1
3 0

0 0
(
ab2 · b

a

) 1
3



= h1 ·

p
2 0 0

0 1
p

0
0 0 1

p

 =

h1 0 0
0 h1 0
0 0 h1

 ·
p 0 0

0 1
p

0
0 0 1

 ·
p 0 0

0 1 0
0 0 1

p

 .

In a similar way we can obtain the stretch tensors corresponding to the stresses

TBiot
2 =

0 0 0
0 Q 0
0 0 0

 and TBiot
3 =

0 0 0
0 0 0
0 0 R


respectively:

U2 = h2 ·


1
q

0 0
0 q2 0
0 0 1

q

 =

h2 0 0
0 h2 0
0 0 h2

 ·


1
q

0 0
0 q 0
0 0 1

 ·
1 0 0

0 q 0
0 0 1

q

 ,

U3 = h3 ·


1
r

0 0
0 1

r
0

0 0 r2

 =

h3 0 0
0 h3 0
0 0 h3

 ·


1
r

0 0
0 1 0
0 0 r

 ·
1 0 0

0 1
r

0
0 0 r


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for some h2, h3, q, r ∈ R+. Therefore every homogeneous deformation corresponding to a
uniaxial load can be decomposed into a dilation and two shear deformations with perpendicular
axes. Finally, for the general case of arbitrary stresses

TBiot =

P 0 0
0 Q 0
0 0 R

 =

P 0 0
0 0 0
0 0 0

+

0 0 0
0 Q 0
0 0 0

+

0 0 0
0 0 0
0 0 R


= TBiot

1 + TBiot
2 + TBiot

3 ,

the law of superposition yields the general formula

U = U1 · U2 · U3 = h1 h2 h3 ·

p
2 0 0

0 1
p

0
0 0 1

p

 ·


1
q

0 0
0 q2 0
0 0 1

q

 ·


1
r

0 0
0 1

r
0

0 0 r2

 = h1 h2 h3 ·


p2

q r
0 0

0 q2

p r
0

0 0 r2

p q


for the stretch tensor U corresponding to TBiot. Then U can be decomposed into a dilation
and two shears as well:

U =

h1 h2 h3 0 0
0 h1 h2 h3 0
0 0 h1 h2 h3

 ·

p2

q r
0 0

0 q r
p2 0

0 0 1

 ·
1 0 0

0 p q
r2 0

0 0 r2

p q

 .

Furthermore we can find an additive decomposition

TBiot =


P+Q+R

3 0 0
0 P+Q+R

3 0
0 0 P+Q+R

3

 (11)

+

−
Q+R−2P

3 0 0
0 Q+R−2P

3 0
0 0 0

 +

0 0 0
0 P+Q−2R

3 0
0 0 −P+Q−2R

3


of TBiot into a spherical stress and two pure shear stresses. Note that the decomposition of U
can be found in Becker’s second table (22, p. 340) while the decomposition of TBiot can be
found in the third table (23, p. 340).

In decomposing the strains U1, U2 and U3 into a dilation and two shear strains, the planes
of shear were chosen arbitrarily for every strain (or, more precisely, such that the two resulting
shear ratios were identical). However, we may also choose two fixed planes (or, equivalently,
fixed axes of tension and contraction) and decompose all strains into shears along the same
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axes:

U1 = h1 ·

p
2 0 0

0 1
p

0
0 0 1

p

 = h1 ·

p
2 0 0

0 1
p2 0

0 0 1

 ·
1 0 0

0 p 0
0 0 1

p

 ,

U2 = h2 ·


1
q

0 0
0 q2 0
0 0 1

q

 = h2 ·


1
q

0 0
0 q 0
0 0 1

 ·
1 0 0

0 q 0
0 0 1

q

 ,

U3 = h3 ·


1
r

0 0
0 1

r
0

0 0 r2

 = h3 ·


1
r

0 0
0 r 0
0 0 1

 ·
1 0 0

0 1
r2 0

0 0 r2

 .

Note that the axes chosen here are identical to those chosen for the decomposition of U . Using
this approach we obtain a modified version of Becker’s first table:

Active force P Q R
Axis of strain x y z x y z x y z

Dilation h1 h1 h1 h2 h2 h2 h3 h3 h3

Shear p2 1
p2 1 1

q
q 1 1

r
r 1

Shear 1 p 1
p

1 q 1
q

1 1
r2 r2

Table 1: Modified version of Becker’s first table

2.4.2 The uniaxial case

Consider, again, a uniaxial initial stress of the form TBiot =
(

0 0 0
0 Q 0
0 0 0

)
. Then TBiot can be

decomposed into

TBiot = Q

3

−1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

=:TBiot
1

+ Q

3

0 0 0
0 1 0
0 0 −1


︸ ︷︷ ︸

=:TBiot
2

+ Q

3

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

=:TBiot
3

.
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Figure 9: Load and deformation of the uniaxial case can be decomposed into two finite shear
and a dilational mode.

By Becker’s assumption the two shear stresses TBiot
1 and TBiot

2 correspond to shear strains

U1 =


1
α

0 0
0 α 0
0 0 1

 and U2 =

1 0 0
0 α 0
0 0 1

α


respectively, while the volumetric stress TBiot

3 corresponds to a dilational strain

U3 =

h 0 0
0 h 0
0 0 h

 .

Then, according to the law of superposition, the strain corresponding to TBiot is given by

U = U1 · U2 · U3 =


h
α

0 0
0 hα2 0
0 0 h

α

 .

The resulting principal stretch hα2 in direction of the applied load is referred to by Becker as
the “length of the strained mass” (29, p. 343) in his further computations for the uniaxial case.

Now we consider another uniaxial load given by T̂Biot =
(
P 0 0
0 0 0
0 0 0

)
. Then T̂Biot can be

decomposed in a number of different ways. For example we could choose, for symmetry reasons,
a decomposition similar to that of TBiot, i.e.

T̂Biot = P

3

1 0 0
0 −1 0
0 0 0

 + P

3

1 0 0
0 0 0
0 0 −1

 + P

3

1 0 0
0 1 0
0 0 1

 ,
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yielding the strain

Û =

α̂ 0 0
0 1

α̂
0

0 0 1

 ·
α̂ 0 0

0 1 0
0 0 1

α̂

 ·

ĥ 0 0
0 ĥ 0
0 0 ĥ

 =


ĥ α̂2 0 0

0 ĥ
α̂

0
0 0 ĥ

α̂

 .

It is also possible to decompose T̂Biot into shears coaxial to TBiot
1 and TBiot

2 , i.e.

T̂Biot = −2P
3

−1 0 0
0 1 0
0 0 0

 + P

3

0 0 0
0 1 0
0 0 −1

 + P

3

1 0 0
0 1 0
0 0 1

 .

Note that the resulting strain is independent of this choice: since

−2P
3

−1 0 0
0 1 0
0 0 0

 = P

3

1 0 0
0 −1 0
0 0 0

+ P

3

1 0 0
0 −1 0
0 0 0

 ,

the law of superposition yields

Û =

α̂ 0 0
0 1

α̂
0

0 0 1

 ·
α̂ 0 0

0 1
α̂

0
0 0 1

 ·
1 0 0

0 α̂ 0
0 0 1

α̂

 ·

ĥ 0 0
0 ĥ 0
0 0 ĥ

 =


ĥ α̂2 0 0

0 ĥ
α̂

0
0 0 ĥ

α̂


in this case as well.

2.4.3 Decomposition along fixed axes

The additive decomposition of the stress tensor into a volumetric stress and two shears along
fixed axes can also be expressed in basic algebraic terms. We will identify the set of all diagonal
matrices in R3×3 with the Euclidean space R3 in the canonical way. Since the set

B =
{−1

1
0

 ,

 0
1
−1

 ,

1
1
1

} ,
which corresponds to two shear stresses and a volumetric stress in diagonal form, is a basis of
R3, every

(
P
Q
R

)
∈ R3 can be written as

PQ
R

 = A

−1
1
0

 + B

 0
1
−1

 + C

1
1
1

 =

−1 0 1
1 1 1
0 −1 1

 ·
AB
C

 . (12)
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For given P,Q,R ∈ R we can therefore find the coefficients A,B,C of the decompositionP 0 0
0 Q 0
0 0 R

 = A

−1 0 0
0 1 0
0 0 0

 + B

0 0 0
0 1 0
0 0 −1

 + C

1 0 0
0 1 0
0 0 1


by rewriting equation (12) to readAB

C

 =

−1 0 1
1 1 1
0 −1 1


−1

·

PQ
R

 = 1
3

−2 1 1
1 1 −2
1 1 1

 ·
PQ
R

 = 1
3

−2P +Q+R
P +Q− 2R
P +Q+R

 .

The decomposition obtained in this way is the same as given in (11).

3 Geometry and statical analysis of finite shear defor-
mation

In this section we investigate the geometric and static motivation of the relation between shear
deformations and shear stresses assumed by Becker. The unit cube Ω0 aligned to the orthogonal
coordinate system e1, e2, e3 in the reference configuration is considered again. We distinguish
six variants of orthogonal deformation along the edges of the unit cube such that one edge
preserves its length, compare Fig. 10.
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e
1

e
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Figure 10: Six variants of plane, orthogonal deformation along the edges of a unit cube.
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Specifying the deformation Φα : Ω0 → Ω1 as pure finite shear with ratio α, the volume in
the actual configuration Ω1 is invariant. Thus, stretching one edge in the plane of deformation
by α must result in a contraction 1/α of the corresponding edge, see also Fig. 11. The volume
invariance holds for any intermediate configuration Ωi and goes along with the multiplicative
and nonlinear behaviour of finite deformation. We consider the intermediate configuration
defined by the symmetry condition

Φ√α : Ω0 7→ Ωi , Φ√α : Ωi 7→ Ω1. (13)

n
n

1 1/ 1/

1
a

a

a

a

f f

ff

n
Ω0

Ωi

Ω1

Figure 11: Finite shear of a unit cube.

Let us inscribe a circle and a square into Ω0 as drawn on the left hand side of Fig. 11.
Then Φ√α deforms the circle into an ellipse∗ and the square into a rhombus. Increasing values
for α decrease the angle ψ between the normal vector

n̄ = 1√
α + 1/α

( √
α

1/
√
α

)
= 1√

α2 + 1

(
α
1

)
(14)

and the horizontal direction e1, compare Fig. 12.
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Figure 12: Inclination ψ of the normal n̄ in the intermediate configuration Ωi.
∗The equation of the shear ellipse is also mentioned by Becker (14, p. 339).
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Becker denotes the scalar product 〈n, ei〉 between the normal n of a plane and the coordinate
axis ei as “direction cosines” ni of the plane (7, p. 338). For the normal n̄ we find

n1 = 〈n̄, e1〉 =
√
α2 + 1 , n2 = 〈n̄, e2〉 =

√
1 + 1/α2 =⇒ n1 = αn2 , (15)

thus the inclination ψ of the normal n̄ is given by

cotψ = n1

n2
= α . (16)

Since here the direction e1 is the contractile axis, it follows from the calculations in section 2.2.1
that n̄ is normal to the plane of no distortion. The rhombus in Fig. 12 therefore describes the
two directions of no distortion. We explain this fact geometrically for the line perpendicular to
n̄ in Fig. 13. Drawing this line onto the deformed body Ω1 and then releasing the deformation
leads to a rotated but undistorted line in Ω0. Thus, the intermediate configuration Ωi displays
an important geometrical aspect in a pure shear deformation.

1/a
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1/ a

a
1

n

1/a

f
-1

1/ a

1/ a

1

1/a

f
-1

Ω1 Ωi Ω0

Figure 13: The plane of no distortion preserves its length after release of the finite shear
deformation.

These properties, Becker argues, suggest that the normal component of the Cauchy stress
in the directions of no distortion has to vanish, i.e. N = 0, “for otherwise there could be no
planes of zero distortion” (8, p. 338). Combining this assumption with the equality n1/n2 = α
from (15), it follows that the components of the principal Cauchy stresses need to fulfil

−σ1 α = σ2/α , σ3 = 0 , (17)

where −σ1 α and σ2/α are the resultant loads; note that here, e1 is the contractile axis. From
the principal Cauchy stresses in equation (17) he infers that the action of “two equal loads [. . . ]
of opposite signs at right angles to one another” (13, p. 339) must correspond to a simple finite
shear.∗
∗A more detailed description of the decomposition of the Cauchy stress Becker employs to arrive at this

result can be found in Appendix A.3.
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Next, we discuss one of the six variants in Fig. 10 without loss of generality. The defor-
mation in Fig. 14 results in principal stresses of horizontal and vertical direction. Defining
the Cauchy stress as load per actual area, the quantity −σ1 α represents a compressive force in
the horizontal axis and σ2/α is a tensional force in the vertical direction. Equation (17) yields
that these forces are of the same amount, say Q. Then, for a static analysis, we cut the body
in Ω1 by a plane of no distortion. The lower resp. upper part of the body is in an equilibrium
balanced by

T = Q

(
−1/α

1

)
, resp. T = Q

(
1− 1 + 1/α
−1

)
= Q

(
1/α
−1

)
. (18)

The scalar product of T with n̄ from equation 14 vanishes and thus, the equilibrium is free of
normal components in the plane of no distortion as required, compare Fig. 14.
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Figure 14: Static analysis in the actual configuration along the cut of a plane of no distortion.

Becker concludes that the six variants of simple finite shearing in Fig. 10 are caused by
pairwise forces as sketched in Fig. 15. This is in concordance with one of five possible invariance
conditions for the definition of pure shear [14], namely that the shear tensor is a planar deviator.
Note that in the case of isotropic material it is obvious to claim that P = Q = R.
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Figure 15: Six variants of finite pure shear and the corresponding loads.

3.1 Mohr’s stress circle for finite shear
In this section we discuss the plane of no distortion in the context of Mohr’s stress circle∗. The
Mohr circle is a graphical method to determine the stress components acting on a plane rotated
against the coordinate system. Given any symmetric stress tensor in R2×2, Mohr’s stress circle
allows for a graphical solution of the spectral decomposition. Vice versa, knowing Mohr’s stress
circle and its spectral decomposition, the tensor components are graphically given for arbitrary
but orthogonal coordinate systems, e.g. for a coordinate system in alignment with the plane
of no distortion.

It is important to note that the plane of maximal shear stress ρmax does not coincide with
the plane of no distortion for finite shear. Considering the loading in Fig. 14 together with
∗Mohr [50] published his work on the representation and transformation of two-dimensional stresses by

means of a circle in 1882. In the context of beams, Culmann [19] published a similar idea in 1866, using a
different proof.
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equation (17) results in the principal stresses

σ1 = −Q/α , σ2 = Qα. (19)

Therefore, Mohr’s stress circle for the finite pure shear loading is drawn in Fig. 16.
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Figure 16: Mohr’s circle for Cauchy stresses in simple finite shear loading.

Becker introduces the quantity 2s = α − 1/α as the “amount of the shear” [7]. Thus, the
center of the circle is shifted from the origin of axis by

σm = σ1 + σ2

2 = Q

2

(
α− 1

α

)
= Qs. (20)

For α > 1 the angle ϑ = π/4 pointing to the plane of maximum shear stress ρmax does not
coincide with the angle ψ describing the plane of no distortion. Demanding σξ = 0 in the plane
of no distortion determines the rotation angle of the ξ-η coordinate system by

ψ = 1
2 arccos

(
α2 − 1
α2 + 1

)
= arccot(α) , (21)

which is in accordance with equation (16). For ψ = arccot(α) the stress components are given
by

σξ = 0 , ση = Q
α2 − 1
α

, σξη = ρ0 = Q . (22)

Thus, in the plane of no distortion the shear stress ρ0 is a simple function of the loading Q
and independent of α.
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3.2 Tangential force and failure criteria in finite shear
To discuss the tangential force in the spirit of continuum mechanics, we analyze the equilibrium
of stresses in the vicinity of a point. In case of simple finite shear the surrounding of a point
is a circle in Ω0 resp. a shear ellipse in Ω1, compare Fig. 11. Considering the diameter of the
circle to be 1, the diameter r of the ellipse is given in terms of α and the direction cosines n1,
n2 from equation 15 by

1
r2 = α2 n2

2 + n2
1
α2 . (23)

Considering the finite shear loading from Fig. 14 with principal Cauchy stresses from equations
19 gives a resultant forceR with constant magnitude∗ Q on any line cutting the ellipsis through
the mid point

R2 = r2 ‖σ n‖2 = r2 ‖
(
−Q

α
n1

Qαn2

)
‖2 = r2Q2

(
n2

1
α2 + α2 n2

2

)
= Q2 . (24)

The normal n of the line defines the direction cosines n1 and n2 as explained in equation 15.
Next, we investigate the magnitude of R normal to the line, which is given by

N 2 = r2 〈σ n, n〉2 = r2 〈
(
−Q

α
n1

Qαn2

)
,

(
n1
n2

)
〉2 = r2Q2

(
−n2

1
α

+ αn2
2

)2

. (25)

The magnitude of stress T tangential to the plane follows from the Pythagorean theorem by

T 2 = R2 −N 2 . (26)

Thus the plane of maximal tangential force is due to N 2 = 0 and we conclude from equation
(25)

−n2
1

α
+ αn2

2 = 0 ⇐⇒ n2
1 = n2

2α
2 . (27)

The planes of no distortion fulfil equation 27 and attend Becker’s discussion on failure criteria†
“Rupture by shearing is determined by maximum tangential load, not [Cauchy] stress” (18, p.
339), c.f. section A.4. In the present example the maximum shear stress appears in a cut
inclined with ψ = 45◦ to the horizontal axis which does not, however, maximize the tangential
load. The situation is illustrated in Fig. 17.
∗Becker uses only Q/3 as loading in his footnote on rupture, page 339
†The role of the plane of no distortion in failure criteria is further discussed by Becker in [10] and [11].
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Figure 17: Equilibrium and resultant R resp. R on lines cutting the finite shear ellipsis; note
that R2

> T 2.

Note that the shear stress ρ0 = Q/1 = Q in the plane of no distortion is lower than the
Tresca and the von Mises stresses for this kind of loading:

σTresca
y = Q (α + 1/α) , (28)

σMises
y = Q

√
α2 + 1 + 1/α2 , (29)

σξη = σBecker
y = Q . (30)

Thus, the inequality σBecker
y < σMises

y < σTresca
y for α > 0 shows that the tangential force in the

plane of no distortion represents a more conservative lower bound as failure criterion.
It is worth mentioning that the Tresca and the von Mises stresses would account for both the

loading Q and the deformation α. However, decoupling the failure criteria from the deformation
suggests a basic model, which is also simple from an experimental point of view.

4 The axiomatic approach
Our aim in this section is to formulate Becker’s stress-stretch relation for ideally elastic,
isotropic materials in terms of the Biot stress tensor TBiot and the right Biot stretch ten-
sor U =

√
F TF , i.e. to find a stress response function U 7→ TBiot(U) or an inverse response

function TBiot 7→ U(TBiot) which fulfils Becker’s assumptions listed in section 2. In order to
deduce such a law of ideal elasticity we will introduce a number of axioms corresponding to
Becker’s assumptions to uniquely characterize this stress-stretch relationship. In this we will,
at first, closely follow Becker’s approach, utilizing all of the given axioms. However, we will
later show that the same results can be deduced with only a subset of those assumptions.
Furthermore, in order to obtain a more general result, we will formulate our computations in
terms of an arbitrary stress tensor instead of only the Biot stress.
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4.1 The basic axioms for an isotropic stress-stretch relation
Let T : PSym(3)→ Sym(3), E 7→ T (E) denote a matrix function which maps the set of positive
definite symmetric matrices PSym(3) to the set of symmetric matrices Sym(3). In accordance
with our interpretation of T as a stress response function relation we will refer to the argument
E as the stretch and to T (E) as the stress tensor. Furthermore, if the mapping is invertible we
will, for given T̂ ∈ Sym(3), often write E(T̂ ) to denote the unique E ∈ PSym(3) with T̂ = T (E).
Of course we also assume that T fulfils the axioms stated in this section.

The first two axioms are common postulates for an arbitrary stress-stretch relation.

Axiom 0.1: Continuous stress response function

The function T : PSym(3)→ Sym(3), E 7→ T (E) is continuous.

Note that this is a weakened version of Becker’s assumption that the function mapping
stretch and stress is analytic.

Axiom 0.2: Unique stress free reference configuration

The equivalence

T (E) =

0 0 0
0 0 0
0 0 0

 = 0 ⇐⇒ E =

1 0 0
0 1 0
0 0 1

 = 11 ,

holds.

Axiom 2 states that the undeformed (and possibly rotated) reference configuration is the
only stress free configuration. Again, this is a weakened version of one of Becker’s assumptions,
namely that the stress response function is invertible.

Another basic assumption is that of isotropy: the response of many materials can be ide-
alized to be independent of the direction of applied stresses.

Axiom 0.3: Isotropy

The equality
TBiot(QTEQ) = QT TBiot(E)Q

holds for all Q ∈ O(3) and E ∈ PSym(3).

Note that isotropy is sometimes defined for Q ∈ SO(3) only. However, since −Q ∈ SO(3) for
Q ∈ O(3) \ SO(3), even under this narrower definition we find

T (QT E Q) = T ((−QT ) E (−Q)) = (−QT )T (E) (−Q) = QT T (E)Q
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for all Q ∈ O(3) \ SO(3) as well.
Since the assumption of isotropy implies that E and T (E) are coaxial [66, Theorem 4.2.4]

for all E ∈ PSym(3), Axiom 0.3 restricts the possible choices for the considered stretch-stress
pair E , T to coaxial pairs of tensors. However, this axiom allows us to formulate the other
axioms regarding strains and stresses in terms of the principal stretches and principal stresses
only [37]:

“For an isotropic nonlinear elastic solid, the principal directions of Cauchy stress σ
must coincide with the axes of the Eulerian strain ellipsoid. Also, to fully specify the
state of strain in a material element we need only know the three principal stretches
λi relative to some reference configuration and the principal directions of strain.
Thus, the constitutive law is completely determined once the relations between the
principal components of Cauchy stress σi and principal stretches λi are known.”

Since any given E ∈ PSym(3) is unitarily diagonalizable we can write E as

E = QT

λ1 0 0
0 λ2 0
0 0 λ3

 Q

with Q ∈ O(3), where λi denote the (positive) eigenvalues of E . Then T (E) is given by

T (E) = QT · T (QEQT ) ·Q = QT · T
(λ1 0 0

0 λ2 0
0 0 λ3

) ·Q .
This allows us to focus on stretches given in a diagonal representation, i.e. stretches of the
form

E = diag(λ1, λ2, λ3) =

λ1 0 0
0 λ2 0
0 0 λ3


with λ1, λ2, λ3 ∈ R+.

4.2 Becker’s three main axioms
The first two main axioms for our law of ideal isotropic elasticity refer to two special cases of
deformation, pure shear and pure volumetric dilation.

Axiom 1: Pure shear stresses correspond to pure shear stretches

For every α ∈ R+ there exists s ∈ R such that

E =

α 0 0
0 1

α
0

0 0 1

 ⇐⇒ T (E) =

s 0 0
0 −s 0
0 0 0

 .
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If T is an isotropic tensor function (Axiom 0.3), then Axiom 1 can also be stated in a more
general way. Let E =

(
B11 B12 0
B12 B22 0

0 0 1

)
with det

(
B11 B12
B12 B22

)
= 1. Then the two eigenvalues of

(
B11 B12
B12 B22

)
are mutually reciprocal, thus E can be diagonalized to

E =

Q11 Q12 0
Q12 Q22 0
0 0 1


T

·

α 0 0
0 1

α
0

0 0 1

 ·
Q11 Q12 0
Q12 Q22 0
0 0 1



with
(
Q11 Q12
Q12 Q22

)
∈ O(2) and α ∈ R+. Using Axiom 1 and Axiom 0.3 we compute

T (E) =

Q11 Q12 0
Q12 Q22 0
0 0 1


T

· T
(α 0 0

0 1
α

0
0 0 1

) ·
Q11 Q12 0
Q12 Q22 0
0 0 1



=

Q11 Q12 0
Q12 Q22 0
0 0 1


T

·

s 0 0
0 −s 0
0 0 0

 ·
Q11 Q12 0
Q12 Q22 0
0 0 1

 =

A11 A12 0
A12 A22 0
0 0 1


with tr

(
A11 A12
A12 A22

)
= tr

( s 0 0
0 −s 0
0 0 0

)
= 0. In the isotropic case, Axiom 1 may therefore be equiv-

alently stated as follows (c.f. Fig. 2 on page 5): for every
(
B11 B12
B12 B22

)
∈ SL(2) there exists(

A11 A12
A12 A22

)
∈ sl(2) such that

E =

B11 B12 0
B12 B22 0
0 0 1

 ⇐⇒ T (E) =

A11 A12 0
A12 A22 0
0 0 1

 ,

where SL(n) denotes the group of all X ∈ GL(n) with detX = 1 and sl(n) is the corresponding
Lie algebra of all trace free matrices in Rn×n.

To further understand the relation between shear stress and shear stretch constituted by
Axiom 1 we consider two examples. First, assume that the stress tensor T corresponding to a
stretch tensor E is a trace free pure shear stress of the form

T (E) =

0 s 0
s 0 0
0 0 0

 .

The eigenvalues of T (E) are the principal stresses T1 = s, T2 = −s, T3 = 0, thus T (E) can be
diagonalized to

T (E) = QT

s 0 0
0 −s 0
0 0 0

Q
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with Q ∈ SO(3). If E 7→ T (E) is a surjective isotropic mapping satisfying Axiom 1, then

QT (E)QT =

s 0 0
0 −s 0
0 0 0

 =⇒ T (Q E QT ) =

s 0 0
0 −s 0
0 0 0



=⇒ Q E QT =

α 0 0
0 1

α
0

0 0 1

 =⇒ E = QT

α 0 0
0 1

α
0

0 0 1

 Q

for some α ∈ R+. Thus the stretch E corresponding to a pure shear stress is a pure shear of
the form

E = QT

α 0 0
0 1

α
0

0 0 1

Q =

B11 B12 0
B12 B22 0
0 0 1


with det

(
B11 B12
B12 B22

)
= 1.

Now assume that a deformation gradient F is a simple glide of the form

F =

1 γ 0
0 1 0
0 0 1

 .

Then the right Biot stretch tensor U has the form

U =
√
F TF =

1 γ 0
γ γ2 + 1 0
0 0 1


1
2

.

Since 1 is an eigenvalue of U and detU = detF = 1, the remaining eigenvalues of U must be
of the form λ1 = α and λ2 = 1

α
. Thus the principal stretches of the deformation are λ1 = α,

λ2 = 1
α

, λ3 = 1 for some α ∈ R+ and U can be diagonalized to

U = QT

α 0 0
0 1

α
0

0 0 1

Q
with Q ∈ O(3). Then, if the function U 7→ T (U) mapping U to a stress tensor T is isotropic
and satisfies Axiom 1, we can compute

T (U) = T (QT

α 0 0
0 1

α
0

0 0 1

Q) = QT T
(α 0 0

0 1
α

0
0 0 1

)Q = QT

s 0 0
0 −s 0
0 0 0

Q
for some s ∈ R. Therefore the stress tensor T corresponding to a simple glide is a pure shear
stress.

The second axiom relates spherical stresses, i.e. purely normal stresses with the same
magnitude in each direction, to volumetric stretches, i.e. uniform stretches in all directions.
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Axiom 2: Spherical stresses correspond to volumetric stretches

For every λ ∈ R+ there exists a ∈ R such that

E = λ · 11 =

λ 0 0
0 λ 0
0 0 λ

 ⇐⇒ T (E) =

a 0 0
0 a 0
0 0 a

 = a · 11 .

This relation between spherical stresses and volumetric stretches for isotropic elastic mate-
rials is highly intuitive: if the initial load is equal in every direction the resulting deformation
should be equal in all directions as well and vice versa. However, whether this feature is true for
all magnitudes of applied loads depends on the chosen constitutive framework. It is known that
Axiom 2 is not satisfied for a number of well-known isotropic nonlinear elastic formulations,
such as the Mooney-Rivlin energy and the Ogden type energy [21]. The loss of uniqueness of
the symmetric solution is encountered in Rivlin’s cube problem [74].

While the first two axioms refer only to stresses and stretches of a specific diagonal form,
our third and final axiom states a law of superposition that holds for all coaxial stress-stretch
pairs. Recall that we call symmetric matrices A,B ∈ Sym(3) coaxial if their principal axes
coincide, which is the case if and only if A and B are simultaneously diagonalizable as well as
if and only if A and B commute.

Axiom 3: Law of superposition

Let E1, E2 ∈ PSym(3) be coaxial. Then

T (E1 · E2) = T (E1) + T (E2) .

Note that, for an invertible stress-stretch relation, the third axiom could equivalently be
stated as

E(T1 + T2) = E(T1) · E(T2) (31)
for all coaxial T1, T2 ∈ Sym(3).

This law of superposition can be summarized as follows: the (multiplicative) concatenation
of stretch tensors should effect the (additive) superposition of the corresponding stress tensors.
This nonlinear connection is closely related to a modern approach [57] involving the theory of
Lie groups: the deformation tensors correspond to the (multiplicative) group GL+(3) while the
stress tensors can be represented by the (linear) Lie algebra gl(3). By focusing on symmetric
stresses T as well as on positive definite symmetric stretches E we can also relate the stretch
to the subset PSym(3) ⊂ GL+(3) and the stress to the subspace Sym(3) ⊂ gl(3). Since the
canonical homomorphism mapping the additive structure of Sym(3) to the multiplicative group
structure of PSym(3) in the way described by equation (31) is the exponential function

exp : Sym(3)→ PSym(3) ,
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which is invertible with its inverse given by the principal logarithm

log : PSym(3)→ Sym(3) ,

it is to be expected that the resulting stress-stretch relation E 7→ T (E) is, in turn, logarithmic
in nature.

This approach is also closely related to the later deduction of the quadratic Hencky strain
energy by Heinrich Hencky, who employed a similar law of superposition to obtain a logarithmic
stress response function. However, Hencky considered the superposition of stresses in the
deformed configuration: the Cauchy stress σ in his 1928 article [31] as well as the Kirchhoff
stress τ in his 1929 article [33] (an English translation of both papers can be found in [55]).
Becker on the other hand assumes a law of superposition for initial loads: his law refers to the
Biot stress tensor TBiot. A more detailed comparison of Becker’s and Hencky’s work can be
found in Appendix A.1.

4.3 Deduction of the general stress-stretch relation from the axioms
We will now show that the general stress-stretch relation is determined by the given axioms
up to only two constitutive parameters. Since our law of elasticity is isotropic by assumption
we will mostly consider deformations given in the diagonal form

F =

λ1 0 0
0 λ2 0
0 0 λ3

 .

Recall from section 4.1 that the stress-stretch relation is uniquely determined by the stress
response to such deformations.

4.3.1 Basic properties

Before we explicitly compute the stress-stretch relation from the axioms, we will first deduce
some basic properties. The following properties of symmetry and invertibility follow directly
from the law of superposition and the uniqueness of the stress-free reference state.

Lemma 4.1. Let E ∈ PSym(3). Then T (E−1) = −T (E).

Proof. Since E and E−1 obviously commute, the law of superposition implies

T (E) + T (E−1) = T (E · E−1) = T (11) = 0 ,

where the last equality is due to Axiom 0.2. �

Remark 4.2. The symmetry property given in Lemma 4.1 is generally not equivalent to the
symmetric tension-compression symmetry in hyperelasticity, which is defined by the equality

W (F−1) = W (F )
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for the energy function W and all F ∈ GL+(3). A hyperelastic stress-stretch relation is
tension-compression symmetric if and only if

τ(V −1) = −τ(V )

for all V ∈ PSym(3), where τ denotes the Kirchhoff stress tensor.

Lemma 4.3. The mapping E 7→ T (E) is injective, i.e. T : PSym(3) → range(T ), E 7→ T (E)
is invertible.

Proof. Let E1, E2 ∈ PSym(3) with T (E1) = T (E2). Then using Lemma 4.1 we find

0 = T (E1)− T (E2) = T (E1) + T (E−1
2 ) = T (E1 · E−1

2 ) ,

thus Axiom 0.2 yields E1 · E−1
2 = 11 and therefore E1 = E2. �

Remark 4.4. We will denote the inverse of the stress response by writing E(T̂ ) for T̂ ∈
range(T ) to denote the unique E ∈ PSym(3) with T̂ = T (E).

Combined with the continuity of the stress-stretch relation, the law of superposition allows
us to compute the stress response to arbitrary powers of stretches. For a further discussion of
non-rational powers of matrices as well as primary matrix functions in general we refer to [35].

Lemma 4.5. Let E ∈ PSym(3). Then

T (Er) = r · T (E)

for all r ∈ R.

Proof. Since
T ((Q · E ·QT )r) = T (Q · Er ·QT ) = Q · T (Er) ·QT

we will assume without loss of generality that E is in diagonal form, i.e. E = diag(λ1, λ2, λ3)
with λ1, λ2, λ3 ∈ R+. Then Er = diag(λr1, λr2, λr3) for each r ∈ R.

For n ∈ N we can use the law of superposition to compute

T (Er) = T
(λ

n
1 0 0

0 λn2 0
0 0 λn3

) = T
( n∏
k=1

λ1 0 0
0 λ2 0
0 0 λ3

)

=
n∑
k=1

T
(λ1 0 0

0 λ2 0
0 0 λ3

) = n · T
(λ1 0 0

0 λ2 0
0 0 λ3

) .
Furthermore we find

0 = T (11) = T (En · E−n) = n · T (E) + T (E−n) =⇒ T (E−n) = −n · T (E) ,
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thus T (Ez) = z · T (E) for all z ∈ Z . Similarly we compute

z · T (E) = T (Ez) = T
(
(E zn )n

)
= n · T (E zn ) =⇒ T (E zn ) = z

n

for z ∈ Z and n ∈ N, therefore T (Eq) = q · T (E) for all q ∈ Q. Finally, we simply point to the
continuity of T , which follows from Axiom 0.1, to conclude T (Er) = r · T (E) for all r ∈ R. �

Remark 4.6. Using our notation T 7→ E(T ) for the inverse stress-stretch relation this propo-
sition may equivalently be stated as

E(r · T ) = E(T )r ∀ r ∈ R , T ∈ range(T ) .
It is obvious that in a one-dimensional setting, Lemma 4.5 would already characterize the

stresss response as the logarithm to a fixed base. However, this is not immediately clear in the
general case since not every stretch E ∈ PSym(3) can be written as the real power of a single
fixed matrix.
Note also that the assumption of continuity is in fact necessary for the proof of Lemma 4.5.

4.3.2 Spherical stresses

While Axiom 2 relates dilations to purely spherical stresses, no assumption about the amount
of stress is made. By using Lemma 4.5, however, it is easy to give an explicit formula for T (E)
for arbitrary pure dilations E .
Lemma 4.7. There exists d ∈ R such that

T (λ · 11) = d · log(λ · 11) = d · log(λ) · 11
for all λ ∈ R+.
Proof. Choose λ0 ∈ R+ with λ0 6= 1. Then, according to Axiom 2, the stress response to λ0 · 11
is given by

T (λ0 · 11) = a0 · 11

for some a0 ∈ R, and we define d = a0
log λ0

. Now let λ ∈ R+ with λ 6= 1. Then λ = λ
logλ

logλ0
0 and

T (λ · 11) = T (

λ 0 0
0 λ 0
0 0 λ

) = T (


λ

logλ
logλ0
0 0 0

0 λ
logλ

logλ0
0 0

0 0 λ
logλ

logλ0
0

) = log λ
log λ0

· T (

λ0 0 0
0 λ0 0
0 0 λ0

)

= log λ
log λ0

·

a0 0 0
0 a0 0
0 0 a0

 = a0

log λ0
· log(λ) ·

1 0 0
0 1 0
0 0 1

 = d · log(λ) · 11 = d · log(λ · 11) .

Finally, if λ = 1, then Axiom 0.2 implies T (λ · 11) = λ(11) = 0 = c · log(11). �

Remark 4.8. Note that this proposition can equivalently be stated as

E(a · 11) = exp
(1
d
· a · 11

)
= e

a
d · 11 ∀ a ∈ R .
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4.3.3 Shear stresses

Let us now consider a pure shear stretch of the form

E =

α 0 0
0 1

α
0

0 0 1


with the ratio of shear α ∈ R+. Again, while Axiom 1 only provides a general relation between
shear stretches and shear stresses, the law of superposition yields a quantitative result for the
case of pure shears.

Lemma 4.9. There exists c ∈ R such that

T (

α 0 0
0 1

α
0

0 0 1

) = c · log

α 0 0
0 1

α
0

0 0 1

 = c ·

log(α) 0 0
0 − log(α) 0
0 0 0

 (32)

for all α ∈ R+.

Proof. The proof is analogous to that of Lemma 4.7: choose α0 ∈ R+ with α0 6= 1. Then there
exists s0 such that

T
(α0 0 0

0 1
α0

0
0 0 1

) =

s0 0 0
0 −s0 0
0 0 0

 ,

according to Axiom 1, and we define c = s0
logα0

.
Now let α ∈ R+. Again we can use Axiom 0.2 and the equality log(11) = 0 to show that the
equality obviously holds for α = 1, hence we can assume α 6= 1 without loss of generality.
Then α = α

logα
logα0
0 and

T (

α 0 0
0 1

α
0

0 0 1

) = T (


α

logα
logα0
0 0 0
0 ( 1

α0
)

logα
logα0 0

0 0 1
logα

logα0

)

= logα
logα0

· T (

α0 0 0
0 1

α0
0

0 0 1

) = logα
logα0

·

s0 0 0
0 −s0 0
0 0 0



= s0

log λ0
·

logα 0 0
0 − logα 0
0 0 0

 = c · log(

α 0 0
0 1

α
0

0 0 1

) . �
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Remark 4.10. Again, this proposition can also be stated as

E(

s 0 0
0 −s 0
0 0 0

) = exp
(1
c
·

s 0 0
0 −s 0
0 0 0

) =

e
1
c
·s 0 0

0 e−
1
c
·s 0

0 0 1

 ∀ s ∈ R .

Although Lemma 4.9 refers only to deformations without strain along the x3-axis, the
following corollary shows that a similar property holds for shear deformations along the other
principal axes as well.

Corollary 4.11. Let α ∈ R+. Then

T (

α 0 0
0 1 0
0 0 1

α

) = c · log

α 0 0
0 1 0
0 0 1

α

 (33)

as well as

T (

1 0 0
0 α 0
0 0 1

α

) = c · log

1 0 0
0 α 0
0 0 1

α

 (34)

with c ∈ R as given in Lemma 4.9.

Proof. Let Q =
( 1 0 0

0 0 1
0 1 0

)
∈ O(3). Then

T
(α 0 0

0 1 0
0 0 1

α

) = T
(
QT ·

α 0 0
0 1

α
0

0 0 1

 ·Q) = QT · T
(α 0 0

0 1
α

0
0 0 1

) ·Q

= QT · c · log

α 0 0
0 1

α
0

0 0 1

 ·Q = c · log


1
α

0 0
0 α 0
0 0 1

 ,

proving (33). To show (34) we let Q =
( 0 1 0

0 0 1
1 0 0

)
∈ SO(3) and find

T
(1 0 0

0 α 0
0 0 1

α

) = T
(
QT ·

α 0 0
0 1

α
0

0 0 1

 ·Q) = QT · T
(α 0 0

0 1
α

0
0 0 1

) ·Q

= QT · c · log

α 0 0
0 1

α
0

0 0 1

 ·Q = c · log


1
α

0 0
0 α 0
0 0 1

 . �



4 THE AXIOMATIC APPROACH 40

4.3.4 The general case

Finally we consider the general case of an arbitrary stretch tensor E .

Proposition 4.12. A stress response function E 7→ TBiot(E) fulfils Axioms 0.1–0.3 and Axioms
1–3 if and only if there exist constants G,Λ ∈ R, G 6= 0, 3 Λ + 2G 6= 0 such that

T (E) = 2G · log(E) + Λ · tr[log E ] · 11 (35)

or, equivalently, constants G,K ∈ R \ {0} with

T (E) = 2G · dev3 log(E) +K · tr[log E ] · 11 (36)

for all E ∈ PSym(3), where log : PSym(3) → Sym(3) is the principal matrix logarithm and
dev3X = X − 1

3 tr(X) · 11 denotes the deviatoric part of X ∈ R3×3.

Remark 4.13. A justification for the use of the Lamé constants G, Λ and the bulk modulus
K in this formulae will be given by means of linearization in section 5.1.

Proof. First we consider a stretch tensor E in the diagonal form

E =

p 0 0
0 q 0
0 0 r

 .

Then E can be decomposed multiplicatively into three stretches E1, E2 and E3:

E =


(p q r) 1

3 0 0
0 (p q r) 1

3 0
0 0 (p qr ) 1

3

 ·

(
p2

q r

) 1
3 0 0

0
(
q2

p r

) 1
3 0

0 0
(
r2

p q

) 1
3



=

p q r 0 0
0 p qr 0
0 0 p q r


1/3

︸ ︷︷ ︸
E1

·


p2

q r
0 0

0 q r
p2 0

0 0 1


1/3

︸ ︷︷ ︸
E2

·

1 0 0
0 p q

r2 0
0 0 r2

p q


1/3

︸ ︷︷ ︸
E3

.

Using the law of superposition we find T (E) = T (E1) +T (E2) +T (E3). Lemma 4.7 allows us to
compute

T (E1) = T ((p q r) 1
3 · 11) = d · log((p q r) 1

3 ) · 11

= d

3 · log(p q r ) · 11 = d

3 · log(det(E)) · 11 = d

3 · tr[log(E)] · 11

with a constant d ∈ R, while Lemma 4.9 and Corollary 4.11 simply yield

T (E2) = c · log(E2) , T (E3) = c · log(E3)
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with c ∈ R. Therefore

T (E2) + T (E3) = c · log(E2) + c · log(E3)

= c ·


log

[
( p2

q r
) 1

3
]

0 0
0 log

[
( q r
p2 ) 1

3
]

0
0 0 0

+ c ·


0 0 0
0 log

[
(p q
r2 ) 1

3
]

0
0 0 log

[
( r2

p q
) 1

3
]


= c ·


log

[
( p2

q r
) 1

3
]

0 0
0 log

[
( q r
p2 ) 1

3
]

+ log
[
(p q
r2 ) 1

3
]

0
0 0 log

[
( r2

p q
) 1

3
]


= c ·


log

[
( p2

q r
) 1

3
]

0 0
0 log

[
( q2

p r
) 1

3
]

0
0 0 log

[
( r2

p q
) 1

3
]


= c ·


log

[
( 1
p q r

) 1
3 · p

]
0 0

0 log
[
( 1
p q r

) 1
3 · q

]
0

0 0 log
[
( 1
p q r

) 1
3 · r

]


= c ·

log(p) 0 0
0 log(q) 0
0 0 log(r)

 + c ·


log

[
( 1
p q r

) 1
3
]

0 0
0 log

[
( 1
p q r

) 1
3
]

0
0 0 log

[
( 1
p q r

) 1
3
]
 ,

hence

T (E2) + T (E3) = c · log

p 0 0
0 q 0
0 0 r

 + c

3 ·

− log(p q r) 0 0
0 − log(p q r) 0
0 0 − log(p q r)


= c · log(E) − c

3 · log(det E) · 11

= c · (log(E) − 1
3 · tr[log E ] · 11) = c · dev3 log E .

Thus T (E) computes to

T (E) = T (E2) + T (E3) + T (E1) = c · dev3 log(E) + d

3 · tr[log(E)] · 11 .

Finally, for arbitrary E ∈ PSym(3) we can choose Q ∈ O(3) and a diagonal matrix D such
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that E = QTDQ. Utilizing the isotropy property as well as the above computations we find

T (E) = T (QTDQ) = QT TBiot(D)Q

= QT ·
(
c · dev3 log(D) + d

3 · tr[log(D)] · 11
)
·Q

= c · dev3 log(QTDQ) + d

3 · tr[log(E)] · (QTQ) = c · dev3 log(E) + d

3 · tr[log(E)] · 11 ,

thus we obtain equation (35) with G = c
2 and K = d

3 . It is also easy to see that the restrictions
G 6= 0 and K 6= 0 follow directly from the injectivity of the response function. Furthermore,
with Λ = K − 2G

3 we obtain the equivalent representation

T (E) = 2G · [log E − 1
3 tr[log E ] · 11] +K · 11

= 2G · log(E) +
(
K − 2G

3

)
tr[log E ] · 11 = 2G · log(E) + Λ · tr[log E ] · 11 .

It remains to show that the stress response function (35) does indeed satisfy all our axioms.
Since the matrix logarithm and the trace operator are continuous functions∗ on PSym(3),
Axiom 0.1 obviously holds. The isotropy of the matrix logarithm immediately implies

2G · log((QTEQ)) + Λ · tr[log(QTEQ)] · 11 = 2G ·QT log(E)Q + Λ · tr[QT (log E)Q] · 11
= 2G ·QT log(E)Q + Λ · tr[log E ] · 11
= QT ·

(
2G · log(E) + Λ · tr[log E ] · 11

)
·Q ,

thus Axiom 0.3 holds as well. To show Axiom 0.2 we employ the equivalent representation
formula (36): for G,K 6= 0 we first note that the mapping

X 7→ 2G · dev3X +K · tr[X] · 11

is an isomorphism from Sym(3) onto itself. Thus

2G · dev3 log(E) +K · tr[log E ] · 11 = 0

if and only if log E = 0, which is the case if and only if E = 11.
We will now consider the remaining three axioms.

Axiom 1: For E = diag(α, 1
α
, 1) we directly compute

2G · dev3 log(E) +K · tr[log E ] · 11 = 2G · dev3

logα 0 0
0 − logα 0
0 0 0

 + K ·
[
logα + log 1

α

]
· 11

= 2G ·

logα 0 0
0 − logα 0
0 0 0

 ,

∗The matrix logarithm is, in fact, an analytic function on PSym(3).
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thus Axiom 1 is fulfilled with s = 2G logα.
Axiom 2: For E = λ · 11 we compute

2G · dev3 log(E) +K · tr[log E ] · 11 = 2G · dev3

log λ 0 0
0 log λ 0
0 0 log λ

 + K · tr [3 · log λ] · 11

= K · [3 log λ] · 11 ,

thus Axiom 2 is fulfilled with a = 3K logα.
Axiom 3: First assume that E1, E2 ∈ PSym(3) have the diagonal form

E1 =

λ1 0 0
0 λ2 0
0 0 λ3

 , E2 =


λ̂1 0 0
0 λ̂2 0
0 0 λ̂3

 .

Then

log(E1 · E2) = log


λ1 λ̂1 0 0

0 λ2 λ̂2 0
0 0 λ3 λ̂3

 =


log(λ1 λ̂1) 0 0

0 log(λ2 λ̂2) 0
0 0 log(λ3 λ̂3)



=


log(λ1) + log(λ̂1) 0 0

0 log(λ2) + log(λ̂2) 0
0 0 log(λ3) + log(λ̂3)

 = log(E1) + log(E2)

and therefore

T (E1 · E2) = 2G · log(E1 · E2) + Λ · tr[log E1 · E2] · 11
= 2G · [log(E1) + log(E2)] + Λ · tr[log(E1) + log(E2)] · 11
= 2G · log(E1) + 2G · log(E2) + Λ · tr[log(E1)] · 11 + Λ · tr[log(E2)] · 11
= T (E1) + T (E2) .

Now let E1 and E2 denote arbitrary coaxial matrices. Then E1 and E2 can be simultaneously
diagonalized, i.e. there exist diagonal matrices D1 and D2 as well as Q ∈ O(3) with

E1 = QTD1Q , E2 = QTD2Q .

Then

T (E1 · E2) = T (QTD1D2Q) = QT · T (D1D2) ·Q
= QT · [T (D1) + T (D2)] ·Q = QT T (D1)Q+QT T (D2)Q
= T (QT D1Q) + T (QT D2Q) = T (E1) + T (E2) . �
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While Becker assumed Axioms 1 and 2 to hold, we will now show that they are, in fact, not
necessary to characterize Becker’s law of elasticity but can be deduced from Axioms 0.1–0.3
and Axiom 3 alone.

Lemma 4.14. If Axioms 0.1, 0.2, 0.3 and 3 hold, then Axioms 1 and 2 hold as well.

Proof. First, for α = 1 and λ = 1, we findα 0 0
0 1

α
0

0 0 1

 =

λ 0 0
0 λ 0
0 0 λ

 =

1 0 0
0 1 0
0 0 1

 = 11

and thus

T
(α 0 0

0 1
α

0
0 0 1

) = T
(λ 0 0

0 λ 0
0 0 λ

) = T (11) = 0

due to axiom 0.2. We can therefore assume without loss of generality that λ 6= 1 6= α.
Axiom 1: Let α ∈ R+ with α 6= 1 and E = diag(α, 1

α
, 1). Then, because the principal axes of

T (E) and E coincide, T (E) is in diagonal form as well:

T (E) = T
(α 0 0

0 1
α

0
0 0 1

) =

a 0 0
0 b 0
0 0 c


for some a, b, c ∈ R. With Q =

( 0 1 0
1 0 0
0 0 1

)
∈ O(3), the property of isotropy allows us to compute

T
(

1
α

0 0
0 α 0
0 0 1

) = T (QT · E ·Q) = QT · T (E) ·Q =

b 0 0
0 a 0
0 0 c


and using the law of superposition we find

T (11) = T
(α 0 0

0 1
α

0
0 0 1

 ·


1
α

0 0
0 α 0
0 0 1

) = T
(α 0 0

0 1
α

0
0 0 1

) + T
(

1
α

0 0
0 α 0
0 0 1

)

=

a 0 0
0 b 0
0 0 c

 +

b 0 0
0 a 0
0 0 c

 =

a+ b 0 0
0 a+ b 0
0 0 2c

 .

Since T (11) = 0 we conclude b = −a as well as c = 0, thus T (E) has the form

T
(α 0 0

0 1
α

0
0 0 1

) =

s 0 0
0 −s 0
0 0 0

 (37)
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with s = a. As was shown in the proof of Lemma 4.3, a function satisfying Axioms 3 and 0.2
is injective, hence

T (E) =

s 0 0
0 −s 0
0 0 0

 ⇐⇒ E =

α 0 0
0 1

α
0

0 0 1

 .

Axiom 2: Now let λ ∈ R+ with λ 6= 1 and E = diag(λ, λ, λ) = λ · 11. Then

T (E) = T
(λ 0 0

0 λ 0
0 0 λ

) =

a 0 0
0 b 0
0 0 c


for some a, b, c ∈ R. We let Q =

( 0 0 1
1 0 0
0 1 0

)
∈ SO(3) to find

T (E) = T (λ · 11) = T (QT · (λ · 11) ·Q)

= QT · T (λ · 11) ·Q = QT ·

a 0 0
0 b 0
0 0 c

 ·Q =

b 0 0
0 c 0
0 0 a

 .

Therefore a = b and b = c, hence T (E) has the form

T (λ · 11) =

a 0 0
0 a 0
0 0 a

 = a · 11 (38)

with a ∈ R. Then the injectivity of T yields

T (E) = a · 11 ⇐⇒ E = λ · 11 ,

concluding the proof. �

From this Lemma and Proposition 4.12, it immediately follows that the reduced set of
axioms is sufficient to characterize the stress response function. This result is summarized in
the following proposition.
Proposition 4.15. Let T : PSym(3)→ Sym(3) be a continuous isotropic tensor function with

T (E) = 0 ⇐⇒ E = 11

and
T (E1 · E2) = T (E2) + T (E2)

for all E1, E2 ∈ PSym(3). Then there exist constants G,Λ ∈ R, G 6= 0, 3 Λ + 2G 6= 0 such that

T (E) = 2G · log(E) + 3 Λ · tr[log E ] · 11 (39)

or, equivalently, constants G,K ∈ R \ {0} with

T (E) = 2G · dev3 log(E) +K · tr[log E ] · 11 (40)

for all E ∈ PSym(3).
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If we assume beforehand that the stress response function is invertible, we can also deduce
this general law in terms of the inverse stress-stretch relation: let T denote a given stress tensor
of the form

T =

P 0 0
0 Q 0
0 0 R

 .

Then T can be written in form of the additive decomposition

T = P +Q+R

3 ·

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

T1

+ Q+R− 2P
3 ·

−1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

T2

+ P +Q− 2R
3 ·

0 0 0
0 1 0
0 0 −1


︸ ︷︷ ︸

T3

into two pure shear stresses and one spherical stress. Using Remarks 4.8 and 4.10 we compute

E(T1) = e
P+Q+R

3 d · 11

as well as

E(T2) =

e
−Q+R−2P

3 c 0 0
0 e

Q+R−2P
3 c 0

0 0 1


and

E(T3) =


1 0 0
0 e

P+Q−2R
3 c 0

0 0 e−
P+Q−2R

3 c

 .

Therefore the law of superposition yields

E(T ) = E(T1) · E(T2) · E(T3)

= e
P+Q+R

3 d ·

e
−Q+R−2P

3 c 0 0
0 e

Q+R−2P
3 c 0

0 0 1

 ·


1 0 0
0 e

P+Q−2R
3 c 0

0 0 e−
P+Q−2R

3 c



= e
trT
3 d ·


e

2P−Q−R
3 c 0 0
0 e

2Q−P−R
3 c 0

0 0 e
2R−P−Q

3 c



= e
trT
3 d · exp


2P−Q−R

3 c 0 0
0 2Q−P−R

3 c 0
0 0 2R−P−Q

3 c

 = e
trT
3 d · exp

(1
c
· dev3 T

)
.

With constants G = c
2 and K = d

3 our law of ideal elasticity can therefore be stated as

E(T ) = exp
( 1

2G dev3 T + 1
9K tr(T ) · 11

)
= e

1
9K ·trT · exp

( 1
2G · dev3 T

)
. (41)
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4.3.5 Becker’s stress response function

Finally, since Becker assumed Axioms 0.1–0.3 and 1–3 to hold for the Biot stress T = TBiot

and the right Biot stretch tensors E = U , we conclude that Becker’s law of elasticity is given
by

TBiot(U) = 2G · log(U) + Λ · tr[logU ] · 11 (42)
or, equivalently, by

TBiot(U) = 2G · dev3 log(U) +K · tr[logU ] · 11 (43)

= E

1 + ν
· dev3 log(U) + E

3(1− 2ν) · tr[logU ] · 11 (44)

with Young’s modulus E = 9KG
3K+G and Poisson’s number ν = 3K−2G

2 (3K+G) .

4.4 Application to other stresses and stretches
If we apply Proposition 4.15 to other coaxial stress-stretch pairs, the resulting law of elasticity
will, in general, differ from that given by Becker. Two examples of such combinations are
especially important: the left stretch tensor E = V =

√
FF T with the Cauchy stress tensor

T = σ as well as the left stretch with the Kirchhoff stress tensor T = τ . Those cases where
considered by Heinrich Hencky in 1928 and 1929, respectively [31, 33]. His approach was
remarkably similar to Becker’s: from the assumption of a law of superposition for these two
stresses he deduced two laws of idealized elasticity.

Corollary 4.16. If the Cauchy stress σ is a continuous isotropic function of the left stretch
tensor V with

σ(V ) = 0 ⇐⇒ V = 11
and

σ(V1 · V2) = σ(V2) + σ(V2)
for all V1, V2 ∈ PSym(3), then there exist constants G,K ∈ R \ {0} such that

σ(V ) = 2G · dev3 log(V ) +K · tr[log V ] · 11 (45)

for all V ∈ PSym(3).
If the Kirchhoff stress τ is a continuous isotropic function of the left Biot stretch tensor V

with
τ(V ) = 0 ⇐⇒ V = 11

and
τ(V1 · V2) = τ(V2) + τ(V2)

for all V1, V2 ∈ PSym(3), then there exist constants G,K ∈ R \ {0} such that

τ(V ) = 2G · dev3 log(V ) +K · tr[log V ] · 11 (46)

for all V ∈ PSym(3).
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It was shown by Hencky that only the latter of these two stress response functions consti-
tutes a hyperelastic law of elasticity: the stress-stretch relation in equation (46) can be obtained
from the quadratic Hencky strain energy

W (V ) = G ‖ dev3 log V ‖2 + K

2 [tr(log V )]2 . (47)

This energy function has also been given another rigorous justification, based on purely dif-
ferential geometric reasoning, as the geodesic distance of the deformation gradient F to the
special orthogonal group SO(3) with respect to the canonical left-invariant metric on GL+(3)
[57, 56, 64]. The continuing application of the Hencky strain energy or modifications thereof
is described in [59], see also [60].

4.5 The axioms in the linear case of infinitesimal elasticity
Some of Becker’s assumptions seem to have been adapted from simple results for the linearised
theory of elasticity. To explain his motivation it is insightful to discover some of these parallels.
The most general stress-strain relation for isotropic homogeneous materials in the case of linear
elasticity is

σ = 2Gε+ Λ tr(ε) · 11 = 2G dev3 ε+K tr(ε) · 11 = E

1 + ν
dev3 ε+ E

3(1− 2ν) tr(ε) · 11 ,

where σ is the linearized stress tensor and ε = sym∇u = 1
2(∇u+∇uT ) is the linearized strain

tensor of the deformation ϕ(x) = x + u(x) with the displacement u : Ω0 ⊂ R3 → R3. Note
that this linear relation is invertible with

ε = 1
2G dev3 σ + 1

9K tr(σ) · 11 ,

similar to the first equality in equation (41).
Since the trace operator is the linear approximation of the determinant at 11, i.e. det(11 +

H) = 1 + tr(H) +O(‖H‖2), the first order approximation

det(∇ϕ) = det(11 +∇u) ≈ 1 + tr(∇u)

holds for sufficiently small ‖∇u‖. Therefore, the condition

det(U) = det(∇ϕ) = 1

can be linearized to the equation

tr(∇u) = tr ε = 0 .

For Λ 6= −2
3 G, this is the case if and only if

0 = trσ = (2G+ 3 Λ) · tr ε ,
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thus (linearized) isochoric deformations always correspond to trace free stress tensors σ and
vice versa, analogous to Axiom 1 for the nonlinear case. Similarly volumetric stresses occur if
and only if the strain is (linearly) volumetric (Axiom 2):

ε =

a 0 0
0 a 0
0 0 a

 ⇐⇒ σ =

(2G+ 3Λ)a 0 0
0 (2G+ 3Λ)a 0
0 0 (2G+ 3Λ)a

 .

Furthermore it is easy to see that the linearized shear strain

ε = sym


1 γ 0

0 1 0
0 0 1

− 11

 =

0 γ
2 0

γ
2 0 0
0 0 0


corresponds to the shear stress (Axiom 1)

σ =

 0 G · γ 0
G · γ 0 0

0 0 0

 .

Finally, we consider two deformation gradients ∇ϕ1 = 11 +∇u1 and ∇ϕ2 = 11 +∇u2 with the
corresponding strain tensors ε1 and ε2. Then

∇ϕ1 · ∇ϕ2 = (11 +∇u1) · (11 +∇u2) = 11 +∇u1 +∇u2 +∇u2 · ∇u2 .

By omitting the higher order term ∇u1 · ∇u2, we find the linear approximation

∇ϕ1 · ∇ϕ2 ≈ 11 +∇u1 +∇u2 ,

hence the strain tensor ε corresponding to ∇ϕ1 · ∇ϕ2 has the linear approximation

ε ≈ sym(∇u1 +∇u2) = ε1 + ε2 .

Thus, in the linear case, the multiplicative superposition of deformation gradients corresponds
to an additive composition of the strain tensors. The law of superposition (Axiom 3) can
therefore be linearized to

σ(ε1 + ε2) = σ(ε1) + σ(ε2) ,
which obviously holds for all ε1, ε2 ∈ Sym(3).

The linear analogies of the three main axioms can therefore be summarized as follows.

Axiom 1, linear version:

The equivalence

ε =

0 γ
2 0

γ
2 0 0
0 0 0

 ⇐⇒ σ(ε) =

 0 G · γ 0
G · γ 0 0

0 0 0


holds for all γ ∈ R.
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Axiom 2, linear version:

The equivalence

ε =

a 0 0
0 a 0
0 0 a

 ⇐⇒ σ(ε) =

(2G+ 3Λ)a 0 0
0 (2G+ 3Λ)a 0
0 0 (2G+ 3Λ)a


holds for all a ∈ R.

Axiom 3, linear version:

The equality
σ(ε1 + ε2) = σ(ε1) + σ(ε2)

holds for all ε1, ε2 ∈ Sym(3).

Note that many of the properties listed in section 1.1 have linearized counterparts which
are satisfied by the general linear model, e.g. the (linearized) tension-compression symmetry
σ(−ε) = −σ(ε).

4.5.1 Linearised shear

Becker’s comments on the finite shear response show similiarities to the linear case as well. We
consider the linearised shear stress

σ =
(

0 s
s 0

)
with the corresponding linear shear strain∗

ε =
(

0 γ
2

γ
2 0

)

in the two dimensional case. Then for given n = (n1, n2)T ∈ R2 with ‖n‖ = 1 we can compute

‖σ n‖ = ‖
(
s n2
s n1

)
‖ = s · ‖n‖ = s .

In order to find a direction of maximum tangential linearised stress (not the tangential load),
we decompose the resultant traction σ n in direction of a given unit normal vector n into a
∗The linear shear strain appears in the linearisation of a simple shear shear deformation, which can be

written as (
1 γ
0 1

)
= 11 +

(
0 γ

2
γ
2 0

)
+
(

0 γ
2

−γ2 0

)
= 11 + ε+W ,

where ε ∈ Sym(3) is a linear shear strain and W ∈ so(3) corresponds to an infinitesimal rotation.
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normal and a tangential part:

‖σ n‖2 = 〈σ n, n〉2︸ ︷︷ ︸
normal

+ 〈σ n, n⊥〉2︸ ︷︷ ︸
tangential

,

where n⊥ is a unit vector normal to n. Since for such a stress the resultant ‖σ n‖2 = s2 is
constant∗, i.e. independent of the unit normal n, the amount of tangential stress

〈σ n, n⊥〉2 = s2 − 〈σ n, n〉2

assumes its maximum among all n ∈ R2 with ‖n‖ = 1 if and only if 〈σ n, n〉2 attains its
minimum. We find

〈σ n, n〉2 = 〈
(
s n2
s n1

)
,

(
n1
n2

)
〉 = s2 n1 n2 ,

which is minimal if and only if n1 = 0 or n2 = 0. Since the directions of the principal axes
are given by the eigenvectors (1, 1)T and (1,−1)T of ε, the vectors n1 and n2 cut these axes at
angles of 45◦.

5 Applications and properties of Becker’s law of elastic-
ity

5.1 Infinitesimal deformations
For small deformations the linear approximation

T (11 + ε) = 2G · log(11 + ε) + Λ · tr[log(11 + ε)] · 11
= 2G · (ε+O(‖ε‖2)) + Λ · (tr[ε+O(‖ε‖2)]) · 11 = 2G · ε + Λ · tr(ε) · 11 + O(‖ε‖2)

shows that the stress-stretch relation is compatible with the model of linear elasticity if and
only if G and Λ are the two Lamé constants. In this case the additional constraints

G > 0 , K > 0

follow from the uniform positivity of the linear strain energy density

Wlin(ε) = G‖ dev3 sym ε‖2 + K

2 [tr(ε)]2 = G ‖ sym ε‖2 + Λ
2 [tr(ε)]2 .

∗Note carefully that this is no longer true in the nonlinear case: ‖σn‖
‖n‖ is not constant for σ =

diag(s α,−s α−1, 1) and α > 1, i.e. for a (nonlinear) Cauchy stress tensor σ corresponding to a pure shear load
TBiot = diag(s,−s, 0) and a shear deformation F = diag(α, 1

α , 1).
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5.2 Uniaxial stresses
If the initial load is given by a Biot stress tensor of the form

TBiot =

0 0 0
0 Q 0
0 0 0

 ,

we can give an explicit formula for the stretch tensor U corresponding to TBiot: since trTBiot =
Q and

dev3 T
Biot = TBiot − 1

3 tr[TBiot] · 11 =

−
Q
3 0 0

0 2Q
3 0

0 0 −Q
3


we can use equation (41) to find

U(TBiot) = e
Q

9K ·


e−

Q
2G·3 0 0
0 e

2Q
2G·3 0

0 0 e−
Q

2G·3

 = e
Q

9K ·


e−

Q
6G 0 0

0 e
Q

3G 0
0 0 e−

Q
6G

 .

In particular, the deformation along the axis of stress is given by∗

λ2 = e
Q

9K · e
Q

3G = eQ·(
1

9K+ 1
3G ) = e

Q
E , (48)

while the deformation along the axes orthogonal to the stress axis is

λ1 = λ3 = e
Q

9K · e−
Q

6G = eQ·(
1

9K−
1

6G ) = e−
ν Q
E . (49)

The factors e Q
9K and e

Q
3G appearing in equation (48) are the dilational stretch and the shear

stretch, respectively, as given by Becker in equation (5) on page 345 as his main result. Fur-
thermore, equation (49) shows that in the case 9K = 6G, which corresponds to ν = 0 for
Poisson’s ratio ν, the stretch along the unstressed axes is 1. Therefore, as in the linear model,
there is no lateral contraction in Becker’s model for ν = 0. A similar result holds for Hencky’s
elastic law [84, 85].

5.2.1 Application to incompressible materials

To apply the uniaxial stress response to incompressible materials we will now consider the limit
K → ∞, i.e. we approximate the incompressible case through the nearly incompressible case
with a sufficiently large ratio K

G
. From equations (48) and (49) we readily obtain

lim
K→∞

λ2 = e
Q

3G

∗More details on the conversion of the material parameters can be found in Appendix A.5.
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as well as
lim
K→∞

λ1 = lim
K→∞

λ3 = e−
Q

6G ,

thus in our theory uniaxial stress induces deformations of the form

U =


1√
λ

0 0
0 λ 0
0 0 1√

λ

 =


e−

Q
6G 0 0

0 e
Q

3G 0
0 0 e−

Q
6G


in the incompressible case. Going to the inverse we obtain the formula

Q = 3G · log(λ) = E · log(λ) , (50)

where E = 3G denotes Young’s modulus for incompressible materials.
Equation (50) is identical to the uniaxial stress-stretch relation given by Imbert in 1880 as

a phenomenological model for the deformation of vulcanized rubber bands under tension [39,
p. 53]. Similarly, in 1893 Hartig applied the same logarithmic law to describe the uniaxial
tension and compression of rubber [28]. A comparison of Becker’s results for very large strain
to experimental data by L.R.G. Treloar for the uniaxial deformation of vulcanized rubber [40]
as well as the corresponding stress responses for the quadratic Hencky energy and Ogden’s
elasticity model [67] are shown in Fig. 18. Another possible way to apply Becker’s law to
incompressible materials is described in section 5.5.1.

0.7 1 1.5 2 e 3
λ

TBiot

Becker
Ogden
Hencky
Experimental data [40]

Figure 18: Comparison of stress responses for incompressible materials.

5.3 Becker’s law of elasticity for simple shear
Consider a simple glide deformation of the form

F =

1 γ 0
0 1 0
0 0 1


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with γ > 0, c.f. section 2.2.3. Then the polar decomposition of F = R · U into the right Biot
stretch tensor U =

√
F TF of the deformation and the orthogonal polar factor R = FU−1 is

given by

U = 1√
γ2 + 4

·

2 γ 0
γ γ2 + 2 0
0 0

√
γ2 + 4

 , R = 1√
γ2 + 4

·

 2 γ 0
−γ 2 0
0 0

√
γ2 + 4


Further, U can be diagonalized to

U = L ·

1 0 0
0 1

2(
√
γ2 + 4 + γ) 0

0 0 1
2(
√
γ2 + 4− γ)

 · L−1 = L ·

1 0 0
0 λ1 0
0 0 1

λ1

 · L−1 ,

where

L =

0 2 −2
0
√
γ2 + 4 + γ

√
γ2 + 4− γ

1 0 0


and λ1 = 1

2(
√
γ2 + 4 + γ) denotes the first eigenvalue of U , and the principal logarithm of U is

logU = L · log

1 0 0
0 λ1 0
0 0 1

λ1

 · L−1 = L ·

0 0 0
0 log(λ1) 0
0 0 − log(λ1)

 · L−1

= 1√
γ2 + 4

·

−γ log(λ1) 2 log(λ1) 0
2 log(λ1) γ log(λ1) 0

0 0 0

 .

Then according to Becker’s law of elasticity, the first Piola-Kirchhoff stress tensor S1 corre-
sponding to F computes to

S1(F ) = R · TBiot(U) = R · (2G · log(U) + Λ · log(detU) · 11) = 2G ·R · logU

= 2G
γ2 + 4 ·

 2 γ 0
−γ 2 0
0 0

√
γ2 + 4

 ·
−γ log(λ1) 2 log(λ1) 0

2 log(λ1) γ log(λ1) 0
0 0 0



= 2G
γ2 + 4 ·

 0 (4 + γ2) log(λ1) 0
(4 + γ2) log(λ1) 0 0

0 0 0



= 2G · log(1
2(
√
γ2 + 4 + γ)) ·

0 1 0
1 0 0
0 0 0

 .
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Figure 19: Shear stress in a simple glide deformation.

Finally, the Cauchy stress σ for the simple glide deformation F is

σ = 1
detF · S1(F ) · F T = 2G · log(1

2(
√
γ2 + 4 + γ)) ·

γ 1 0
1 0 0
0 0 0

 .

Note that σ is independent of the Lamé constant Λ. In particular, the simple shear stress σ12
corresponding to the amount of shear γ is given by

σ12 = log(1
2(
√
γ2 + 4 + γ)) .

for Becker’s law of elasticity. Fig. 19 shows a comparison of the simple shear stress resulting
from different constitutive laws with experimental data measured by Treloar [40] for shear
deformations of vulcanized rubber.

5.4 A comparison of Becker’s and Hencky’s laws of elasticity
The stress-stretch relation corresponding to the quadratic Hencky strain energy is, in terms of
the Kirchhoff stress τ , the left Biot stretch tensor V and the Finger tensor B, given by

τH = 2G log V + Λ tr(log V ) · 11 = G logB + Λ
2 tr(logB) · 11 , (51)

while Becker’s stress-stretch relation, expressed in terms of the Biot stress TBiot, the right
stretch tensor U and the right Cauchy-Green deformation tensor C, is

TBiot
B = 2G logU + Λ tr(logU) · 11 = G logC + Λ

2 tr(logC) · 11 .
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Since, in general,
TBiot = U · S2 = det(U) · U · F−1 · σ · F−T

and
τ = det(U) · σ ,

where S2 is the symmetric second Piola-Kirchhoff stress and σ is the Cauchy stress tensor, we
find

σ = det(U)−1 · F · U−1 · TBiot · F T

=⇒ τ = F · U−1︸ ︷︷ ︸
=R

·TBiot · F T = V −1 · F︸ ︷︷ ︸
=R

·TBiot · F T ,

where the last equality follows directly from the polar decomposition F = RU = V R of
the deformation gradient F . We employ the identity C = F TF = F−1FF TF = F−1BF to
compute

τB = V −1 · F · TBiot
B · F T = V −1F ·

[
G logC + Λ

2 tr(logC) · 11
]
· F T

= V −1F ·
[
G log(F−1BF ) + Λ

2 tr(log(F−1BF )) · 11
]
· F T

= V −1F ·
[
GF−1(logB)F + Λ

2 tr(F−1(logB)F ) · 11
]
· F T

= G V −1FF−1(logB)FF T + Λ
2 tr(logB) · V −1FF T︸ ︷︷ ︸

=B

= G V −1(logB)B + Λ
2 tr(logB) · V −1B

= V −1 ·
[
G(logB) + Λ

2 tr(logB) · 11
]
·B = V −1 τH B .

The symmetric tensors V −1, τH and B commute because their principal axes coincide, therefore

τB = V −1 τH B = V −1B · τH = RF−1 FF T · τH = RF T · τH = V · τH . (52)

This identity allows us to obtain an upper estimate for the difference between the Kirchhoff
stress corresponding to the Hencky energy and the one given by Becker’s stress-stretch relation:

τB = V · τH = τH + (V − 11) · τH =⇒ ‖τB − τH‖ ≤ ‖V − 11‖ · ‖τH‖ ,

where ‖ . ‖ denotes the Frobenius matrix norm on R3×3. Thus, for very small elastic strains
‖V − 11‖ � 1, the corresponding Kirchhoff tensors τB and τH coincide to lowest order.
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5.5 Hyperelasticity
Unlike Hencky’s logarithmic stress-stretch relation, Becker’s idealized response is generally
not hyperelastic for arbitrary parameters G and K. Incidentally, this result was also shown
by Carroll [17], who gave an explicit example of a cycle of loading and unloading without
conservation of energy, showing that the elastic behaviour modelled, in fact, by Becker’s law∗
is not path-independent.

Proposition 5.1. The stress-stretch relation

TBiot(U) = 2G · log(U) + Λ · tr[logU ] · 11

is hyperelastic if and only if Λ = 0 or, equivalently, ν = 0 for Poisson’s number ν. In this
case∗ the energy is given by

W ν=0
Becker(U) = 2G [< U, log(U)− 11 > +3 ] = 2G [< exp(logU), logU − 11 > +3 ] , (53)

which is the maximum entropy function.

However, Becker’s law is, of course, Cauchy-elastic for all admissible choices of parameters
since the Cauchy stress depends only on the state of deformation.

Note that the elastic energy W ν=0
Becker given by equality (53) does not fulfil some of the

constitutive properties listed in section 1.1. For example, detF → 0 does not generally imply
W ν=0

Becker(F )→∞; in fact, W ν=0
Becker(F ) remains finite even for F = 0. However, the implication

detF → 0 =⇒ TBiot(F )→∞

holds true for Becker’s elastic law, even in the case ν = 0.

5.5.1 Comparison to the Valanis-Landel energy

In terms of the principal stretches λ11, λ2, λ3, i.e. the eigenvalues of a stretch tensor U , the
energy function W ν=0

Becker can be expressed as

W ν=0
Becker(U) = 2G [< U, log(U)− 11 > +3 ]

= 2G ·
[ 3∑
i=1

λi · (log(λi)− 1)
]

+ 6G =: Ŵ ν=0
Becker(λ1, λ2, λ3) .

This energy function is identical to the Valanis-Landel energy, which was introduced in 1967 by
K.C. Valanis and R.F. Landel [83]. However, the Valanis-Landel energy is used as a model for
incompressible hyperelastic materials exclusively, while W ν=0

Becker is only applicable to Becker’s
law of elasticity in the (compressible) case ν = 0 or, equivalently, for Λ = 0. Since Becker
∗Although the stress response considered by Carroll is identical to the one deduced by Becker, Carroll seems

not to be aware of Becker’s work.
∗For example, the parameter ν = 0 is used to model the elastic behaviour of cork.
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Figure 20: Energy ( ) and Biot stress ( ) according to Becker’s law for extreme
volumetric stretches λ; the tangent of W ν=0

Becker in 0 is vertical.

only considers compressible materials, it is not clear how to extend his constitutive law to
the incompressible case. One possible way, involving the limit K → ∞, was discussed in
section 5.2.1. Another possibility, however, is to directly apply the incompressibility condition
detF = 1, F the deformation gradient, to the hyperelastic model induced by the energy
W ν=0

Becker. This approach leads to a different result for uniaxial deformations: using the general
formula [67]

t = d
dλ Ŵ

(
λ, 1√

λ
, 1√

λ

)
,

where t is the (uniaxial) load, λ is the stretch and Ŵ is an energy function of an incompressible
hyperelastic material expressed in the principal stretches, we find

tBecker = d
dλ Ŵ

ν=0
Becker

(
λ, 1√

λ
, 1√

λ

)
(54)

= 2G · d
dλ

[
λ · (log(λ)− 1) + 2λ−1/2 · (log(λ−1/2)− 1)

]
= G · log(λ) · (2 + λ−3/2) .

Fig. 21 shows the Biot stress response for uniaxial deformations, computed from the two
different applications (50) and (54) of Becker’s law to the incompressible case.
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Figure 21: Becker’s law for the uniaxial deformation of incompressible materials, obtained via
the limit case K →∞ ( ) and by applying the incompressibility restraint
detF = 1 to the energy function W ν=0

Becker ( ).

5.6 Becker’s law of elasticity in terms of other stresses and stretches
In section 5.4, we have already established the relation between the left Biot stretch tensor V
and the Kirchhoff stress tensor τ for Becker’s law of elasticity: combining equations (52) and
(51) we find

τ(V ) = V · (2G log V + Λ tr(log V ) · 11) = 2G · V · log V + Λ tr(log V ) · V . (55)

Since τ = det(V ) · σ in general, the Cauchy stress tensor σ can be expressed as

σ(V ) = 2G
det(V ) · V · log V + Λ

det(V ) · tr(log V ) · V . (56)

Furthermore, we can obtain a representation of the symmetric second Piola-Kirchhoff stress
tensor S2 from the general formula TBiot = U · S2:

S2(U) = U−1 · TBiot(U) = 2G · U−1 · log(U) + Λ · tr[logU ] · U−1 (57)
= (2G · log(U) + Λ · tr[logU ]) · U−1 .

5.7 Constitutive inequalities
5.7.1 Invertibility of the force-stretch relation

The invertibility of the force-stretch relation, also known as Truesdell’s IFS condition [80,
p. 156], is fulfilled by a stress-stretch relation if and only if the mapping U 7→ TBiot(U) is
invertible. Becker’s law of elasticity satisfies this condition, as was already shown in section 4.
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5.7.2 The M-condition

Since the principal matrix logarithm log : PSym(3) → Sym(3) is strictly monotone [47], the
Krawietz M-condition [41]

〈TBiot(U1)− TBiot(U2), U1 − U2〉 > 0 ∀ U1, U2 ∈ PSym(3), U1 6= U2 , (58)

where 〈X, Y 〉 = tr(Y TX) denotes the canonical inner product on R3×3, is satisfied by the
stress-stretch relation

TBiot(U) = 2G · log(U) ,
i.e. in the special case Λ = 0. However, it is not satisfied in the general case

TBiot(U) = 2G · log(U) + Λ · tr[logU ] · 11

for sufficiently large K > 0: choosing

U1 =

2 0 0
0 1

4 0
0 0 1

 and U2 = 11

we find

T (U1) = 2G · log(U1) + Λ · tr[logU ] · 11

= 2G ·

log 2 0 0
0 log 1

4 0
0 0 0

 + Λ · log(detU2) · 11

= 2G ·

log 2 0 0
0 − log 4 0
0 0 0

 + Λ · log
(1

2

)
· 11 = 2G ·

log 2 0 0
0 − log 4 0
0 0 0

 − Λ · log(2) · 11

as well as T (U2) = T (11) = 0 and thus

〈TBiot(U1)− TBiot(U2), U1 − U2〉 = 〈2G ·

log 2 0 0
0 − log 4 0
0 0 0

 − Λ · log(2) · 11 ,

1 0 0
0 −3

4 0
0 0 0

〉
= 2G ·

[
log(2) + (− log(4)) ·

(
− 3

4

)]
− Λ · log(2) ·

[
1− 3

4

]
= 2G ·

[
log(2) + 3 · log(22)

4

]
− Λ · log(2)

4

= 2G ·
[4 · log(2)

4 + 6 · log(2)
4

]
− Λ · log(2)

4

= log(2)
4 ·

[
20G− Λ

]
< 0

for Λ > 20G.
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5.7.3 Hill’s inequality

Since the energy function of any hyperelastic law satisfying the M-condition is convex in terms
of the right Biot-stretch tensor U , it follows from section 5.7.2 that the mapping

U 7→ W ν=0
Becker(U) = 2G [< U, log(U)− 11 > +3 ]

is convex on PSym(3). However, the mapping X 7→ 〈exp(X), X−11〉 is not convex on Sym(3).
Therefore W ν=0

Becker does not satisfy Hill’s inequality [36], which holds for an energy function
W : PSym(3)→ R, U 7→ W (U) if and only if the mapping

W̃ : Sym(3)→ R , W̃ (X) = W (exp(X)) ,

is convex. This condition is often restated as the convexity of the mapping logU 7→ W̃ (logU)
for U ∈ PSym(3). This inequality is independent of the rank-one convexity of the energy: for
example, while it is easy to see that the quadratic Hencky strain energy fulfils Hill’s inequality,
it is not rank-one convex [16, 54].

5.7.4 The Baker-Ericksen inequality

A stress-stretch relation fulfils the Baker-Ericksen inequality if

(σi − σj) · (λi − λj) > 0 for all λi 6= λj ,

where λk denotes the k-th principal stretch and σk denotes the corresponding principal Cauchy
stress, i.e. the corresponding eigenvalue of the Cauchy stress tensor σ.

Proposition 5.2. The stress-stretch relation

σ(V ) = 2G
det(V ) · V · log V + Λ

det(V ) · tr(log V ) · V

does not satisfy the Baker-Ericksen inequality for any G > 0, 3 Λ + 2G > 0.

Proof. We assume without loss of generality that V is in the diagonal form V = diag(λ1, λ2, λ3)
with λ1, λ2, λ3 > 0. Then

log(V ) = log

λ1 0 0
0 λ2 0
0 0 λ3

 =

log λ1 0 0
0 log λ2 0
0 0 log λ3


and

σ(V ) = 2G
λ1λ2λ3

· V · log V + Λ
λ1λ2λ3

· log(λ1λ2λ3) · V

= 2G
λ1λ2λ3

·

λ1 · log λ1 0 0
0 λ2 · log λ2 0
0 0 λ3 · log λ3

+ Λ · log(λ1λ2λ3)
λ1λ2λ3

·

λ1 0 0
0 λ2 0
0 0 λ3

 .
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The principal stresses σk are the diagonal entries of σ, thus

σk = λk
λ1λ2λ3

· (2G log λk + Λ log(λ1λ2λ3)) . (59)

We let λ1 = 1
e
, λ2 = 1

e2 and λ3 = e3 to find

σ1 =
1
e

1
e
· 1
e2 · e3 · (2G log

(1
e

)
+ Λ log(1

e
· 1
e2 · e3)) = 2G

e
· log

(1
e

)
= −2G

e

as well as

σ2 =
1
e2

1
e
· 1
e2 · e3 · (2G log

( 1
e2

)
+ Λ log(1

e
· 1
e2 · e3)) = 2G

e2 · log
( 1
e2

)
= −4G

e2 .

Since λ1 > λ2 we find

(σ1 − σ2) · (λ1 − λ2) > 0 ⇐⇒ σ1 > σ2 ⇐⇒ −2G
e

> −4G
e2 ⇐⇒ 1 <

2
e
,

showing that the Baker-Ericksen inequality does not hold in this case. �

Therefore Becker’s law does not satisfy the rank-one convexity condition either, since a
rank-one convex stress-stretch relation always fulfils the Baker-Ericksen inequality. In contrast,
Hencky’s elastic law (c.f. (46)) does fulfil the Baker-Ericksen inequality [59].

5.7.5 The ordered force inequalities

An isotropic stress-stretch relation satisfies the ordered force inequalities (or OF inequalities)
if

(Ti − Tj) · (λi − λj) ≥ 0 for all i, j ∈ {1, 2, 3} , i 6= j, (60)

where λi, λj are the principal stretches of a deformation and Ti, Tj are the corresponding
principal forces, i.e. the eigenvalues of the Biot stretch tensor TBiot. To show that Becker’s
law fulfils the OF inequalities for all G > 0, 3 Λ + 2G > 0, we assume w.l.o.g. that a given
stretch tensor U is in the diagonal form U = diag(λ1, λ2, λ3) and compute

TBiot = 2G · log(U) + Λ · tr[log(U)] · 11

= 2G ·

log(λ1) 0 0
0 log(λ2) 0
0 0 log(λ3)

+ Λ · tr

log(λ1) 0 0
0 log(λ2) 0
0 0 log(λ3)

 · 11

=

2G log(λ1) 0 0
0 2G log(λ2) 0
0 0 2G log(λ3)

 + Λ log(λ1λ2λ3) · 11 .
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The eigenvalues of Ti of TBiot corresponding to the principal stretches λi are therefore

λi = 2G log(λi) + Λ log(λ1λ2λ3) ,

thus (60) can be written as(
2G log(λi) + Λ log(λ1λ2λ3)− 2G log(λj) + Λ log(λ1λ2λ3)

)
· (λi − λj) ≥ 0

⇐⇒ 2G · (log(λi)− log(λj)) · (λi − λj) ≥ 0 (61)

Due to the monotonicity of the natural logarithm, (61) holds for all λ1, λ2, λ3 ∈ R+ and all
G > 0.

5.8 Existence results
The following proposition represents a basic existence result by Ciarlet [18, Theorem 6.7-1] for
solutions to the so-called pure displacement problem in nonlinear elasticity:

Proposition 5.3. Let Ω ⊂ R3 be a domain with a boundary Γ of class C2, and let

E = 1
2(C − 11) = 1

2

(
(11 +∇u)T (11 +∇u)− 11

)
denote the Green-Lagrange strain tensor of a deformation ϕ(x) = x+ u(x). Moreover, assume
that the constitutive law is of the form

S2(E) = Λ · tr(E) · 11 + 2GE + O(‖E‖2)

with Λ, G > 0, where S2 denotes the second Piola-Kirchhoff stress tensor. Then for each number
p > 3 there exists a neighbourhood Zp of the origin in the space Lp(Ω) and a neighbourhood Up

of the origin in the subspace

V p(Ω) = {v ∈ W 2,p(Ω) | v = 0 on Γ}

of the Sobolev space W 2,p(Ω) such that for each f ∈ Zp, the boundary value problem

− divS1(F ) = f in Ω
u = 0 on Γ

S1(F ) = (11 +∇u) · S2(E(u))


has exactly one solution u in Up.

To show that Becker’s stress-stretch relation fulfils the conditions of Theorem 5.3 we compute

S2 = U−1 · TBiot = [2G · log(U) + Λ · tr[logU ] · 11] · U−1

= [2G · log(
√
C) + Λ · tr[log

√
C] · 11] ·

√
C −1

= [G · log(C) + Λ
2 · tr[logC] · 11] ·

√
C −1 .
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For small enough ‖C − 11‖, we can employ the series expansion

log(C) = (C − 11)− 1
2 · (C − 11)2 + . . .

of the matrix logarithm to find

S2 = [G · log(C) + Λ
2 · tr[logC] · 11] ·

√
C −1

=
[
G · (C − 11 +O(‖C − 11‖2)) + Λ

2 · tr[(C − 11) +O(‖C − 11‖2)] · 11
]
·
√
C −1

=
[
G · (C − 11) + Λ

2 · tr[C − 11] · 11 + O(‖C − 11‖2)
]
·
√
C −1 . (62)

Since √
C −1 = 11− 1

2 · (C − 11) +O(‖C − 11‖2)

for small ‖C − 11‖, (62) can be expressed as

S2 =
[
G · (C − 11) + Λ

2 · tr[C − 11] · 11 + O(‖C − 11‖2)
]
·
[
11− 1

2 · (C − 11) +O(‖C − 11‖2)
]

= G · (C − 11) + Λ
2 · tr[C − 11] · 11 +O(‖C − 11‖2) = Λ · tr(E) · 11 + 2GE + O(‖E‖2) .

Proposition 5.3 can therefore be directly applied to Becker’s law of elasticity.
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A Appendix

A.1 A brief history of logarithmic strain measures
Becker was not the first to consider a law of elasticity based on the logarithm of the principal
stretches. In 1880, A. Imbert proposed a logarithmic stress response function as a model for
the uniaxial tension of vulcanized rubber [39], while E. Hartig applied a similar law to the
uniaxial deformation of rubber [28] in 1893. However, both of these approaches are purely
phenomenological: neither Imbert nor Hartig considers a theoretical framework or states un-
derlying reasons for the use of a logarithmic strain measure, they merely employ the logarithm
to give an approximation of data obtained through (uniaxial) experiments.

Although the present article by Becker was summarized in a review article in Beiblätter zu
Wiedemanns Annalen der Physik [44] (by a reviewer only identified as “G. Lübeck, Berlin”)
and cited in Lueger’s Lexikon der gesamten Technik [46], Becker’s work seems to have gathered
little attention outside the field of geology. The introduction of the logarithmic strain measure
to the theory of elasticity is therefore often attributed to P. Ludwik, for example by Hencky [34,
p. 175] or Truesdell∗ [81, p. 254]. However, the earliest mention of the logarithmic strain by
Ludwik appears in his 1909 monograph Elemente der technologischen Mechanik [45] on plastic
deformations†, while Becker derives a detailed connection between stresses and the logarithm‡
of the principal stretches in 1893. This error of attribution seems to originate from H. Hencky
who, in a 1931 article [34], referred to a brief section on plastic deformations in Hütte: Des
Ingenieurs Taschenbuch [38] where Ludwik is cited. The same misattribution to Ludwik is
given by Truesdell [81], who does not mention Becker at all.§

Becker’s work can be seen as an early attempt to find an idealized law of nonlinear elas-
ticity for finite deformations through deduction from a number of simple assumptions for the
behaviour of an ideally elastic material, predating a remarkably similar approach by Hencky¶,
who deduced a logarithmic law of elasticity from the assumption of a law of superposition in
his 1928 article Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen [31, 55].
Unlike Becker, however, Hencky gave an explicit motivation for his assumed law of superposi-
∗While Imbert’s contributions are also mentioned by Truesdell, he only cites a summary by Mehmke [48],

who in turn refers to Hartig [28] instead of Imbert’s original paper.
†Ludwik arrived at the logarithmic strain measure through the integral

∫ l
l0
d l
l = log l

l0
over the instantaneous

strain d l
l for uniaxial elongations.

‡Although the matrix logarithm had already been investigated in 1892 by W.H. Metzler [49], Becker, like
Imbert and Ludwik, only considers the (scalar) logarithm of individual stretches instead of the logarithm
function in a tensorial setting. The efficient computation of the matrix logarithm is still an open field of
research [1, 2].
§Truesdell [81, p. 270] also attributes the deduction of the logarithmic measure of strain from a law of

superposition to Richter [71], although Becker and Hencky used the same approach much earlier. Furthermore,
Truesdell [78, p. 144] claims that “Hencky himself did not give a systematic treatment” when introducing the
logarithmic strain measure.
¶Hencky’s fundamental view of the natural sciences and their relation to mathematics are laid out in his

philosophical article Über die Beziehungen der Philosophie des „Als Ob” zur mathematischen Naturbeschreibung
[30].
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tion, which he later expanded upon in his 1929 article Das Superpositionsgesetz eines endlich
deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte
Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form [32, 55]: referring
to Prandtl’s distinction between “elastically determinate” and “elastically indeterminate con-
structs”‖ [68], Hencky assumes that a law of elasticity for an ideally elastic body should provide
“elastic determinacy to the greatest extent for epistemological reasons” [55, p. 19], a require-
ment motivated by Dingler [22]. From this he concludes that the multiplicative composition
of coaxial stretches must effect the additive composition of the respective Cauchy stresses σ,
leading to the stress response function

σ(V ) = 2G · dev3 log(V ) +K · tr[log V ] · 11 , (63)

as described in Corollary 4.16. In a later 1929 article [33, 55], however, Hencky corrected his
statements, proposing then that the law of superposition must hold for the Kirchhoff stress
tensor τ instead of the Cauchy stress. Although his reasoning for this correction is based on L.
Brillouin’s suggestion [15] that the Cauchy stress “is not a true tensor of weight 0 but a tensor
density” as well as a “lack of group properties for pure deformations in the general case” [55,
p. 20], the fact that the stress-stretch relation

τ(V ) = 2G · dev3 log(V ) +K · tr[log V ] · 11 (64)

resulting from this new approach with respect to the Kirchoff stress τ is hyperelastic with the
corresponding strain energy

W (V ) = G ‖ dev3 log V ‖2 + K

2 [tr(log V )]2 (65)

can be seen as a motivating factor as well, especially since Hencky in his 1928 article explicitly
computed that the stress response (63) does not lead to a path-independent energy potential
and is therefore not hyperelastic.

Although his deductions of the stress-stretch relations (63) and (64) from the respective
laws of superposition are correct (c.f. Corollary 4.16), Hencky does not provide explicit com-
putations for either one. A proof for a generalized version of this deduction from the law
of superposition was later given by H. Richter [71], who did extensive work on the matrix
logarithm in finite elasticity [69, 70, 72, 73].

More information on the historical development of nonlinear elasticity theory and logarith-
mic strain measures in particular as well as related articles by Becker, Hencky, Richter and other
authors can be found under http://www.uni-due.de/mathematik/ag_neff/neff_hencky .

A.2 The stress tensors
Throughout his work Becker refers to “initial stresses” as well as “final stresses”. Since Becker
only considers homogeneous deformations along fixed axes, there is some ambiguity as to which
‖Prandtl [68] calls a system in which “already occurring prestresses have no significant influence on the

stresses induced by additional loads, i.e. in which the stresses simply superimpose” elastically determinate.

http://www.uni-due.de/mathematik/ag_neff/neff_hencky
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stress tensors are represented by these terms. However, Becker’s remark that “[in] a shear of
ratio α with a tensile axis in the direction of oy, minus Nxα is the negative stress acting in the
direction of the x axis into the area α on which it acts” (11, p. 339) allows us to infer that “final
stress” refers to the force per area in the deformed configuration. Furthermore the terms “load”
and “initial stress” are often used interchangeably (e.g. 12, p. 339). Since Becker considers
the deformation of a unit cube (20, p. 340), the load is the force acting on an area of size 1
in the undeformed configuration, hence his equating load and “initial stress” strongly suggests
that the latter should be interpreted as “force per unit area of the undeformed configuration”.
Note that this information is not sufficient to completely characterize the two stress tensors:
since Becker only considers the case of fixed principal axes, the principal directions of the stress
tensors are undetermined. However, the assumption of isotropy ensures that the resulting law
of elasticity only depends on the principal stress response to deformations along fixed axes.
Thus the choice of tensorial directions is irrelevant to the resulting stress-stretch relation.
To simplify the resulting expressions we will therefore interpret the term “final stress” as the
Cauchy stress tensor σ and the “initial stress” as the Biot stress tensor TBiot.

A.3 The basic decomposition of traction by Cauchy stress quadrics
Let σ denote the symmetric Cauchy stress tensor here and throughout. With respect to its
principal axes, σ has the diagonal representation

σ =

σ1 0 0
0 σ2 0
0 0 σ3

 , (66)

where σi denotes the i-th principal stress. Then for a given plane in the deformed configuration,
the traction t in direction n is given by

t = σ n ,

where n is the unit normal vector of the plane. If n = (n1, n2, n3)T is the representation of n
with respect to the principal axes of σ, the traction t computes to

t = σ n =

σ1 0 0
0 σ2 0
0 0 σ3

 ·
n1
n2
n3

 =

σ1 n1
σ2 n2
σ3 n3

 .

Therefore the magnitude R of the traction, which is also called the resultant stress on the plane
by Becker (6, p. 338), is given by

R2 = ‖t‖2 = ‖σ n‖2 = σ2
1 n

2
1 + σ2

2 n
2
2 + σ2

3 n
2
3 .

By decomposing the traction t = tN + tT into a tangential part tT parallel to the plane and a
normal part tN we obtain the magnitude of normal stress N via

N = 〈t, n〉 = 〈σ n, n〉 = 〈

σ1 n1
σ2 n2
σ3 n3

 ,
n1
n2
n3

〉 = σ1 n
2
1 + σ2 n

2
2 + σ3 n

2
3 ,
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as well as the magnitude of tangential stress T : since R2 = T 2 +N 2 by Pythagoras’ theorem
we obtain

T 2 = R2 −N 2

= σ2
1 n

2
1 + σ2

2 n
2
2 + σ2

3 n
2
3

− (σ2
1 n

4
1 + σ2

2 n
4
2 + σ2

3 n
4
3 + 2σ1 σ2 n

2
1 n

2
2 + 2σ1 σ3 n

2
1 n

2
3 + 2σ2 σ3 n

2
2 n

2
3)

= σ2
1 n

2
1(1− n2

1) + σ2
2 n

2
2(1− n2

2) + σ2
3 n

2
3(1− n2

3)
− 2 (σ1 σ2 n

2
1 n

2
2 + σ1 σ3 n

2
1 n

2
3 + σ2 σ3 n

2
2 n

2
3)

= σ2
1 n

2
1(n2

2 + n2
3) + σ2

2 n
2
2(n2

1 + n2
3) + σ2

3 n
2
3(n2

1 + n2
2)

− 2 (σ1 σ2 n
2
1 n

2
2 + σ1 σ3 n

2
1 n

2
3 + σ2 σ3 n

2
2 n

2
3)

= n2
1 n

2
2 (σ2

1 − 2σ1 σ2 + σ2
2) + n2

1 n
2
3 (σ2

1 − 2σ1 σ3 + σ2
3) + n2

2 n
2
3 (σ2

2 − 2σ2 σ3 + σ2
3)

= (σ1 − σ2)2 n2
1 n

2
2 + (σ1 − σ3)2 n2

1 n
2
3 + (σ2 − σ3)2 n2

2 n
2
3 . (67)

Note that the tangential Cauchy stress T is not the tangential load Becker refers to as a failure
criterion (18, p. 339). In the case of a pure shear, the tangential load is maximal if n is normal
to the plane of no distortion (c.f. A.4), while the tangential stress T attains its maximum if n
is normal to “planes making angles of 45◦ with the axes” (16, p. 339).

A.4 Becker’s computations of the directions of maximum tangential
stress

As was discussed in section 3, the plane of no distortion is the plane of maximum tangential
load in Becker’s model. According to Becker (in the footnote on page 339), the tangential load
acting on a plane with unit normal n = (n1, n2, 0)T is T r, where∗ 1/r2 = α2n2

1 + α−2n2
2. His

computation of the plane of maximum tangential load depends on his assumption that a pure
shear deformation F corresponds to a pure shear stress tensor TBiot (Axiom 1). In this case
we can compute the Cauchy stress tensor:

F =

α 0 0
0 1

α
0

0 0 1

 , α > 1 , TBiot =

s 0 0
0 −s 0
0 0 0

 , s ∈ R

=⇒ σ = 1
detU · U

−1 · F · TBiot · F T = 1 · F−1 · F · TBiot · F =

α s 0 0
0 − s

α
0

0 0 0

 .

Then, for a unit vector n = (n1, n2, 0)T , we find

R2 = ‖σ n‖2 = s2 · (α2 n2
1 + α−2n2

2)
∗Note carefully that we have switched n1 and n2 to fit the orientation of our coordinate system as explained

in section 2.2.
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as well as
N 2 = 〈σ n , n〉2 = s2 · (αn2

1 − α−1 n2
2)2 .

As Becker states (15, p. 339), the resultant load

R2 r2 = 1
α2n2

1 + α−2n2
2
· s2 · (α2 n2

1 + α−2n2
2) = s2

is independent of n. In order to find the normal n to the plane of maximum tangential load,
i.e. n such that T 2r2 = R2 r2 −N 2 is maximal, it is therefore sufficient to minimize

N 2r2 = r2 · s2 · (αn2
1 − α−1 n2

2)2 .

Since the term is nonnegative, the minimum is attained if N 2r2 = 0, which is the case if
n2

2 = α2 n2
1. As we have seen in (10) in section 2.2.1, this equation characterizes the normals

to the plane of no distortion, showing again that they are indeed the planes of maximum
tangential load under Becker’s assumptions.

A.5 Conversion of the moduli
Throughout his article, Becker refers to the modulus of cubical dilation (or bulk modulus) K,
the modulus of distortion (or shear modulus) G and Young’s modulus E. His equation (28, p.
343)

Q
( 1

9K + 1
3G

)
= Q/E

follows directly from the well-known conversion formula E = 9KG
3K+G for these moduli:

1
9K + 1

3G = G+ 3K
9 ·KG

= 1
E
.

Similarly, with ν = 3K−2G
2(3K+G) denoting Poisson’s ratio, we find

1
9K −

1
6G = 2G− 3K

18KG
= − 3K − 2G

2(3K +G) ·
2(3K +G)

18KG
= −ν · 3K +G

9KG
= − ν

E
.
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B Notation
The following notation is employed throughout the article:

11 = diag(1, 1, 1) =
( 1 0 0

0 1 0
0 0 1

)
identity matrix

Ω0 ⊂ R3 reference configuration

ϕ : Ω0 → R3 deformation mapping

F = ∇ϕ(x) ∈ R3×3 deformation gradient

U =
√
F TF right Biot stretch tensor

C = F TF = U2 right Cauchy-Green deformation tensor

V =
√
FF T left Biot stretch tensor

B = FF T = V 2 left Cauchy-Green deformation tensor

R = FU−1 = V −1F ∈ SO(3) orthogonal polar factor of the deformation gradient

σ Cauchy stress tensor, “true stress”

τ = det(F ) · σ Kirchhoff stress tensor

S1 = det(F ) ·σ F−T first Piola-Kirchhoff stress tensor, “nominal stress”

S2 = det(F ) ·F−1 σ F−T symmetric second Piola-Kirchhoff stress tensor

TBiot = US2 = RTS1 Biot stress tensor

G, Λ Lamé constants

K bulk modulus

E Young’s modulus

ν Poisson’s ratio
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[76] J. Schröder and P. Neff. Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International
Centre for Mechanical Sciences. Springer, 2010.
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ART. XLVIII. – The Finite Elastic
Stress-Strain Function;

by GEO. F. Becker

Hooke’s Law. – The law proposed by Hooke to account for the results
of experiments on elastic bodies is equivalent to: – Strain is proportionate
to the load, or the stress initially applied to an unstrained mass1. The law
which passes under Hooke’s name is equivalent to: – Strain is proportional
to the final stress required to hold a strained mass in equilibrium.∗ 2 It is
now universally acknowledged that either law is applicable only to strains
so small that their squares are negligible3. There are excellent reasons for
this limitation. Each law implies that finite external forces may bring about
infinite densities or infinite distortions4, while all known facts point to the
conclusion that infinite strains result only from the action of infinite forces.
When the scope of the law is confined to minute strains, Hooke’s own law
and that known as his are easily shown to lead to identical results; and
the meaning is then simply that the stress-strain curve is a continuous one
cutting the axes of no stress and of no strain at an angle whose tangent is
finite. Hooke’s law in my opinion rests entirely upon experiment, nor does
it seem to me conceivable that any process of pure reason “should reveal
the character of the dependence of the geometrical changes produced in a
body on the forces acting upon its elements.”†

Purpose of this paper. – So far as I know no attempt has been made
since the middle of the last century to determine the character of the stress-
strain curve for the case of finite stress.‡ I have been unable to find even
an analysis of a simple finite traction and it seems that the subject has
fallen into neglect, for this analysis is not so devoid of interest as to be
deliberately ignored, simple though it is.

∗Compare Bull. Geol. Soc. Amer. vol. iv, 1893, p. 38.
†Saint-Venant in his edition of Clebsch. p. 39.
‡J. Riccati, in 1747, a brief account of whose speculation is given in Todhunter’s

history of elasticity, proposed a substitute for Hooke’s law.
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In the first part of this paper finite stress and finite strain will be examined
from a purely kinematical point of view; then the notion of an ideal isotropic
solid5 will be introduced and the attempt will be made to show that there is
but one function which will satisfy the kinematical conditions consistently
with the definition. This definition will then be compared with the results
of experiment and substantially justified.

In the second part of the paper the vibrations of sonorous bodies will be
treated as finite and it will be shown that the hypothesis of perfect isochro-
nism, or perfect constancy of pitch, leads to the same law as before, while
Hooke’s law would involve sensible changes of pitch during the subsidence
of the amplitude of vibrations.

Analysis of shearing stress. – Let R, N and T be the resultant, normal
and tangential stresses at any point6. Then if σ1, σ2 and σ3 are the so-called
principal stresses and n1, n2, n3 the direction cosines of a plane7, there are
two stress quadrics established by Cauchy which may be written

R2 = σ2
1 n

2
1 + σ2

2 n
2
2 + σ2

3 n
2
3 ,

N = σ1 n
2
1 + σ2 n

2
2 + σ3 n

2
3 .

Since also T 2 = R2 −N 2,

T 2 = (σ1 − σ2)2 n2
1 n

2
2 + (σ1 − σ3)2 n2

1 n
2
3 + (σ2 − σ3)2 n2

2 n
2
3 ;

and these formulas include the case of finite stresses as well as of infinites-
imal ones.

In the special case of a plane stress in the xy plane, σ3 = 0 and n3 = 0,
and the formulas become

R2 = σ2
1 n

2
1 + σ2

2 n
2
2 ,

N = σ1 n
2
1 + σ2 n

2
2,

T 2 = (σ1 − σ2)2 n2
1 n

2
2 .

In the particular case of a shear (or a pure shear) there are two sets of planes
on which the stresses are purely tangential, for otherwise there could be no
planes of zero distortion8. On these planes N = 0, and if the corresponding
value of n1/n2 is α,

−σ1 α = σ2/α .

If this particular quantity9 is called Q/3, one may write the equations of
stress in a shear for any plane in the form

R2 = Q2

9

(
n2

2 α
2 + n2

1
α2

)
,

N = Q

3

(
n2

2 α−
n2

1
α

)
,

T 2 = Q2

9

(
α + 1

α

)2
n2

1 n
2
2 .
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For the axes of the shear the tangential stress must vanish, so that n1 or
n2 must become zero, and therefore the axes of x and y are the shear axes.
If Nx and Ny are the normal axial stresses, one then has

−Nxα = Ny/α = Q/3 .

A physical interpretation must now be given to the quantity α. In a
finite shearing strain of ratio α, it is easy to see that the normal to the
planes of no distortion makes an angle with the contractile axis of shear
the cotangent of which is α. 10 If the tensile axis of the shear is the axis of
y, and the contractile axis coincides with x, this cotangent is n1/n2. Hence
in the preceding formulas α is simply the ratio of shear.

In a shear of ratio α with a tensile axis in the direction of oy, minus Nxα
is the negative stress acting in the direction of the x axis into the area α on
which it acts11. It is therefore the load or initial stress12 acting as a pressure
in this direction. Similarly Ny/α is the total load or initial stress acting as
a tension or positively in the direction oy. Hence a simple finite shearing
strain must result from the action of two equal loads or initial stresses of
opposite signs at right angles to one another13 the common value of the
loads being in the terms employed Q/3.∗

It is now easy to pass to a simple traction in the direction of oy since
the principle of superposition is applicable to this case. Imagine two equal
shears in planes at right angles to one another combined by their tensile
axes in the direction oy, and let the component forces each have the value
Q/3. To this system add a system of dilational forces acting positively
and equally in all directions19 with an intensity Q/3. Then the sum of the
forces acting in the direction of oy is Q and the sum of forces acting at
right angles to oy is zero.

Inversely a simple finite load or initial stress of value Q is resoluble into
two shears and a dilation, each axial component of each elementary initial
stress being exactly one-third of the total load. Thus the partition of force
in a finite traction is exactly the same as it is well known to be in an
infinitesimal traction, provided that the stress is regarded as initial and
not final.†

∗This proposition I have also deduced directly from the conditions of equilibrium in
Bull. Geol. Soc. Amer., vol. iv, 1893, page 36. It may not be amiss here to mention one
or two properties of the stresses in a shear which are not essential to the demonstration
in view. The equation of the shear ellipse14 may be written in polar coördinates 1/r2 =
α2n2

2 + α−2n2
1. Hence the resultant load on any plane whatever15 is Rr = ±Q/3. The

final tangential stress is well known to be maximum for planes making angles of 45◦
with the axes16; but it is easy to prove that the tangential load, T r, is maximum for
the planes of no distortion. These are also the planes of maximum tangential strain17.
Rupture by shearing is determined by maximum tangential load, not stress18.
†Thomson and Tait, Nat. Phil., section 682.
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Application to system of forces. – Without any knowledge of the rela-
tions between stress and strain, the foregoing analysis can be applied to
developing corresponding systems of stress and strain. Let a unit cube20

of an elastic substance presenting equal resistance in all directions be sub-
jected to axial loads P,Q,R. Suppose these forces to produce respectively
dilations of ratios h1, h2, h3 and shears of ratios p, q, r. Then the following
table21 shows the effects of each axial force on each axial dimension of the
cube in any pure strain.

Active force P Q R
Axis of strain x y z x y z x y z
Dilation h1 h1 h1 h2 h2 h2 h3 h3 h3

Shear p 1/p 1 1/q q 1 1/r 1 r

Shear p 1 1/p 1 q 1/q 1 1/r r

Grouping the forces and the strains by axes, it is easy to see that the
components may be arranged as in the following table, which exhibits the
compound strains in comparison with the compound loads which cause
them, though without in any way indicating the functional relation between
any force and the corresponding strain.

Pure Strains.22

Axes x y z
Dilation h1h2h3 h1h2h3 h1h2h3

Shear p2 · 1
q
· 1
r

1
p2 · q · r 1

Shear 1 pq

r2
r2

pq

Products h1h2h3p
2

qr

h1h2h3q
2

pr

h1h2h3r
2

pq

Loads or Initial Stresses.23

Axes x y z

Dilation P +Q+R

3
P +Q+R

3
P +Q+R

3

Shear − Q+R− 2P
3

Q+R− 2P
3 0

Shear 0 P +Q− 2R
3 − P +Q− 2R

3
Sums P Q R
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In many cases it is convenient to abbreviate the strain products. Thus
if one writes h1h2h3 = h, qr/p2 = α and pq/r2 = β, the products are
h/α, hαβ and h/β.

Inferences from the table. – It is at once evident that the load sums
correspond to the products of the strain ratios24, and that zero force answers
to unit strain ratios. There are also several reciprocal relations which are
not unworthy of attention. If R = 0 and Q = −P , the strain reduces to a
pure shear. But the positive force, say Q, would by itself produce a dilation
h2, while the negative force, minus P , would produce cubical compression
of ratio h1 < 1. Now a shear is by definition undilatational and therefore,
in this case, h1h2 = 1. Hence equal initial stresses of opposite signs produce
dilatations of reciprocal ratios. The same two forces acting singly would
each produce two shears while their combination produces but one. Q
would contract lines parallel to oz in the ratio 1/q while minus P would
elongate the same lines in the ratio p/1. Since the combination leaves these
lines unaltered, p/q = 1. Hence equal loads of opposite signs produce shears
of reciprocal ratios. It is easy to show by similar reasoning that equal loads
of opposite signs must produce pure distortions and extensions of reciprocal
ratios.

Strain as a function of load – One may at will regard strains as functions
of load25 or of final stress; but there seem to be sufficient reasons for se-
lecting load rather than final stress as the variable. To obtain equations
giving results applicable to different substances, the equations must contain
constants characteristic of the material as well as forces measured in an ar-
bitrary unit. In other words the forces must be measured in terms of the
resistance which any particular substance presents. Now these resistances
should be determined for some strain common to all substances for forces
of a given intensity. The only such strain is zero strain corresponding to
zero force. Hence initial stresses or loads are more conveniently taken as
independent variables.∗

Argument based on small strains.

Physical hypothesis. — In the foregoing no relation has been assumed
connecting stress and strain. The stresses and strains corresponding to one
another have been enumerated, but the manner of correspondence has not
been touched upon. One may now at least imagine a homogeneous elastic
substance of such a character as to offer equal resistance to distortion in

∗When the strains are infinitesimal, it is easy to see that load and final stress differ
from one another by an infinitesimal fraction of either.
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every direction and equal resistance to dilation in every direction. The two
resistances may also be supposed independent of one another – for this is
a more general case than that of dependence. The resistance finally may
be supposed continuous and everywhere of the same order as the strains.

In such an ideal isotropic substance it appears that the number of inde-
pendent moduluses cannot exceed two; for a pure shear irrespective of its
amount is the simplest conceivable distortion and no strain can be simpler
than dilation, while to assume that either strain involved more than one
modulus would be equivalent to supposing still simplier strains, each de-
pendent upon one of the units of resistance. It is undoubtedly true that,
unless the load-strain curve is a straight line, finite strains involve constants
of which infinitesimal strains are independent; but these constants are mere
coefficients and not moduluses: for the function being continuous must be
developable by Taylor’s Theorem26, and the first term must contain the
same variable as the succeeding terms, this variable being the force mea-
sured in terms of the moduluses. In this statement it must be understood
that the moduluses are to be determined for vanishing strain.∗

One can determine the general form of the variable in terms of the resis-
tances or moduluses for the ideal isotropic solid defined above. The load
effecting dilation27 in simple traction, as was shown above, is exactly one
third of the total load, or say Q/3; and if a is the unit of resistance to linear
dilation, Q/3a is the quantity with which the linear dilation will vary. The
components of the shearing stresses in the direction of the traction are each
Q/3, and, if c is the unit of resistance to this initial stress, the

∗One sometimes sees the incompleteness of Hooke’s law referred to in terms such as
“Young’s modulus must in reality be variable.” This is a perfectly legitimate statement
provided that Young’s modulus is defined in accordance with it; but the mode of state-
ment does not seem to me an expedient one to indicate the failure of linearity. Let E∗
represent Young’s modulus regarded as variable and F a force or a stress measured in
arbitrary units. Then if y is the length of a unit cube when extended by a force, the
law of extension may be written in the form y = 1 + F/E∗. Now let E be the value of
Young’s modulus for zero strain, and therefore an absolute constant. Then, assuming
the continuity of the functions, one may write E∗ in terms of E thus,

1
E∗

= 1
E
φ

(
F

E

)
= 1
E

(
1 + AF

E
+ BF 2

E2 + . . . .

)
.

But this gives

y = 1 + F

E
+ AF 2

E2 + BF 3

E3 + . . . .

so that 1/E∗ merely stands for a development in terms of F/E. If therefore one defines
Young’s modulus as the tangent of the curve for vanishing strain, the fact of curvature
is expressed by saying that powers of the force (in terms of Young’s modulus) higher
than the first enter into the complete expression for extension.
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corresponding extension will vary with 2Q/3c. In simple extension all faces
of the unit cube remain parallel to their original positions, and the prin-
ciple of superposition is applicable throughout the strain. Hence the total
variable may be written Q

(
1
3a + 2

3c

)
. The intensity of Q will not affect

the values of the constants a and c which indeed should be determined for
vanishing strain as has been pointed out.

The quantities a and c have been intentionally denoted by unusual letters.
In English treatises it is usual to indicate the modulus of cubical dilation
by K and the modulus of distortion by G. With this nomenclature a = 3K
and c = 2G. Using the abbreviation E for Young’s modulus the variable
then becomes28

Q
( 1

9K + 1
3G

)
= Q/E .

Since this is the form of the variable whether Q is finite or infinitesimal, the
length of the strained cube according to the postulate of continuity must
be developable in terms of Q/E and cannot consist, for example, solely of a
series of terms in powers of Q/9K plus a series of powers of Q/3G; in other
words the general term of the development must be of the form Am(Q/E)m
and not Am(Q/9K)m +Bm(Q/3G)m.

Form of the functions. – If α is the ratio of shear produced by the traction
Q in the ideal isotropic solid under discussion, α must be some continuous
function of Q/3G. So too if h is the ratio of linear dilation, h is some
continuous function of Q/9K. The length of the strained mass29 is α2h,
and this must be a continuous function of Q/E. If then f, ϕ and ψ are
three unknown continuous functions, one may certainly write

α2 = f
(
Q

3G

)
; h = ϕ

(
Q

9K

)
; α2h = ψ

(
Q

E

)
. (1)

It also follows from the definitions of α and h that

1 = f(0); 1 = ϕ(0); 1 = ψ(0) . (2)

For the sake of brevity let Q/3G = ξ and Q/9K = η. Then ξ and η
may be considered algebraically as independent of one another even if an
invariable relation existed between G and K; for since in simple traction,
the faces of the isotropic cube maintain their initial direction, the principle
of superposition is applicable; and to put G = ∞ or K = ∞ is merely
equivalent to considering only that part of a strain due respectively to

AM. JOUR. SCI. – THIRD SERIES, VOL. XLVI, No. 275. – Nov., 1893.
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compressibility or to pure distortion.∗ Now the functions are related by the
equation30

f(ξ)ϕ(η) = ψ(ξ + η) (3)

and if ξ and η are alternately equated to zero

f(ξ) = ψ(ξ) and ϕ(η) = ψ(η) .

Hence the three functions are identical in form† or (3) becomes

f(ξ) f(η) = f(η + ξ) . (4)

Developing the second member by Taylor’s theorem and dividing by f(η)
gives a value for f(ξ), viz:

f(ξ) = 1 + df(η)
dη
· 1
f(η) · ξ + . . . .

Since the two variables are algebraically independent, this equation must
answer to McLaurin’s Theorem, which implies that the expression contain-
ing η is constant, its value being say b. Then

df(η)
f(η) = b dη .

Hence since f(0) = 1
f(η) = eb η

and since all three functions have the same form

f(ξ + η) = eb (ξ+η) = 1 + bQ/E + . . .

∗Compare Thomson and Tait Nat. Phil. section 179.
†This proposition is vital to the whole demonstration. Another way of expressing it is as follows: –

If the functions are continuous,

α2h = 1 +A

(
Q

3G
+

Q

9K

)
+B

(
Q

3G
+

Q

9K

)2
+ . . .

where A,B, etc. are constant coefficients. Then since G and K are algebraically independent, or since
the principle of superposition is applicable, the development of α2 is found by making h = 1 and K =∞.
Thus

α2 = 1 +
AQ

3G
+B

(
Q

3G

)2
+ . . .

A,B, etc., retaining the same values as before. Consequently α2 is the same function of Q/3G that α2h
is of Q/E. By equating α to unity and G to infinity, it appears that h also is of the same form as α2h.

There is the closest connection between this method of dealing with the three functions and the
principle, that when an elastic mass is in equilibrium, any portion of it may be supposed to become
infinitely rigid and incompressible without disturbing the equilibrium. For to suppose that in the
development of α2h,K =∞ is equivalent to supposing a system of external forces equilibrating the forces
Q/9K. This again is simply equivalent to assorting the applicability of the principle of superposition
to the case of traction.

In pure elongation, unaccompanied by lateral contraction, it is easy to see that h = α and that α
varies as Q/6G. In this case also 6G = 9K because Poisson’s ratio is zero. Hence without resorting to
the extreme cases of infinite G or K, it appears that h is the same function of 9K that α is of 6G. This
accords with the result reached in (5) without sufficing to prove that result.
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Here b/E is the tangent of the load-strain curve for vanishing strain, and
this by definition is 1/E, so that b = 1.

It appears then that the equations sought for the load-strain functions
are

α2 = eQ/3G ; h = eQ/9K ; α2h = eQ/E ; (5)

a result which can also be reached from (4) without the aid of Taylor’s
theorem.

Tests of the equations. – These equations seem to satisfy all the kinemati-
cal conditions deduced on preceding pages. It is evident that opposite loads
of equal intensity give shears, dilations and extensions of reciprocal ratios
and that the products of the strain ratios vary with the sums of the loads.
It is also evident that infinite forces and such only will give infinite strains.
A very important point is that these equations represent a shear as held
in equilibrium by the same force system whether this elementary strain is
due to positive or negative forces. If any other quantity (not a mere power
of Q or the sum of such powers), such as the final stress were substituted
for the load Q, a pure shear would be represented as due to different force
systems in positive and negative strains which would be a violation of the
conditions of isotropy.∗ One might suppose more than two independent
moduluses to enter into the denominator of the exponent; but this again
would violate the condition of isotropy by implying different resistances in
different directions. Any change in the numerical coefficients of the mod-
uluses would imply a different partition of the load between dilation and
distortion, which is inadmissible. It would be consistent with isotropy to
suppose the exponent of the form (Q/E)1+2c; but then, if c exceeds zero,
the development of the function would contain no term in the first power of
the variable and the postulate that strains and loads are to be of the same
order would not be fulfilled. The reciprocal relations of load and strain
would be satisfied and the loads would be of the same order as the strains,
if one were to substitute a series of uneven powers of the variables for ξ
and η. Such series are for example the developments of tan ξ and tan η.

∗Let a shearing strain be held in equilibrium by two loads, Q/3 and minus Q/3. If
a second equal shear at right angles to the first is so combined with it that the tensile
axes coincide, the entire tensile load is 2Q/3. If on the other hand the two shears are
combined by their contractile axes, the total pressure is 2Q/3. In the first case the
area of the deformed cube measured perpendicularly to the direction of the tension is
1/α2, and if Q′ is the final stress, Q′/α2 = 2Q/3 or Q′ = 2Qα2/3. In the second case
the area on which the pressure acts is α2 and if the stress is Q′, Q′′ = −2Q/3α2. Thus
Q′ = −Q′′α4. Hence equal final stresses of opposite signs cannot produce shears of
reciprocal ratios in an isotropic solid. The same conclusion is manifestly true of any
quantity excepting Q or an uneven power of Q or the sum of such uneven powers.
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In a case of this kind, however, α2h would not be a function of Q/E = ξ+η
excepting for infinitesimal strain; the exponent then taking the form of a
series of terms Am (ξm + ηm) instead of Am(ξ+η)m. Finally it is conceivable
that the expanded function should contain in the higher terms moduluses
not appearing in the first variable term; but this would be inconsistent
with continuity. In short I have been unable to devise any change in the
functions which does not conflict with the postulate of isotropy as defined
or with some kinematical condition.

Abbreviation of proof. – In the foregoing the attempt has been made to
take a broad view of the subject in hand lest some important relation might
escape attention. Merely to reach the equations (5) only the following steps
seem to be essential. Exactly one-third of the external initial stress in a
simple traction is employed in dilation, and of the remainder one half is
employed in each of the two shears. An ideal isotropic homogeneous body
is postulated as a material presenting equal resistance to strain in all direc-
tions, the two resistances to deformation and dilation being independent of
one another; the strains moreover are to be of the same order as the loads,
and continuous functions of them. In such a mass the simplest conceivable
strains, shear and dilation, can each involve only a single unit of resistance
or modulus. The principle of superposition is applicable to a simple trac-
tion applied axially to the unit cube however great the strain. It follows
that the length of the strained unit cube is a function of Q/E.

Together these propositions and assumptions give (1) and without further
assumptions the final equations sought (5) follow as a logical consequence.

Data from experiment. – No molecular theory of matter is essential to the
mechanical definition of an isotropic substance. An isotropic homogeneous
body is one a sphere of which behaves to external forces of given intensity
and direction in the same way however the sphere may be turned about its
center. There may be no real absolutely isotropic substance, and if there
were such a material we could not ascertain the fact, because observations
are always to some extent erroneous. It is substantially certain, however,
that there are bodies which approach complete symmetry so closely that
the divergence is insensible or uncertain. Experience therefore justifies the
assumption of an isotropic substance as an approximation closely repre-
senting real matter.

All the more recent careful experiments, such as those of Amagat and of
Voigt, indicate that Cauchy’s hypothesis, leading for isotropic substances
to the relation 3K = 5G, is very far from being fulfilled by all substances
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of sensibly symmetrical properties. This is substantially a demonstration
that the molecular constitution of matter is very complex,∗ but provided
that the mass considered is very large relatively to the distances between
molecules this complexity does not interfere with the hypothesis that pure
shear and simple dilation can each be characterized by one constant only.

The continuity of the load-strain function both for loads of the same sign
and from positive to negative loads is regarded as established by experiment
for many substances; and equally well established is the conclusion that for
small loads, load and strain are of the same order.† In other words Hooke’s
law is applicable to minute strains. Perfect elastic recovery is probably
never realized, but it is generally granted that some substances approach
this ideal under certain conditions so closely as to warrant speculation on
the subject.

These results appear to justify the assumptions made in the paragraph
headed “physical hypothesis” as representing the most important features
of numerous real substances. On the other hand viscosity, plasticity and
ductility have been entirely ignored; so that the results are applicable only
to a part of the phenomena of real matter.

Stress-strain function. – It is perfectly easy to pass from the load-strain
function to the stress-strain function for the ideal solid under discussion.
The area of the extended cube is its volume divided by its length of h3/α2h.
Hence if Q′ is the stress, or force per unit area, Q′h2/α2 = Q. Therefore
the stress-strain function is

(α2h)α2/h2 = eQ
′/E

an equation which though explicit in respect to stress and very compact is
not very manageable. If one writes α2h = y and h/α = x, the first member
of this equation becomes y1/x2 . Here x and y are the coördinates of the
corner of the strained cube.

Verbal statement of law. – If one writes α2h−1 = f , the last of equations
(5) gives

df = (1 + f) d[Q/E]

or the increment of strain is proportional to the increment of load and to
the length of the strained mass. This is of course the “compound interest
law” while Hooke’s law answers to simple interest.

∗Compare Lord Kelvin’s construction of the system of eight molecules in a substance
not fulfilling Poisson’s hypothesis in his Lectures on Molecular Dynamics.
†Compare B. de Saint-Venant in his edition of Navier’s Leçons. 1864. p. 14, and

Lord Kelvin, Encyc. Brit. 9th ed. Art. Elasticity, Section 37.
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Curves of absolute movement. – Let ν be Poisson’s ratio

or ν = 3K − 2G
2(3K +G) .

Let x0 y0 be the original positions of a particle in an unstrained bar, and
let xy be their positions after the bar has been extended by a load Q. Then
x = x0h/α and y = y0 α

2h. It also follows from (5) that α6G = h9K , whence
it may easily be shown that the path of the particle is represented by the
extraordinarily simple equation∗

x yν = x0 y
ν
0 . (6)

If one defines Poisson’s ratio as the ratio of lateral contraction to axial
elongation, its expression is by definition

ν = −dx
x

/dy
y

= −y
x

dx

dy
;

and this, when integrated on the hypothesis that ν is a constant, gives (6).
Thus for this ideal solid, the ratio of lateral contraction to linear elongation
is independent of the previous strain.

The equation (6) gives results which are undeniably correct in three spe-
cial cases. For an incompressible solid ν = 1/2, and (6) becomes x2y =
constant, or the volume remains unchanged. For a compressible solid of
infinite rigidity ν = −1 and (6) becomes x/y = constant so that only ra-
dial motion is possible. For linear elongation unaccompanied by lateral
extension ν = 0, and (6) gives x = constant.†

∗On Cauchy’s hypothesis31 ν = 1/4, which, introduced into this equation, implies
that the volume of the strained cube is the square root of its length.
†It seems possible to arrive at the conclusion that ν is constant by discussion of these

three cases. Let g and −f be small axial increments of strain due to a small increment
of traction applied to a mass already strained to any extent. Let it also be supposed
that the moduluses are in general functions of the coördinates, so that G and K are only
limiting values for no strain. Then, by the ordinary analysis of a small strain (Thomson
and Tait, section 682), one may at least write for an isotropic solid

g = P

(
1

3G [1 + f1(x)] + 1
9K [1 + f2(x)]

)
,

−f = P

(
1

6G [1 + f3(x)] −
1

9K [1 + f4(x)]

)
,

where f(x) is supposed to disappear with the strain. These values represent each element
of the axial extension and each element of the lateral contraction as wholly independent.
The value of ν is −f/g. Now for an incompressible substance, as mentioned in the text,
ν = 1/2 and the formula gives

ν = 1
2 ·

1 + f1(x)
1 + f3(x) , so that f1(x) = f3(x) .

Again for G =∞ only dilation is possible, or ν = −1, while the formula gives
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Argument from finite vibrations

Sonorous vibrations finite. — In the foregoing pages the attempt has
been made to show, that a certain definition of an isotropic solid in combi-
nation with purely kinematical propositions leads to a definite functional
expression for the load-strain curve. The definition of an isotropic solid
is that usual except among elasticians who adhere to the rariconstant hy-
pothesis, and it seems to be justified by experiments on extremely small
strains. But the adoption of this definition for bodies under finite strain
is, in a sense, extrapolation. It is therefore very desirable to consider the
phenomena of such strains as cannot properly be considered infinitesimal.

It is usual to treat the strains of tuning forks and other sonorous bodies
as so small that their squares may be neglected, and the constancy of pitch
of a tuning fork executing vibrations of this amplitude has been employed
by Sir George Stokes to extend the scope of Hooke’s law to moving systems.
It does not appear legitimate, however, to regard strongly excited sonorous
bodies as only infinitesimally strained. Tuning forks sounding loud notes
perform vibrations the amplitudes of which are sensible fractions of their
length. Now it is certain that no elastician would undertake to give results
for the strength of a bridge, or in other words he would deny that such
flexures were so small as to justify neglect of their squares.∗

Sonorous vibrations isochronous. — The vibrations of sonorous bodies
seem to be perfectly isochronous, irrespective of the amplitude of vibration.
Were this not the case, a tuning-fork strongly excited would of course sound
a different note from that which it would give when feebly excited. Neither

ν = − 1 · 1 + f2(x)
1 + f4(x) , so that f2(x) = f4(x).

For pure elongation the lateral contraction is by definition zero, or ν = 0, and the
formula is

ν = f3(x)− f4(x)
2[1 + f2(x)] + [1 + f1(x)] , whence f4(x) = f3(x) .

Hence all four functions of x are identical and ν reduces to its well known constant-form.
— With ν as a constant equation (6) follows from the definition of ν; and substituting
α2h = y/y0 and h/α = x/x0 gives α6G = h9K . If W = 6G log α one may then write

α = eW/6G ; h = eW/9K ; α2h = eW/E = 1 +W/E + . . . .

Here experiment shows that W may be regarded either as load or stress: and reasoning
indicates that it must be considered as load if E is determined for vanishing strain.
∗It is scarcely necessary to point out that many of the uses to which springs are put,

in watches for example, afford excellent evidence of the continuity of the load-strain
function for finite distortions.
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musicians nor physicists have detected any such variation of pitch which,
if sensible, would render music impossible. The fact that the most delicate
and accurate microchronometrical instruments yet devised divide time by
vibrations of forks, is an additional evidence that these are isochronous.
Lord Kelvin has even suggested the vibrations of a spring in a vacuum as
a standard of time almost certainly superior to the rotation of the earth,
which is supposed to lose a few seconds in the course of a century.∗

It is therefore a reasonable hypothesis in the light of experiment that the
load strain function is such as to permit of isochronous vibrations; but to
justify this conclusion from an experimental point of view, it must also be
shown that Hooke’s law is incompatible with sensibly isochronous vibration.
I shall therefore attempt to ascertain what load-strain function fulfills the
condition of perfect isochronism (barring changes of temperature) and then
to make a quantitative comparison between the results of the law deduced
and those derived from Hooke’s law.

Application of moment of momenta. — If the cube circumscribed about
the sphere of unit radius is stretched by opposing initial stresses and then
set free, it will vibrate; and the plane through the center of inertia perpen-
dicular to the direction of the stress will remain fixed. Each half of the mass
will execute longitudinal vibrations like those of a rod of unit length fixed
at one end, and it is known that the cross section of such a rod does not
affect the period of vibration, because each fiber parallel to the direction
of the external force will act like an independent rod. Hence attention may
be confined to the unit cube whose edges coincide with the positive axes
of coördinates, the origin of which is at the center of inertia of the entire
mass.

The principle of the moment of momenta is applicable to one portion of
the strain which this unit cube undergoes during vibration. The moment of
a force in the xy plane relatively to the axis of oz, being its intensity into its
distance from this axis, is the moment of the tangential component of the
force and is independent of the radial force component. Now dilation is due
to radial forces and neither pure dilation nor any strain involving dilation
can be determined by discussion of the moments of external forces. Hence
the principle of the moment of momenta applies only to the distortion of
the unit cube. This law as applied to the xy plane consequently governs
only the single shear in that plane.

The principle of the moment of momenta for the xy plane may be repre-
sented by the formula

∗Nat. Phil., sections 406 and 830.
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d

dt
Σm

(
x1
dy1

dt
− y1

dx1

dt

)
= Σ (x1Y − y1X) , (7)

where the second member expresses the moments of the external forces,
which are as usual measured per unit area, and x1 y1 are the coördinates
of any point the mass of which is m.

Reduction of equation (7). — Let x and y represent the position of the
corner of the strained cube; then the abscissa of the center of inertia of
the surface on which the stress Y acts is x/2, and since Y is uniform,
Σx1 Y = xY/2. Similarly Σy1X = yX/2. Now xY and yX may also be
regarded as the loads or initial stresses acting on the two surfaces of the
mass parallel respectively to ox and oy, and in a shear these two loads
are equal and opposite. Hence the second member of (7) reduces to xY .
It has been shown above that, if Q is an initial tractive load, Q/3 is the
common value of the two equal and opposite loads producing one shear.
But to obtain comparable results for shear dilation and extension, Q/3
must be measured in appropriate units of resistance. Since E is the unit of
resistance appropriate to extension, the separate parts of the force must be
multiplied by E and divided by resistances characteristic of the elementary
strains. Now

E

2G ·
Q

3 + E

2G ·
Q

3 + E

3K ·
Q

3 = Q ,

and it is evident that 2G/E is the unit in which Q/3 should be measured
for the single shear.∗ Thus the second member of (7) becomes EQ/6G.

This, then, is the value which the moment of the external forces assumes
when these hold the strained unit cube in equilibrium. This unit cube
forms an eighth part of the cube circumscribed about the sphere of unit
radius. When the entire mass is considered, the sum of all the moments of
the external forces is zero; since they are equal and opposite by pairs. If the
entire mass thus strained is suddenly released and allowed to perform free
vibrations, the sum of all the moments of momenta will of course remain
zero. On the other hand the quantity EQ/6G will remain constant. For
this load determines the limiting value of the strain during vibration and
is independent of the particular phase of vibration, or of the time counted
from the instant of release. It may be considered as the moment of the
forces which the other parts of the entire material system exert upon the
unit cube.

∗In this paper changes of temperature are expressly neglected. The changes of tem-
perature produced by varying stress in a body performing vibrations of small amplitude
can be allowed for by employing “kinetic” moduluses, which are a little greater than the
ordinary “static” moduluses. Thomson and Tait, Nat. Phil., section 687.
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Turning now to the first member of (7), values of x1 and y1 appropriate to
the case in hand must be substituted. Each point of the unit cube during
shear moves on an equilateral hyperbola, so that if x0, y0 are the original
coördinates of a point, x1 y1 = x0 y0. For the corner of the cube, whose
coördinates are x and y, the path is x y = 1. Now x1/x0 = x and y1/y0 = y
so that

x1 dy1 − y1 dx1 = x0 y0 (xdy − ydx)

If ψ is the area which the radius vector of the point x, y describes during
strain, it is well known that 2dψ = x dy − y dx and, since in this case
x y = 1, it is easy to see that

2dψ = 2d [log y] .

Since the quantities x and y refer to a single point, the sign of summation
does not affect them, and the first member of (7) may be written

d2 log y
dt2

Σ 2mx0 y0 .

Here one may write for m, ρdx0 dy0, where ρ is the constant density of the
body; and since the substance is uniform, summation may be performed
by double integration between the limits unity and zero. This reduces the
sum to ρ/2.

Value of α. Equation (7) thus becomes

d2 log y
dt2

= 2
ρ
· EQ6G

the second member being constant. Counting time from the instant of
release, or from the greatest strain, and integrating y between the limits
y = α and y = 1 gives

logα = EQ

6G ·
t2

ρ
.

It is now time to introduce the hypothesis that the vibrations are isochronous.
It is a well known result of theory and experiment that a rod of unit length
with one end fixed, executing its gravest longitudinal vibrations, performs
one complete vibration of small amplitude in a time expressed by 4

√
ρ/E.

In the equation stated above t expresses the time of one-quarter of a com-
plete vibration or the interval between the periods at which y = 1 and
y = α. Hence for a small vibration, t as here defined is

√
ρ/E. If the

vibrations are to be isochronous irrespective of amplitude, this must also
be the value of t in a finite vibration. Hence at once

α = eQ/6G = eψ ,

the same result reached in (5).
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This result may also be expressed geometrically. The quantity Q/6G is
simply the area swept by the radius vector of the point x0 = 1, y0 = 1. This
area is also the integral of ydx from x = 1/α to x = 1, or the integral of
xdy from y = α to y = 1. Thus ψ represents any one of three distinct areas.
In terms of hyperbolic functions, α = sinhψ + coshψ and the amount of
shear is 2 sinhψ.

It appears then that isochronous vibrations imply that in pure shear
the area swept by the radius vector of the corner of the cube, or logα,
is simply proportional to the load. The law proposed by Hooke implies
that the length α− 1 is proportional to the same load. The law commonly
accepted as Hooke’s makes α−1 proportional to the final stress, or (α−1)/α
proportional to the load.

Value of h. — Knowing the value of α, the value of h can be found
without resort to the extreme case G =∞. In the case of pure elongation,
unattended by lateral contraction, h = α and 9K = 6G. If α1 and h1 are
the ratios for this case,

α1 = eQ/9K ; h1 = eQ/9K ; α2
1 h1 = eQ/3K .

If three such elongations in the direction of the three axes are superimposed,
the volume becomes

(α2
1 h1)3 = eQ/K ,

and this represents a case of pure dilation without distortion. Here however
α1 = h1 and therefore the case of no distortion, irrespective of the value of
G, is given by

h9 = eQ/K .

The values of α and h derived from the hypothesis of isochronous vi-
brations when combined evidently give the same value of α2 h which was
obtained from kinematical considerations and the definition of isotropy in
equation (5).

Law of elastic force. — Let s be the distance of a particle on the upper
surface of a vibrating cube from its original position or

s = α2 h− 1 = eQ/E − 1 .

Then the elastic force per unit volume is minus Q, or

ρ
d2s

dt2
= −Q = −E log(s+ 1) = −Es+ Es2

2 − . . . .

When the excursions of the particle from the position of no strain are very
small, this becomes

ρ
d2s

dt2
= −Es

a familiar equation leading to simple harmonic motion.
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Limitation of harmonic vibrations. – While the theory of harmonic vi-
brations is applicable to very small vibrations on any theory in which the
load strain curve is represented as continuous and as making an angle with
the axes whose tangent is finite, it appears to be inapplicable in all cases
where the excursions are sufficient to display the curvature of the locus. If
the attraction toward the position of no strain in the direction of oy is pro-
portional to y−1, then in an isotropic mass there will also be an attraction
in the direction of ox which will be proportional to 1− x. The path of the
particle at the corner of a vibrating cube will therefore be the resultant of
two harmonic motions whose phases necessarily differ by exactly one-half
of the period of vibration, however great and however different the ampli-
tudes may be. This resultant is well known to be a straight line. Hence the
theory precludes all displacements excepting those which are so small that
the path of the corner of the cube may properly be regarded as rectilinear.
It seems needless to insist that such cannot be the case for finite strains in
general.

There is at least one elastic solid substance, vulcanized india rubber,
which can be stretched to several times its normal length without taking a
sensible permanent set. Now if the ideal elastic solid stretched to double its
original length (or more) were allowed to vibrate, the hypothesis of simple
harmonic vibration implies that this length would be reduced to zero (or
less) in the opposite phase of the vibration, a manifest absurdity.

Variation of pitch by Hooke’s law. – It remains to be shown that if the
commonly accepted law were applicable to finite strain, sonorous vibra-
tions would be accompanied by changes of pitch which could scarcely have
escaped detection by musicians and physicists. Experiments have shown
that the elongation of steel piano wire may be pushed to 0 · 0115 before
the limit of elasticity is reached.∗ Since virtuosos not infrequently break
strings in playing the piano, it is not unreasonable to assume that a one
per cent elongation is not seldom attained. In simple longitudinal vibration
the frequency of vibration is expressed by 1/4 of

√
E/ρ, and if according

to Hooke’s law, s = Q/E, where Q is the load, the number of vibrations,
v, may be written

v = 1
4

√
Q

sρ
.

If, on the other hand, according to the theory of this paper, log(1 + s) =
Q/E the number of vibrations, u, may be written

∗From experiments on English steel piano wire by Mr. D. McFarlane.
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u = 1
4

√
Q

ρ log(1 + s) , so that v
u

=
√

log(1 + s)
s

.

If s = 0 · 01, this expression gives v/u = 400/401.
It would appear then that on the hypothesis of Hooke, a note due to

longitudinal vibrations of about the pitch G3 would give a lower note when
sounding fortissimo than when sounding pianissimo, and that the difference
would be one vibration per second, or one in four hundred. But accord-
ing to Weber’s experiments experienced violin players distinguish musical
intervals in melodic progressions no greater than 1000/1001, while simul-
taneous tones can be still more sharply discriminated.∗ The value of s
corresponding to v/u = 1000/1001 is only 0 · 004, and consequently strains
reaching only about one-third of the elastic limit of piano wire should give
sensible variations of tone during the subsidence of vibrations if Hooke’s
law were correct.

Longitudinal vibrations are not so frequently employed to produce notes
as transverse vibrations. The quantity E/ρ enters also into the expression
for the frequency of transverse vibrations though in a more complex man-
ner. In the case of rods not stretched by external tension, the ratio v/u
would take the same form as in the last paragraph. One theory of the
tuning-fork represents it as a bar vibrating with two nodes, and therefore
as comparable to a rod resting on two supports.

A pair of chronometrical tuning-forks could be adjusted to determine
much smaller differences in the rate of vibration than 1000/1001; for the
relative rate of the forks having been determined on a chronographic cylin-
der for a certain small amplitude, one fork could be more strongly excited
than the other and a fresh comparison made. The only influences tending
to detract from the delicacy of this method of determining whether change
of amplitude alters pitch, would seem to be the difficulty of sustaining
a constant amplitude and the difference of temperature in the two forks
arising from the dissipative action of viscosity.

Conclusion. – The hypothesis that an elastic isotropic solid of constant
temperature is such as to give absolutely isochronous longitudinal vibra-
tions leads to the conclusion log(α2 h) = Q/E without any apparent alter-
native. Comparison with the results of Hooke’s law shows that, if this law
were applicable to finite vibrations, easily sensible changes of pitch would
occur during the subsidence of vibrations in strongly excited sonorous bod-
ies. – The logarithmic law is the same deduced in the earlier part of the
paper from the ordinary definition of the ideal elastic isotropic solid, based

∗Helmholtz, Tonempfindungen, page 491.
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upon experiments on very smalls strains, in combination with purely kine-
matical considerations. – There can be no doubt that the law here proposed
would simplify a great number of problems in the dynamics of the ether
and of sound, as well as questions arising in engineering and in geology,
because of the simple and plastic nature of the logarithmic function. In the
present state of knowledge, the premises of the argument can scarcely be
denied; whether the deductions have been logically made must be decided
finally by better judges than myself.

Washington, D. C., July, 1893.



Incorporated changes to the original text

Young’s modulus M −→ E

variable Young’s modulus µ −→ E∗

Poisson’s number σ −→ ν

modulus of distortion (shear modulus) n −→ G

modulus of cubical dilation (bulk modulus) k −→ K

Euler’s number ε −→ e = 2.718 . . .

Variables ν, κ −→ ξ, η

natural logarithm ln −→ log

the direction cosines of a plane λ, µ, ν −→ n1, n2, n3

the amounts of traction R,N,T −→ R,N , T

the principle stresses N1, N2, N3 −→ σ1, σ2, σ3

hyperbolic functions Sin, Cos −→ sinh, cosh

axial increment of strain e −→ g

formula for Poisson’s number ν = 3K−2G
2(3K+2G)

corrected−−−−−−→ 3K−2G
2(3K+G)

on page 348
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