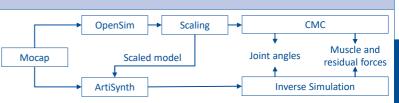
Developing and Validating an ArtiSynth Multibody Model

* Universität Duisburg-Essen, Chair of Mechanics and Robotics, Germany, alexander.denk@uni-due.de

** University of British Columbia, Department of Electrical and Computer Engineering, Canada

Offen im Denker

Introduction


- Studying effects of gait impairments on tissue level requires coupling multibody (MB) and finite element (FE) simulation analyses.
- Using existing multibody models as foundation in new frameworks for coupled simulations (like ArtiSynth) can facilitate research.
- ArtiSynth has shown to reproduce accurate IK results with imported OpenSim models, but is this still the case, when driven by muscles?

Conclusion

- · ArtiSynth calculates accurate kinematics, but solves for different muscle forces
- Force differences mostly occur during preswing to midswing (50-87% of the gait cycle)
- → Producing reasonable and well fitting motions during forward dynamics is promising, further research is needed

Methods

- Mocap data from 26 participants and gait2392 based OpenSim models were imported into ArtiSynth and OpenSim.
- Model output from ArtiSynth was compared to CMC computations in OpenSim 4.5 using Statistical Parametric Mapping (SPM).

Results

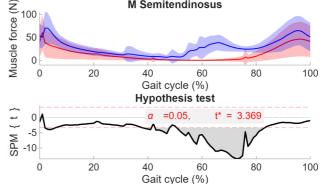
ArtiSynth

+-1SD OpenSim +-1SD

100

Joint angles

 Good agreement of joint angles (significance thresholds for two tailed t-tests are between 2.484 and 3.477).



Joint angle (SPM)	Suprathresholds	Gaitcycle and p-Values (SPM)
Pelvic Tilt	No	-
Pelvic Obliquity	No	-
Pelvic Rotation	No	-
Hip Flexion	No	-
Hip Adduction	No	-
Hip Rotation	No	-
Knee Flexion	Yes	0-4% (p = 0.042)
Ankle Flexion	Yes	1-4% (p = 0.006)

Muscle forces

• Significant difference of muscle forces (significance thresholds for two tailed t-tests are between 3.140 and 3.369).

M Semitendinosus

Muscle force (SPM)	Suprathresholds	Gaitcycle and p-Values (SPM)			
M Rect fem	Yes	0-22% 61-69% 74-87%	(p < 0.001) (p = 0.002) (p < 0.001)		
M Semiten	Yes	2-5% 38-41% 43-48% 51-83%	(p = 0.013) (p = 0.019) (p = 0.004) (p < 0.001)		
M Bic Fem long	Yes	22-81%	(p = 0.022)		
M Gas med	Yes	17-18% 21-81% 83% 85% 87%	(p = 0.022) (p < 0.001) (p = 0.040) (p = 0.045) (p = 0.026)		
		0.,,	(p 0.020)		