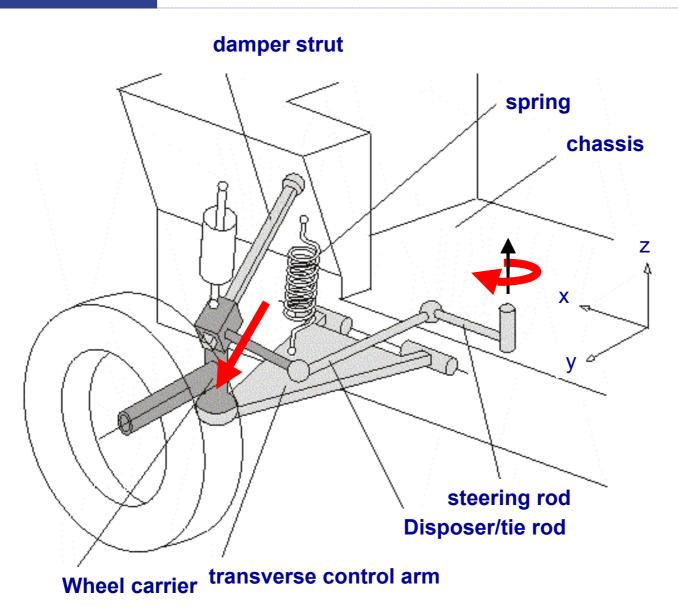
Chapter 3: Kinematics and Dynamics of Multibody Systems

- 3.1 Fundamentals of Kinematics
- 3.2 Setting up the equations of motion for multibody-systems II

3.1 Fundamentals of Kinematics

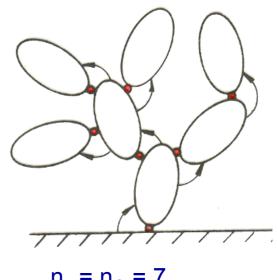


Topological basic principles

- 1. Open kinematical chain ("tree-structure")
 - n_B bodies (without reference/inertial body)
 - n_G joints
 - The route between two bodies is distinct each body has exactly one predecessor

Hence it applies: $n_G = n_B$

Each joint has a dedicated body and connects the body with its predecessor



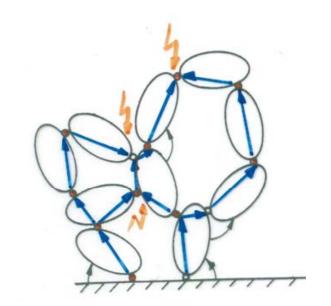
$$n_B = n_G = 7$$

Topological basic principles

2. Closed kinematical chain ("loop-structure")

- n_B bodies (without reference/inertial body)
- **n**_G joints
- each loop requires one extra joint

Hence: $n_G = n_B + n_L$



$$n_B = 10$$

$$n_{\rm G} = 13$$

$$n_L = 3$$

Basic notation and coherences

f_{Gi} - degree of freedom of joint i

f_G - Sum of all degree of freedom of joints

f_{1,i} - degree of freedom of loop i

Degree of freedom (Laufgrad) during spatial motion (Grübler; Kutzbach)

$$f = 6 n_{B} - \sum_{i=1}^{n_{G}} (6 - f_{Gi})$$

$$n_{L} = n_{G} - n_{B}$$

$$f = \sum_{i=1}^{n_{G}} f_{Gi} - 6 n_{L}$$

$$= f_{G} - 6 n_{L}$$

Principles of assembling kinematical chains with closed loops

1. "sparse" – method (cutting off at all bodies)

principle: "disconnecting" all joints

constraints: concurrence of all joint parameters

2. "vector-loop" – method (disconnecting loops)

<u>principle:</u> "disconnecting" only one joint per loop

constraints: closure conditions of the loops

3. "topological" – methods (loops as transference elements)

<u>principle:</u> kinematical loops are prepared as kinematical

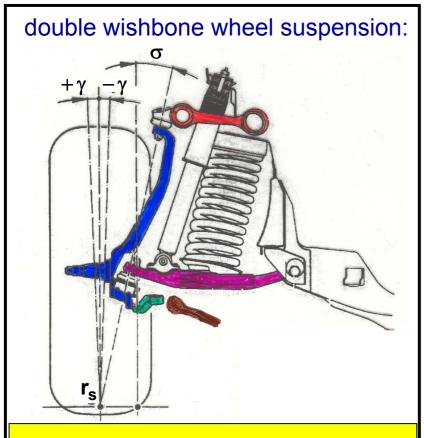
transfer elements (kinematical transformators)

constraints: - transfer equations in the loop (nonlinear and local)

- coupler equations between the loops (linear and global)

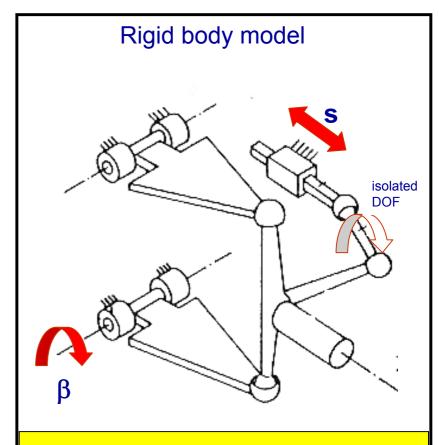
3.1 Fundamental Procedures of Kinematics II

Illustration with the example of a double wishbone suspension (front wheel suspension):



Multi-body system

- 5 bodies
- 7 joints
- 2 kinematical loops



System degrees of freedom

- compression (angle β)
- steering (displacement s)
- isolated degree of freedom ignored

3.1 Fundamentals of Kinematics

System overview

$$n_G = 7$$

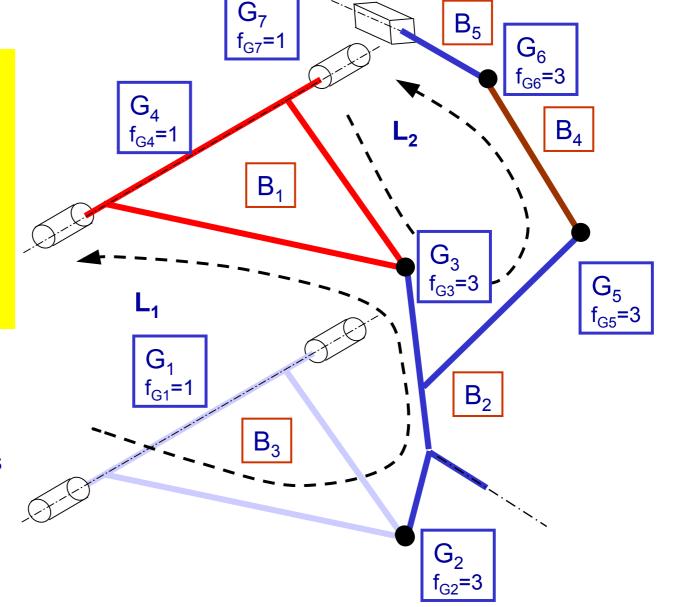
$$n_B = 5$$

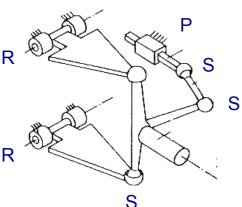
$$n_{L} = n_{G} - n_{B} = 2$$

$$f = 6 n_B - \sum_{i=1}^{n_G} (6 - f_{Gi})$$

$$=6\cdot 5-(3\cdot 5+4\cdot 3)$$

$$=30-27=3$$





1. "sparse" – method (cutting of all bodies)

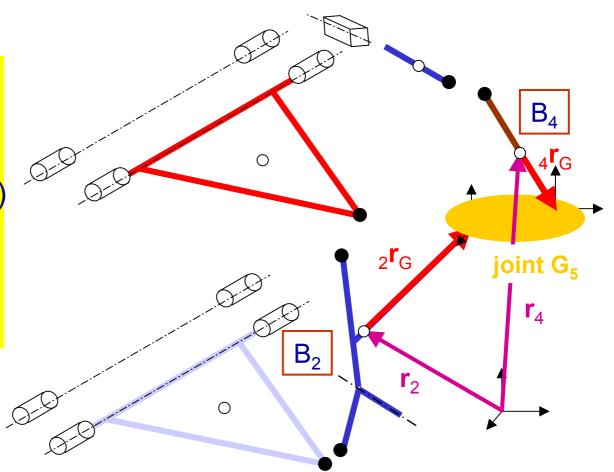
Equation of constraints

e.g. for G₅:

$$\mathbf{r}_{2} + \mathbf{r}_{G}(\mathbf{w}_{i}) = \mathbf{r}_{4} + \mathbf{r}_{G}(\mathbf{w}_{i})$$

with

$$\mathbf{w}_{i} = \begin{bmatrix} \mathbf{x}_{i} & \mathbf{y}_{i} & \mathbf{z}_{i} & \mathbf{\phi}_{i} & \mathbf{\psi}_{i} & \mathbf{\theta}_{i} \end{bmatrix}^{\mathsf{T}}$$



3.1 Fundamentals of Kinematics

Double wishbone wheel suspension with cut joints:

a) "sparse" – method (cutting off all bodies)
5 bodies
7 joints

assembly: each joint has $(6 - f_{G_i})$ constraints | degrees of freedom of joint

equations of constraints are identified from the closure conditions for position and orientation:

$$\underline{\underline{r}_{G}}(\underline{\underline{r}_{G}}) \stackrel{!}{=} \underline{\underline{r}_{G}}(\underline{\underline{r}_{G}})$$

$$\underline{T_{G}}(\overline{\underline{r}_{G}}) \stackrel{!}{=} \underline{T_{G}}(\overline{\underline{r}_{G}})$$

11

2. "vector-loop" – Methods (disconnecting loops)

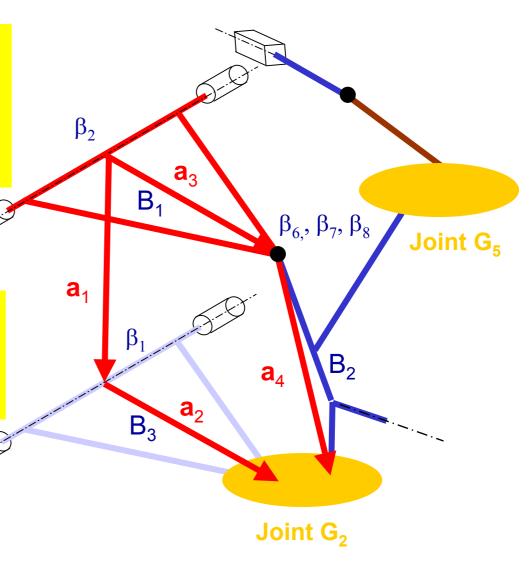
The relative motion in the joints is described through

$$f_G = \sum_{i=1}^{n_g} f_{G_i}$$
 Jo int variables β_i , s_i

Closure Equations

e.g. for G₂:

$$a_1 + a_2(\beta_1) = a_3(\beta_2) + a_4(\beta_6, \beta_7, \beta_8)$$



Double Wishbone Suspension with disjointed loops

"vector-loop" – Method (disconnecting loops)

5 Bodies
7 Joints

Number of independant loops:
$$n_L = n_G - n_B = 7 - 5 = 2$$

Joints G_2 and G_5 are disconnected

Assembly: each Joint has $(6 - f_{G_i})$ Constraints **Degrees of freedom of Joint**

Constraint equations from closure conditions for position and orientation:

$$\sum_{i} \underline{a}_{i} \stackrel{!}{=} \underline{0}$$

$$\prod_{i} \mathbf{T}_{i} \stackrel{!}{=} \underline{I} \longrightarrow \mathbf{Identitymatrix}$$

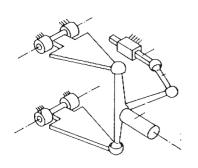
"topologische" – Methode (Loops are considered as tranmission elements)

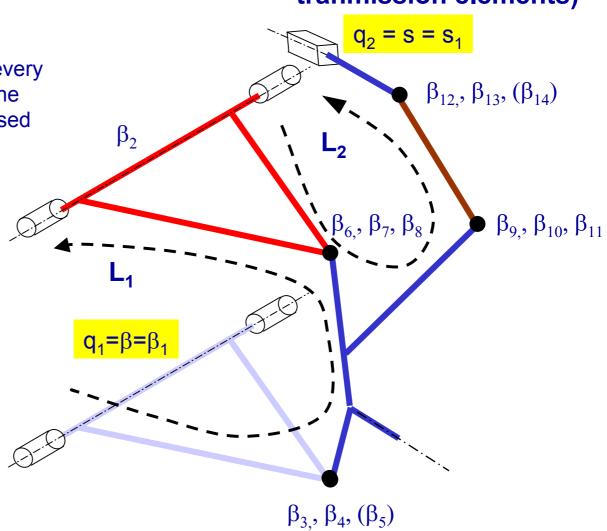
Aim:

to calculate the motion of every body of the system using the input parameters (generalised coordinates)

$$\beta_i = \beta_i(q_1, q_2), i=1...14$$

 $s_i = s_i(q_2), i=1$





Double Wishbone Suspension with transmission elements

"topologische" Method (loops as transmission elements)

Number of independant loops:

7 Joints
$$\int n_L = n_G - n_B = 7 - 5 = 2$$

Assembly:

each loop is a kinematic transmission element

(kinematic Transformator)

Constraint equations:

in general 6 non-linear contraint equations - local:

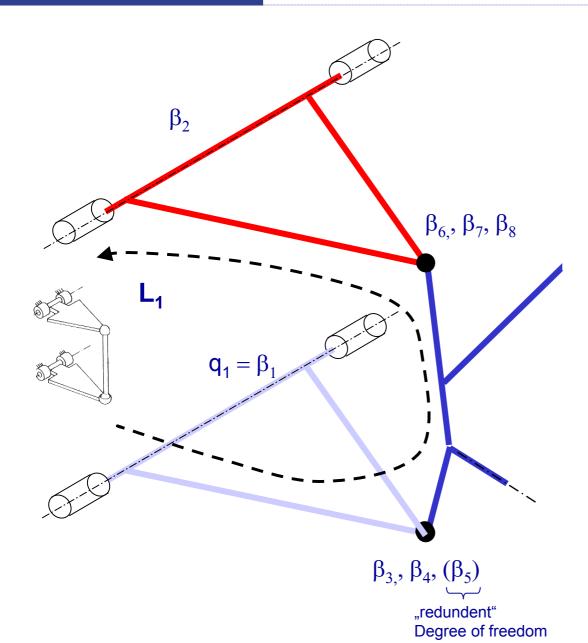
per loop

- global: linear coupling equations between the loops;

Number depends on the order of the coupling

between the loops

3.1 Fundamentals of Kinematics



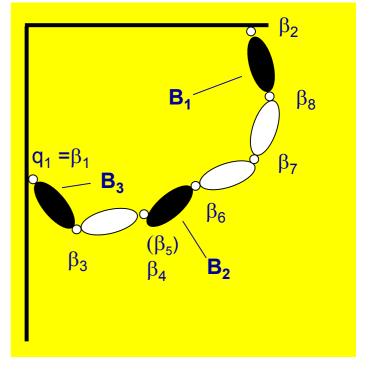
loop 1

$$f_G = 8, n_L = 1$$

$$f_{L1} = f_G - 6n_L = 8 - 6 = 2$$

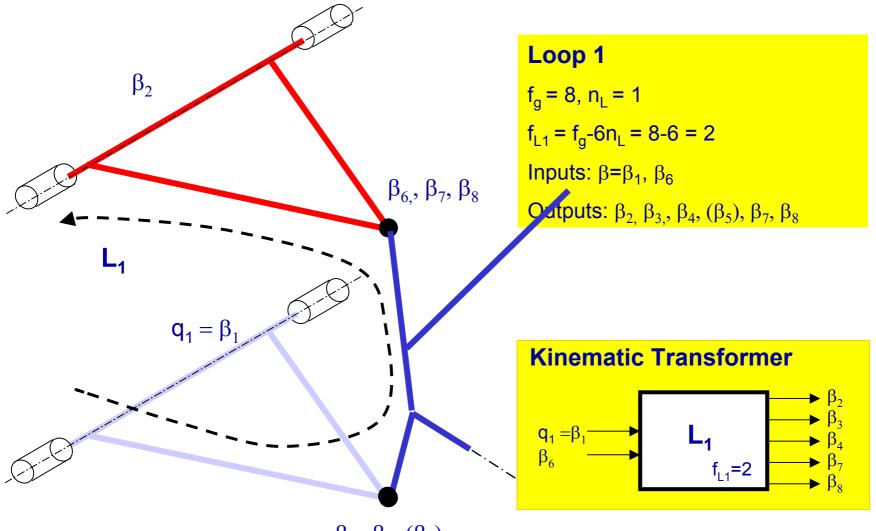
Inputs: $\beta = \beta_1$, β_6

Outputs: β_2 , β_3 , β_4 , (β_5) , β_7 , β_8



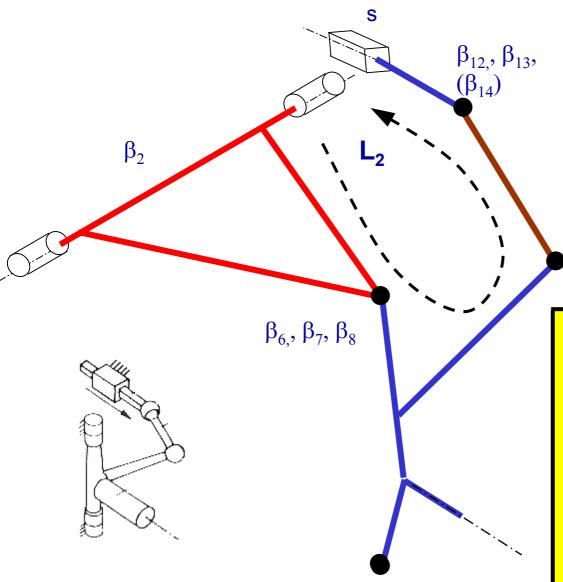
$\begin{smallmatrix} \mathbf{D} & \mathbf{U} & \mathbf{I} & \mathbf{S} & \mathbf{B} & \mathbf{U} & \mathbf{R} & \mathbf{G} \\ \mathbf{E} & \mathbf{S} & \mathbf{S} & \mathbf{E} & \mathbf{N} \\ \end{smallmatrix}$

3.1 Fundamentals of Kinematics



$$\beta_{3,},\,\beta_{4},\,(\beta_{5})$$
 "redundant" Degree of freedom

3.1 Fundamentals of Kinematics



Loop 2

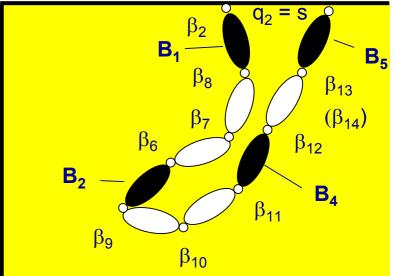
$$f_G = 11, n_L = 1$$

$$f_{L2} = f_G - 6n_L = 11 - 6 = 5$$

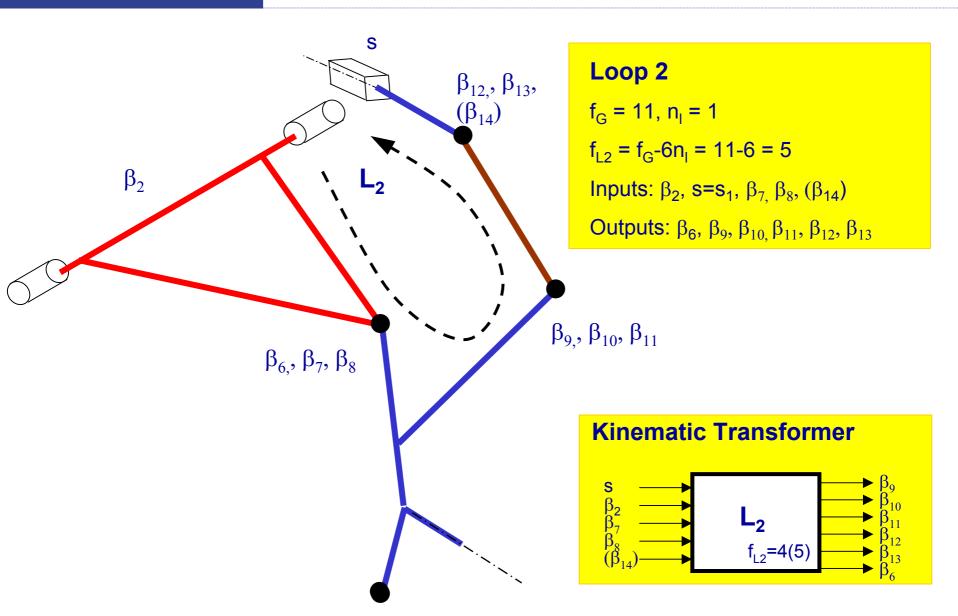
Inputs: β_2 , s=s₁, β_7 , β_8 , (β_{14})

Outputs: β_6 , β_9 , β_{10} , β_{11} , β_{12} , β_{13}

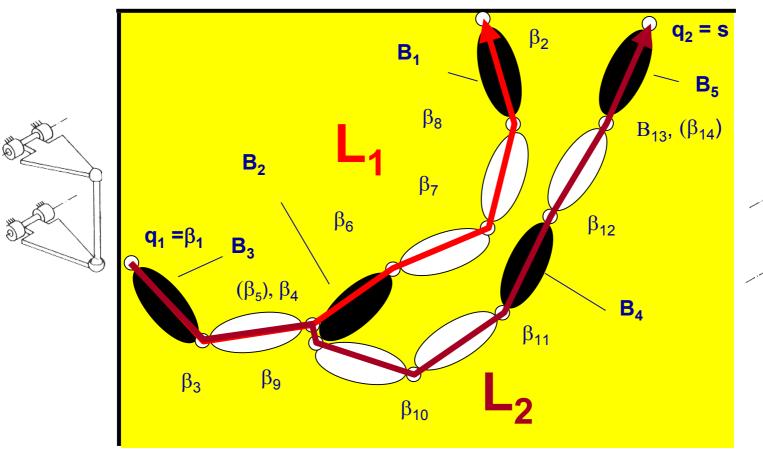
$$\beta_{9,}, \beta_{10}, \beta_{11}$$

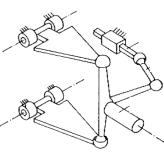


3.1 Fundamentals of Kinematics

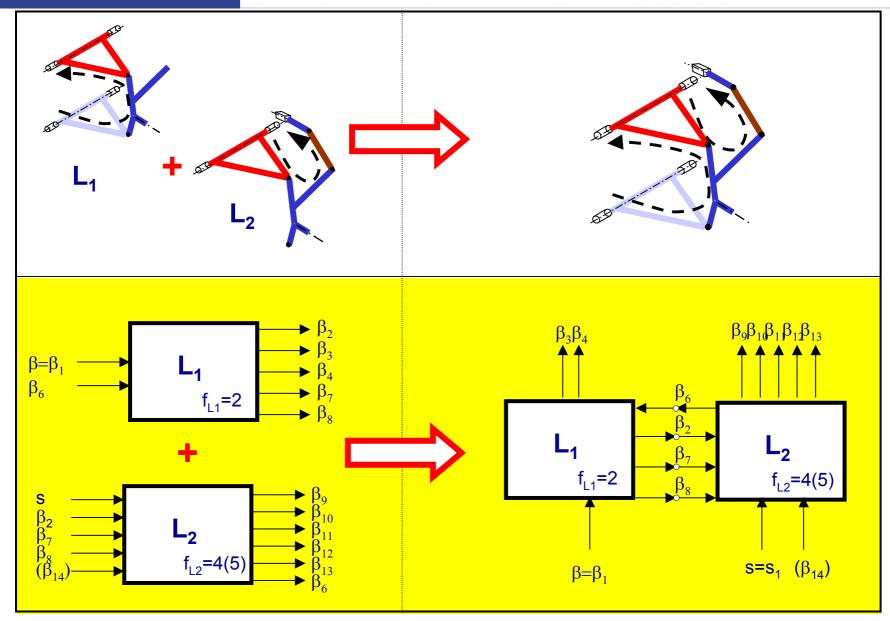


Topological description of the double wishbone suspension





3.1 Fundamentals of Kinematics

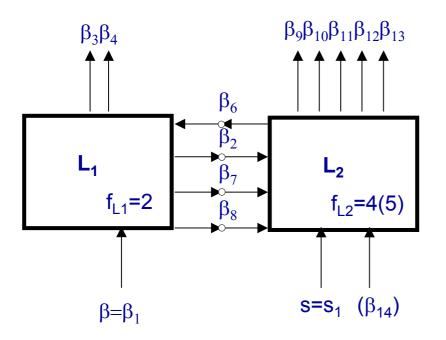


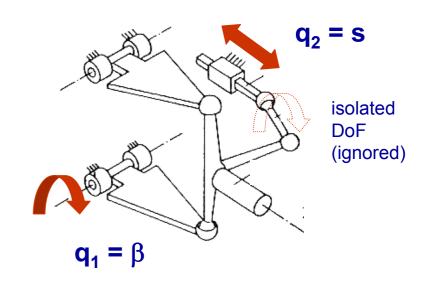
DUISBURG

3.1 Fundamentals of Kinematics

Kinematic Net

(without isolated degree of fredom)





2 kinematic Loops with (2+4)
loop degrees of freedom 6
-4 Coupling equations between
the loops -4
System degrees of freedom 2

Vehicle as a normal Multi-body system

Is modelled as a complex multi-body system with kinematic loops, consisting of rigid bodies. To begin with elastic characteristics are modelled as concentrated elasticities.

In the case of holonomic Constraints: Normal/Usual Multi-body systems

The equations of motion in minimal coordinates for a system with f degrees of freedom. In the general form:

$$M(q)\ddot{q} + b(q,\dot{q}) = Q(q,\dot{q},t)$$

- q (f x 1) Vector of general coordinates
- M (f x f) Mass matrix (symmetric)
- b (f x 1) Vector of general centrifugal and gyro Forces
- Q (f x 1) Vector of general applied forces

Specialities in Multi-loop Multi-body systems and Mechanisms

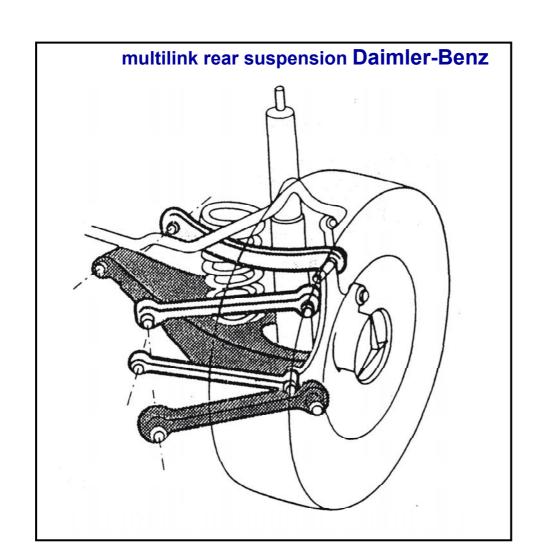
Because of the kinematic loops, there are comparatively less degrees of freedom in a System with more number of bodies and constraints.

Setting up complex equations of motion:

- manually (very strenuous!)
- numerically and/or using symbols with the help of computers

Example: The Five-point Wheel Suspension (Spatial)

Equations of motion for the spring compression (f = 1 Degree of freedom



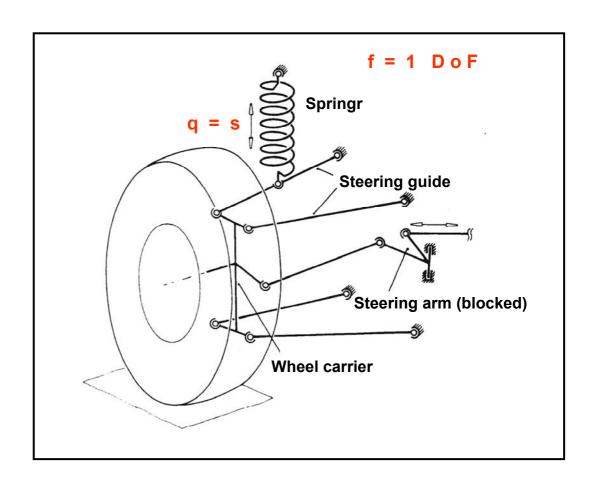
Example: The Five-point Wheel Suspension (Spatial)

MECHATRONIK

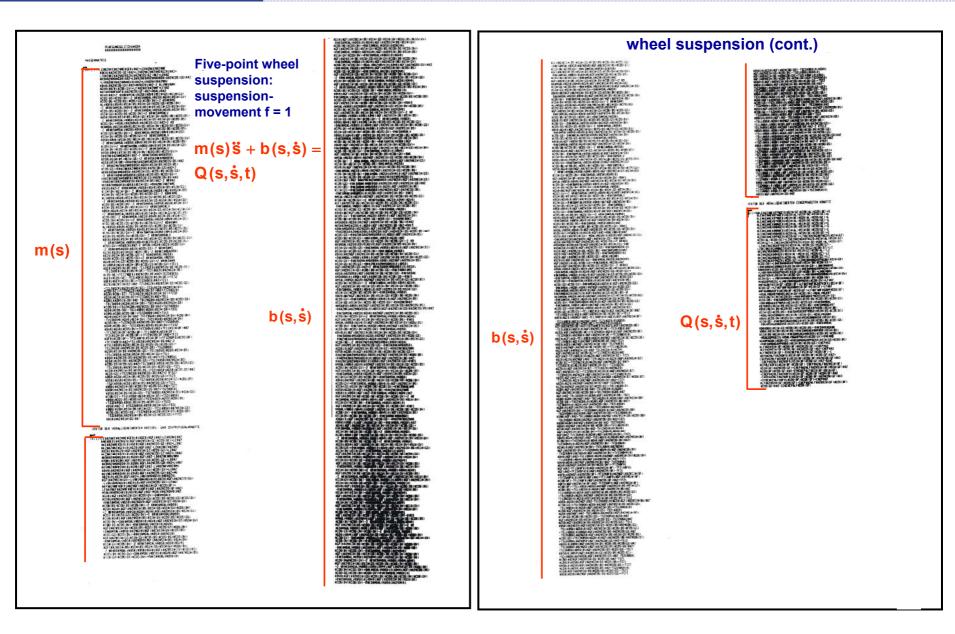
Equations of motion in the form

$$m(s)\ddot{s} + b(s,\dot{s}) = Q(s,\dot{s},t)$$

Using symbols with Programmsystem NEWEUL



3.2 Equations of motion for Multi-Body systems



3.2 Equations of motion for Multi-Body systems

Methods to set up the equations of motion for multi-body systems and mechanisms

Holonom Systems ≡ considered as normal Multi-body systems

n Bodies r Constraints

f = 6 n - r Degrees of freedom

- Principle of linear momentum and Principle of conservation of angular momentum (Newton-Euler-Equation) →
 Number of equations of motion: 6 n > f (f)
- Lagrange Equations of first order (Method 1)
 Number of equations of motion: 6 n > f
- Lagrange Equations of scond order (Method 2)
 Number of equations of motion:
- d`Alembert's Principle

Number of equations of motion:

6 n (Lagrange Multiplicators)

f (Minimum coordinates)

Methods to set up the equations of motion

1. Method:

Based on the Fundamental equations of dynamics

$$\sum_{i=1}^{N} (\underline{F}_i - m_i \underline{a}_i) \cdot \delta \underline{r}_i = 0 \qquad \text{(} \underline{F}_i \text{ - Applied forces)}$$

Will be then applied in the LAGRANGE equations

first order for point masses:

Given is a system with

Mass points

 \mathbf{m}_{i} , $\underline{\mathbf{r}}_{i}$,

geometric Constraints $f_{\alpha}(t; r_1,...,r_N) = 0; \alpha = 1,...,g$

kinematic Constraints

$$\phi_{\beta} \equiv \sum_{i=1}^{N} \underline{\ell}_{i\beta} \ (t; \underline{r}_{1}, \ldots, \underline{r}_{N}) \cdot \underline{v}_{i} \ + \ d_{\beta} \ (t; \underline{r}_{1}, \ldots, \underline{r}_{N}) = 0 \ ;$$

Hence the System has f = 3 N - g - k Degrees of freedom

By applying the LAGRANGE Multiplicators λ_{α} , μ_{β}

We get the LAGRANGE Equations of first order:

$$\begin{split} m_{i}\,\underline{a}_{i} &= \underline{F}_{i} + \sum_{\alpha=1}^{g} \lambda_{\alpha} \, \frac{\partial \, f_{\alpha}}{\partial \, \underline{r}_{i}} \, + \, \sum_{\beta=1}^{k} \mu_{\beta} \, \underline{\ell}_{i\beta} & ; \, i = 1, \dots, N \\ f_{\alpha}\,\, (t;\,\underline{r}_{1},\, \dots,\, \underline{r}_{N}\,) &= 0 & ; \, \alpha = 1, \dots, g \end{split}$$

$$f_{\alpha}(t;\underline{r}_{1},...,\underline{r}_{N})=0$$

$$; \alpha = 1,...,c$$

$$b_0 \equiv \sum_{i=0}^{N} \ell_{i0} \cdot v_i + d_0 = 0$$

(3N+g+k) Equations for the (3N+g+k) Unknowns

$$\underbrace{x_i,y_i,z_i}_{3N}, \ \lambda_\alpha, \ \mu_\beta \\ g \quad k$$

Advantages:- applicable for <u>holonomic</u> and <u>non-holonomic</u> systems

- Equations can be easily set up
- Reaction forces can be calculated directly

Disadvantages:- more equations than degrees of freedom

- equations are numerically unstable

Equations for rigid body systems are analogous!

2. Method:

By introducing f independant general coordinates (corresponding to the number of degrees of freedom)

$$q_1, q_2, ..., q_f$$

One can obtain from the fundamental dynamic equations

The LAGRANGE equations of second order for holonom Systems:

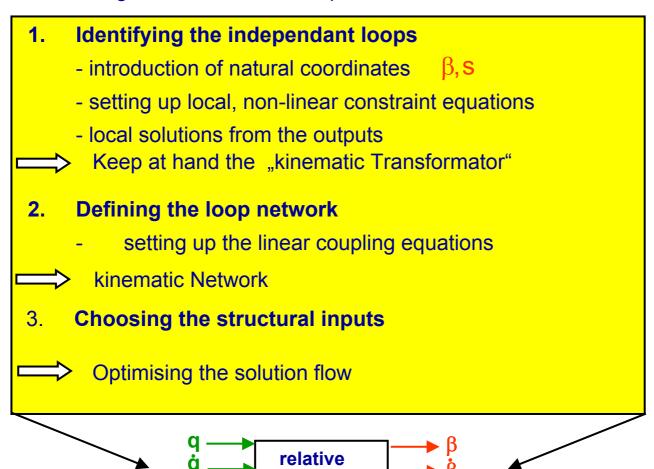
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = Q_{j} \quad ; \quad j = 1, ..., f$$

3.2 Equations of motion for Multi-Body systems

3. Method:

Equations of motion obtained from the d'Alembert's Principle with the help of kinematic Differentials:

Systematic procedure to solve the constraint equations making use of the solved loop kinematics



Kinematics

Forward kinematics (recursive)

Absolute coordinates, Body B

$$\mathbf{W}_{i} = \left[\mathbf{X}_{i}, \mathbf{y}_{i}, \mathbf{Z}_{i}, \mathbf{\varphi}_{i}, \mathbf{\psi}_{i}, \mathbf{\theta}_{i} \right]$$

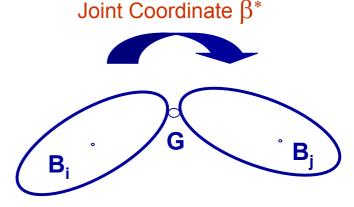
Position:

$$W_{i} = W_{i} (W_{1}, W_{2}, ..., W_{i}, \beta, t)$$

Velocity:

$$\dot{W}_{i} = \dot{W}_{i} (W_{1}, \ldots, W_{i}; \dot{W}_{1}, \ldots, \dot{W}_{i}; \beta, \dot{\beta}; t)$$

Acceleration:



•It represents here translation (s) and

rotation (β)

$$\begin{array}{c|c} \beta \\ \\ \dot{\beta} \\ \\ \ddot{\beta} \end{array} \begin{array}{c} \text{absolute} \\ \\ \text{Kinematics} \\ \end{array} \begin{array}{c} \forall \\ \dot{\forall} \\ \\ \ddot{\forall} \end{array}$$

Kinematics of two bodies joined together with a joint

Parameters of Motion of B_i are known Parameters of motion of B_J are required

Rotational transition from B_i to B_i

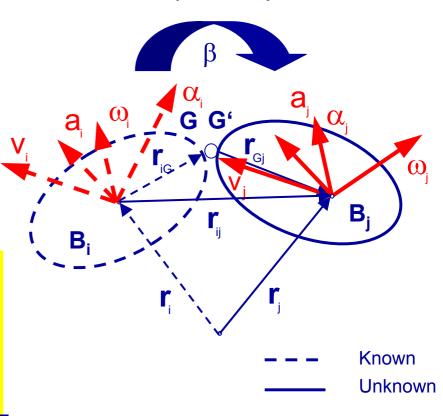
$$\mathbf{\omega}_{i} = \mathbf{\omega}_{i} + \mathbf{\omega}_{i}$$

$$\mathbf{\alpha}_{i} = \mathbf{\alpha}_{i} + \mathbf{\omega}_{i} + \mathbf{\omega}_{i}$$

Translatory transition from B_i to B_i

$$\begin{split} & \boldsymbol{r}_{_{j}} = \boldsymbol{r}_{_{i}} + \boldsymbol{r}_{_{ij}} \\ & \boldsymbol{v}_{_{j}} = \boldsymbol{v}_{_{i}} + \boldsymbol{\omega}_{_{i}} \times \boldsymbol{r}_{_{ij}} + \boldsymbol{v}_{_{j}} \\ & \boldsymbol{a}_{_{j}} = \boldsymbol{a}_{_{i}} + \boldsymbol{\alpha}_{_{i}} \times \boldsymbol{r}_{_{ij}} + \boldsymbol{2}\boldsymbol{\omega}_{_{i}} \times \boldsymbol{v}_{_{j}} + \boldsymbol{\omega}_{_{i}} \times \boldsymbol{(\omega}_{_{i}} \times \boldsymbol{r}_{_{ij}}) + \boldsymbol{a}_{_{j}} \end{split}$$

Elementary standard joint



Only one dimensional joints are allowed. In the case of multi dimensional joints, they have to be represented with single dimensional joints with virtual bodies inbetween them.

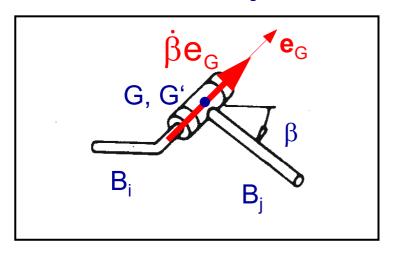
Used representaions

r _i , r _j	Position vector to the reference/considered point,
v_i, v_j	Absolute velocity of the reference/considered point,
a _i , a _j	Absolute acceleration of the reference/considered point,
ω_i, ω_j	Absolute angular velocity of the body
α_i , α_j	Absolute angular acceleration of the body,
r _{ij}	connecting vector between the reference/considered points,
_i v _j , _i a _j	velocity / Acceleration of B _j relative to B _i ,
$_{i}\omega_{j},\ _{i}\alpha_{j}$	Angular velocity and angular acceleration of B_{j} relative $B_{i}.$

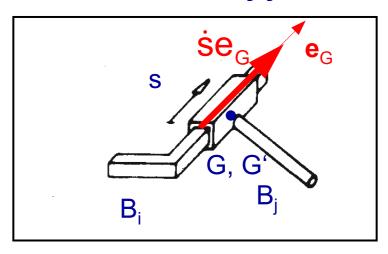
MECHATRONIK

3.2 Equations of motion for Multi-Body systems

Rotational joint



Translatory joint



$$\begin{split} & \mathbf{r}_{ij} = \mathbf{r}_{iG} + \mathbf{r}_{G'j} \\ & _{i} \mathbf{V}_{j} = _{G} \boldsymbol{\omega}_{G'} \times \mathbf{r}_{G'j} \\ & _{i} \mathbf{a}_{j} = _{G} \boldsymbol{\alpha}_{G'} \times \mathbf{r}_{G'j} + _{G} \boldsymbol{\omega}_{G'} \times (_{G} \boldsymbol{\omega}_{G'} \times \mathbf{r}_{G'j}) \\ & _{i} \boldsymbol{\omega}_{j} = _{G} \boldsymbol{\omega}_{G'} \\ & _{i} \boldsymbol{\alpha}_{j} = _{G} \boldsymbol{\alpha}_{G'} \\ & _{G} \boldsymbol{\omega}_{G'} = \dot{\boldsymbol{\beta}} \boldsymbol{e}_{G} \\ & _{G} \boldsymbol{\alpha}_{G'} = \ddot{\boldsymbol{\beta}} \boldsymbol{e}_{G} \end{split}$$

$$\mathbf{r}_{ij} = \mathbf{r}_{iG} + \mathbf{r}_{G'j}$$
 $\mathbf{v}_{j} =_{G} \mathbf{v}_{G'}$
 $\mathbf{a}_{j} =_{G} \mathbf{a}_{G'}$
 $\mathbf{\omega}_{j} = \mathbf{0}$
 $\mathbf{\alpha}_{j} = \mathbf{0}$
 $\mathbf{v}_{G'} = \dot{\mathbf{s}} \mathbf{e}_{G}$
 $\mathbf{a}_{G'} = \ddot{\mathbf{s}} \mathbf{e}_{G}$

Translation

$$\begin{split} & v_{j} = v_{i} + \omega_{i} \times r_{ij} +_{i} v_{j} = v_{i} + \omega_{i} \times (r_{iG} + r_{G'j}) +_{G} v_{G'} \\ & = v_{i} + \omega_{i} \times (r_{iG} + r_{G'j}) + \dot{s}e_{G} \\ & a_{j} = a_{i} + \alpha_{i} \times r_{ij} + 2\omega_{i} \times_{i} v_{j} + \omega_{i} \times (\omega_{i} \times r_{ij}) +_{i} a_{j} = \\ & = a_{i} + \alpha_{i} \times (r_{iG} + r_{G'j}) + 2\omega_{i} \times_{G} v_{G'} + \omega_{i} \times (\omega_{i} \times (r_{iG} + r_{G'j})) +_{G} a_{G'} = \\ & = a_{i} + \alpha_{i} \times (r_{iG} + r_{G'j}) + 2\omega_{i} \times \dot{s}e_{G} + \omega_{i} \times (\omega_{i} \times (r_{iG} + r_{G'j})) + \ddot{s}e_{G} \end{split}$$

Rotation

$$\omega_{j} = \omega_{i} +_{j} \omega_{i} = \omega_{i} +_{G} \omega_{G'} = \omega_{i} + \beta \mathbf{e}_{G}$$

$$\omega_{j} = \alpha_{i} + \omega_{i} \times_{i} \omega_{j} +_{i} \alpha_{j} = \alpha_{i} + \omega_{i} \times_{G} \omega_{G'} +_{G} \alpha_{G'} =$$

$$= \alpha_{i} + \omega_{i} \times \dot{\beta} \mathbf{e}_{G} + \ddot{\beta} \mathbf{e}_{G}$$

r_{iG} Vektor from reference point B_i to the joint point G,

r_{G'j} Vektor vom joint point G' to the reference point B_j,

 $_{G}v_{G'} = \dot{s}e_{G}$ Velocity of G' relative to G (translatory Joint),

MECHATRONIK

 $_{G}a_{G'} = \ddot{s}e_{G}$ Acceleration of G' relative to G (translatory joint),

 $_{G}\omega_{G'} = \dot{\beta}e_{G}$ Angular velocity of G' relative to G (rotational joint),

 $_{\rm G}\alpha_{\rm G'}=\ddot{\beta}e_{\rm G}$ Angular acceleration of G'relative to G (rotational joint).

$${}^{i}\underline{\mathbf{x}} = {}^{i}\underline{\mathbf{T}}_{j}{}^{j}\underline{\mathbf{x}} \tag{3.23}$$

$${}^{j}\underline{\mathbf{x}} = {}^{j}\underline{\mathbf{T}}_{i}{}^{i}\underline{\mathbf{x}} = {}^{i}\underline{\mathbf{T}}_{i}{}^{\mathsf{T}i}\underline{\mathbf{x}} \tag{3.24}$$

$${}^{i}\underline{T}_{j} = \begin{bmatrix} i\underline{e}_{xj} & i\underline{e}_{yj} & i\underline{e}_{zj} \end{bmatrix} = \begin{bmatrix} \underline{j}\underline{e}_{xi}^{T} \\ \underline{j}\underline{e}_{yi}^{T} \\ \underline{j}\underline{e}_{zi}^{T} \end{bmatrix}$$
(3.25)

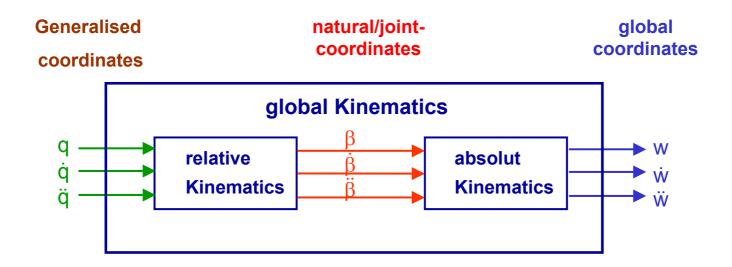
$${}^{i}\underline{\mathbf{T}}_{j} = {}^{i}\underline{\mathbf{T}}_{G}{}^{G}\underline{\mathbf{T}}_{G}{}^{G}\underline{\mathbf{T}}_{j} \tag{3.26}$$

$$\frac{G}{T_{G'}}(G_{\underline{u},\phi}) = \cos \phi \underline{I} + \sin \phi \begin{bmatrix} 0 & -G_{\underline{u}_{z}} & G_{\underline{u}_{y}} \\ G_{\underline{u}_{z}} & 0 & -G_{\underline{u}_{x}} \\ -G_{\underline{u}_{y}} & G_{\underline{u}_{x}} & 0 \end{bmatrix} + (1 - \cos \phi)^{G} \underline{u}^{G} \underline{u}^{T}$$
(3.27)

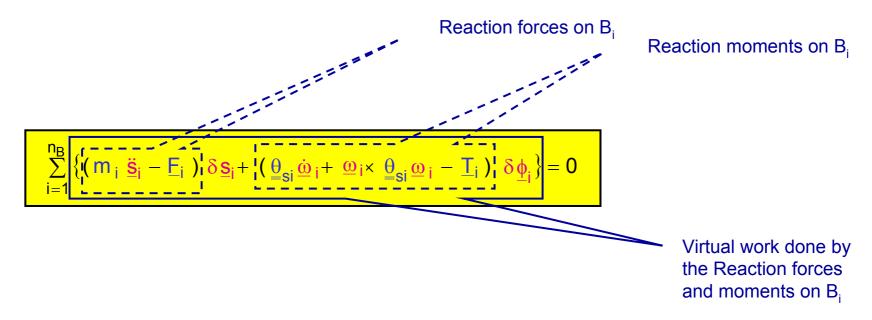
$${}^{G}\underline{T}_{G'} = \begin{bmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(3.28)$$

Summary of Kinematics



Equations of motion derived from the d`ALEMBERT Principle



 m_i , $\underline{\theta}_{si}$: Mass und inertial tensor (relative to the center of mass) of the body i

: acceleration of the centre of mass of the body i

 $\underline{\omega}_{i}$, $\underline{\dot{\omega}}_{i}$: angular velocity and acceleration

 E_i , T_i : resulting applied forces and moments

 $\delta \underline{s}_i$, $\delta \underline{\phi}_i$: virtual translation or rotational orische, bzw. rotatorische displacements

DUISBURG

3.2 Equations of motion for Multi-Body systems

Principle of linear momentum

$$m_i\ddot{s}_i = F_i + F_{Ri} \Rightarrow$$

$$F_{Ri} = m_i \ddot{S}_i - F_i$$

$$F_{Ri} = m_i \ddot{S}_i - F_i = m_i J_{Si} \ddot{q} + m_i a_{Si} - F_i$$

Principle of conservation of angular momentum

$$\theta_{\text{Si}}\dot{\omega}_{\text{i}} + \omega_{\text{i}} \times \theta_{\text{Si}}\omega_{\text{i}} = T_{\text{i}} + T_{\text{Ri}} \Longrightarrow$$

$$T_{Ri} = \theta_{Si}\dot{\omega}_i + \omega_i \times \theta_{Si}\omega_i - T_i$$

$$\mathbf{T}_{\mathsf{R}\mathsf{i}} = \theta_{\mathsf{S}\mathsf{i}} \mathbf{J}_{\phi} \ddot{\mathbf{q}} + \theta_{\mathsf{S}\mathsf{i}} \mathbf{a}_{\phi\mathsf{i}} + \omega_{\mathsf{i}} \times \theta_{\mathsf{S}\mathsf{i}} \omega_{\mathsf{i}} - \mathbf{T}_{\mathsf{i}}$$

D'Alembert's Principle

virtual work of the Reaction forces vanishes

$$\delta A = \delta \sum_{i=1}^{i=n_B} (\mathbf{s}_i^\mathsf{T} \mathbf{F}_\mathsf{R} + \boldsymbol{\phi}_i^\mathsf{T} \mathbf{T}_\mathsf{R}) = \sum_{i=1}^{i=n_B} \delta \mathbf{s}_i^\mathsf{T} \mathbf{F}_\mathsf{R} + \delta \boldsymbol{\phi}_i^\mathsf{T} \mathbf{T}_\mathsf{R} =$$

$$=\sum_{i=1}^{i=n_B}\!\left(\!\left(\frac{\partial s_i}{\partial q}\delta q\right)^{\!T}F_R^{} +\!\left(\frac{\partial \varphi_i}{\partial q}\delta q\right)^{\!T}T_R^{}\right) =\!\left(\delta q\right)^{\!T}\sum_{i=1}^{i=n_B}\!\left(\!\left(\frac{\partial s_i}{\partial q}\right)^{\!T}F_R^{} +\!\left(\frac{\partial \varphi_i}{\partial q}\right)^{\!T}T_R^{}\right) =\!\left(\delta q\right)^{\!T}\sum_{i=1}^{i=n_B}\!\left(\left(\frac{\partial s_i}{\partial q}\right)^{\!T}F_R^{} +\!\left(\frac{\partial \varphi_i}{\partial q}\right)^{\!T}T_R^{}\right) =\!\left(\delta q\right)^{\!T}\sum_{i=1}^{i=n_B}\!\left(\left(\frac{\partial s_i}{\partial q}\right)^{\!T}F_R^{} +\!\left(\frac{\partial \varphi_i}{\partial q}\right)^{\!T}T_R^{}\right) =\!\left(\delta q\right)^{\!T}\sum_{i=1}^{i=n_B}\!\left(\left(\frac{\partial s_i}{\partial q}\right)^{\!T}F_R^{}\right) +\!\left(\frac{\partial \varphi_i}{\partial q}\right)^{\!T}T_R^{}\right) =\!\left(\delta q\right)^{\!T}\sum_{i=1}^{i=n_B}\!\left(\frac{\partial s_i}{\partial q}\right)^{\!T}F_R^{}\right) +\!\left(\frac{\partial \varphi_i}{\partial q}\right)^{\!T}T_R^{}$$

$$= \left(\delta q\right)^T \sum_{i=1}^{I=n_B} \left(J_{Si}^T F_R + J_{\phi i}^T T_R\right) =$$

$$= \left(\delta q\right)^T \sum_{i=1}^{i=n_B} \left(J_{Si}^{T} \left(m_i J_{Si} \ddot{q} + m_i a_{Si} - F_i\right) + J_{\phi i}^{T} \left(\theta_{Si} J_{\phi i} \ddot{q} + \theta_{Si} a_{\phi i} + \omega_i \times \theta_{Si} \omega_i - T_i\right)\right) = 0$$

One requires the transformation of

$\delta q^{T} [M\ddot{q} + b] = \delta q^{T} Q$ δq_{i} independent

Equations of motion

$$M\ddot{q} + b = Q$$

: [f x 1] - Vector of generalised coordinates q

(f = number of degrees of freedom)

M : [f x f] - System – Mass matrix (symmetric, regular)

b : [f x 1] - Vector of generalised gyro and centrifugal forces

: [f x 1] - Vector of generalised applied forces

Introducing the kinematic relations

$$\delta^{\circ} \underline{s}_{i} = {}^{\circ} J_{s_{i}} \delta q \quad ; \qquad {}^{\circ} \underline{\ddot{s}}_{i} = {}^{\circ} J_{s_{i}} \ddot{q} + {}^{\circ} \underline{b}_{s_{i}} \quad ; \qquad {}^{\circ} J_{s_{i}} = \frac{\partial^{\circ} \underline{s}_{i}}{\partial q} \quad$$

$$\delta^{\circ} \underline{\phi}_{i} = {}^{\circ} J_{\phi_{i}} \delta q \quad ; \qquad {}^{\circ} \underline{\dot{\omega}}_{i} = {}^{\circ} J_{\phi_{i}} \ddot{q} + {}^{\circ} \underline{b}_{\phi_{i}} \quad ; \qquad {}^{\circ} J_{\phi_{i}} = \frac{\partial^{\circ} \underline{\phi}_{i}}{\partial q} \quad$$

$$Matrices$$

Elements of the equation of motion

Mass matrix

$$\mathbf{M} = \sum_{i=1}^{n_B} \left\{ \ \ ^{\circ} \mathbf{J}_{\mathbf{s_i}}^{\mathsf{T}} \ ^{\circ} \mathbf{J}_{\mathbf{s_i}} \mathbf{m_i} + \ ^{\circ} \mathbf{J}_{\phi_i}^{\mathsf{T}} \ ^{\circ} \underline{\mathbf{\theta}}_{\mathbf{s_i}} \ ^{\circ} \mathbf{J}_{\phi_i} \right\}$$

- Generalised gyro forces

$$\mathbf{b} \ = \ \sum_{i=1}^{n_B} \ \left\{ {^{\circ}J_{s_i}^T}{^{\circ}\underline{a}_{s_i}} \ m_i \ +^{\circ}J_{\varphi_i}^T \quad \left[{^{\circ}\underline{\theta}_{s_i}}^{\circ}\underline{a}_{\varphi_i} \ +^{^{\circ}}\underline{\omega}_i \ \times \ {^{\circ}\underline{\theta}_{s_i}}^{\circ}\underline{\omega}_i \ \right] \right\}$$

- Generalised applied forces

$$\mathbf{Q} = \sum_{i=1}^{n_B} \left\{ {}^{\circ} \mathbf{J}_{s_i}^{\mathsf{T}} {}^{\circ} \underline{\mathbf{F}}_i + {}^{\circ} \mathbf{J}_{\phi}^{\mathsf{T}} {}^{\circ} \underline{\mathbf{T}}_i \right\}$$

Partial differentiation of the absolute values with respect to the generalised coordinates

Motivation:

$$v_{i} = \dot{s}_{i}(q) = \underbrace{\frac{\partial s_{i}}{\partial q}}_{J_{s_{i}}} \dot{q} = \underbrace{\frac{\partial s_{i}}{\partial q_{1}}}_{Column1} \dot{q}_{1} + \dots + \underbrace{\frac{\partial s_{i}}{\partial q_{f}}}_{Column f} \dot{q}_{f}$$

V_i is already known through the Kinematics dependant on qi

• $^{\circ}J_{s_{i}} = \frac{\partial ^{\circ}\underline{s}_{i}}{\partial \Omega}$; $^{\circ}J_{\phi_{i}} = \frac{\partial ^{\circ}\underline{\phi}_{i}}{\partial \Omega}$ (Jacobi-Matrices)

$$^{\circ}J_{\varphi_{i}} = \frac{\partial \stackrel{\circ}{\varphi_{i}}}{\partial q}$$

•
$${}^{\circ}\underline{\mathbf{a}}_{s_{i}} = \sum_{j=1}^{f} \sum_{k=1}^{f} \frac{\partial^{2} {}^{\circ}\underline{\mathbf{s}}_{i}}{\partial q_{j} \partial q_{k}} \dot{q}_{i}$$

•
$${\overset{\circ}{\underline{a}}}_{\phi_{j}} = \sum_{j=1}^{f} \sum_{k=1}^{f} \frac{\partial^{2} {\overset{\circ}{\underline{\phi}}}_{i}}{\partial q_{i} \partial q_{k}} \dot{q}_{j} \dot{q}_{k}$$

3.2 Equations of motion for Multi-Body systems

Kinematic Differentials

$$J_{w_i} = \frac{\partial w_i}{\partial q}$$

Formal:

$$\tilde{\tilde{W}}_{i}^{(j)} = \frac{\partial W_{i}}{\partial q_{i}} \dot{q}_{1} + \dots + \frac{\partial W_{i}}{\partial q_{j}} \dot{q}_{j} + \dots + \frac{\partial W_{i}}{\partial q_{i}} \dot{q}_{f}$$

$$\mathbf{w}_{i} = \begin{bmatrix} \mathbf{x}_{i} \\ \mathbf{y}_{i} \\ \mathbf{z}_{i} \\ \mathbf{\psi}_{i} \\ \boldsymbol{\theta}_{i} \\ \boldsymbol{\phi}_{i} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{i} \\ \bar{\boldsymbol{\phi}}_{i} \end{bmatrix}$$

kinematic:

$$\dot{q}_{1} = 0$$

$$\vdots$$

$$\dot{q}_{j} = 1$$

$$\vdots$$

$$\dot{q}_{f} = 0$$
Global Kinematic
(no differentiation)
$$\tilde{w}_{i}^{(j)}$$

$$J_{w_{i}} = \begin{bmatrix} J_{s_{i}} \\ J_{\phi_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_{i}}{\partial q_{1}} & \dots & \frac{\partial x_{i}}{\partial q_{f}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_{i}}{\partial q_{1}} & \dots & \frac{\partial \phi_{i}}{\partial q_{f}} \end{bmatrix}$$

kinematic Differentials

$$\frac{\partial \ w_i}{\partial \ q_j} \ = \ \widetilde{\dot{w}}_i^{(j)}$$

$$\vec{\check{w}}_i^{(j)} = \ \dot{w}_i \quad \begin{vmatrix} \dot{q}_j = 1 \\ \text{else} & \dot{q}_k = 0 \end{vmatrix}$$

$$j - th Column $J_{W_i} = \widetilde{W}_i^{(j)}$$$

Seperated into translation and rotation:

$$\frac{\partial \mathbf{S}_{i}}{\partial \mathbf{q}_{j}} = \frac{\mathbf{\tilde{S}}_{i}^{(j)}}{\mathbf{\tilde{S}}_{i}^{(j)}}$$

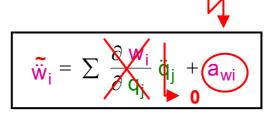
$$\frac{\partial \mathbf{\phi}_{i}}{\partial \mathbf{q}_{j}} = \mathbf{\omega}_{i}^{(j)}$$

3.2 Equations of motion for Multi-Body systems

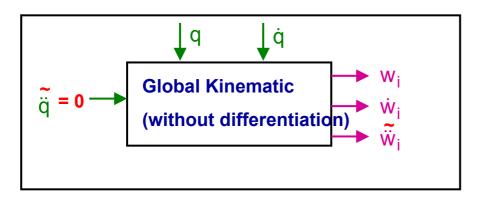
2. Differentiation to determine:

$$\mathbf{a}_{\text{wi}} = \sum_{j} \sum_{k} \frac{\partial^{2} \mathbf{w}_{i}}{\partial q_{j} \partial q_{k}} \dot{q}_{j} \dot{q}_{k}$$

Formal:



Kinematic:



2. Kinematic Differentials

$$a_{w_i} = \widetilde{\ddot{w}}_i$$

$$\ddot{\ddot{\mathbf{w}}}_{i} = \ddot{\mathbf{w}}_{i} \mid \ddot{\mathbf{q}} = \mathbf{0}$$

Seperated into TRANSLATION and ROTATION

$$\underline{a}_{s_i} = \frac{\tilde{s}}{\tilde{s}}$$

$$\underline{\mathbf{a}}_{\phi_i} = \widetilde{\underline{\dot{\omega}}}$$

3.2 Equations of motion for Multi-Body systems

Equations of motionwith kinematic Differentials

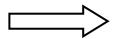
Newton-Euler-equation

$$\sum_{i=1}^{n_B} \left\{ (m_i \, \underline{\ddot{s}}_i - \underline{F}_i) \cdot \delta \underline{s}_i^+ \, (\underline{\theta}_{si} \, \underline{\dot{\omega}}_i + \underline{\omega}_i \times \underline{\theta}_{si} \, \underline{\omega}_i^- \, \underline{T}_i) \cdot \delta \underline{\phi}_i \right\} \stackrel{!}{=} 0$$

Differential relationships

$$\delta \underline{\mathbf{s}}_{i} = \sum_{j=1}^{f} \frac{\widetilde{\underline{\mathbf{s}}}_{i}^{(j)} \delta \mathbf{q}_{j} \qquad \qquad ; \qquad \qquad \underline{\ddot{\mathbf{s}}}_{i} = \sum_{j=1}^{f} \frac{\widetilde{\underline{\mathbf{s}}}_{i}^{(j)} \mathbf{q}_{j} + \underline{\widetilde{\underline{\mathbf{s}}}}_{i}^{(j)}$$

$$\delta \underline{\phi}_{i} = \sum_{j=1}^{f} \underline{\widetilde{\omega}}_{i}^{(j)} \delta q_{j} \qquad \qquad \underline{\dot{\omega}}_{i} = \sum_{j=1}^{f} \underline{\widetilde{\omega}}_{i}^{(j)} \ddot{q}_{j} + \underline{\widetilde{\dot{\omega}}}_{i}$$



 $M\ddot{q} + b = Q$

Differential equations of motion of minimal order

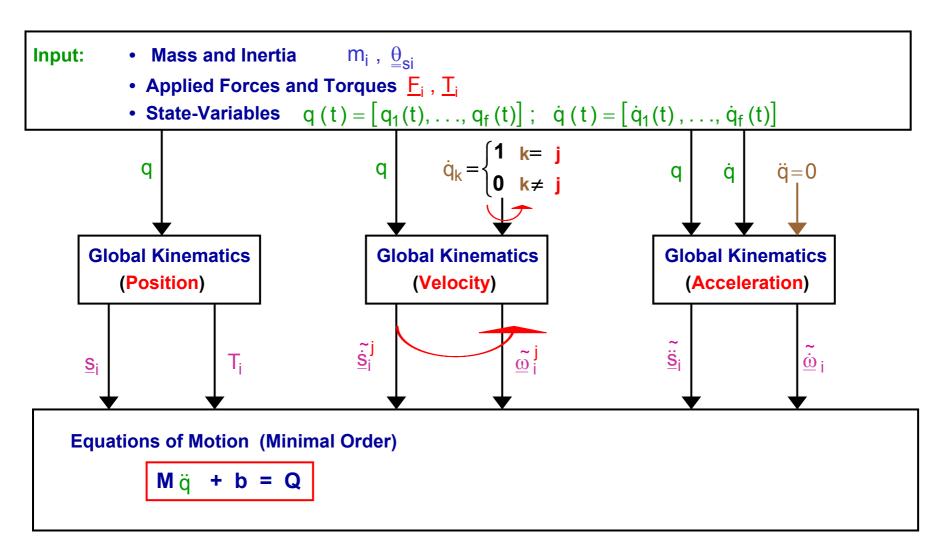
coefficients

$$M_{j,k} = \sum_{i=1}^{n_B} \left\{ m_i \ \underline{\underline{\tilde{s}}}_i^{(j)} \cdot \ \underline{\underline{\tilde{s}}}_i^{(k)} + \ \underline{\underline{\tilde{\omega}}}_i^{(j)} \cdot (\underline{\underline{\theta}}_{si} \ \underline{\underline{\tilde{\omega}}}_i^{(k)}) \right\}$$

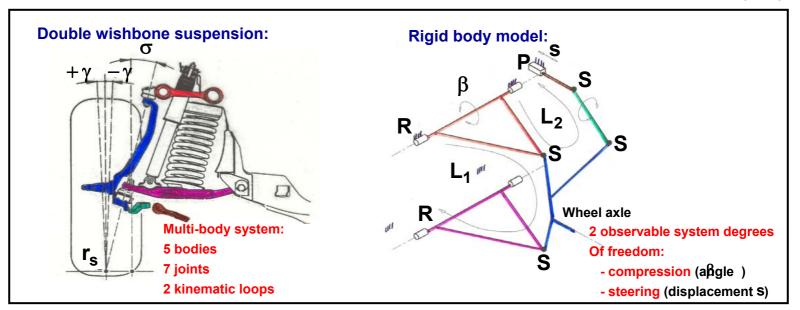
$$\begin{split} M_{j,k} &= \sum_{i=1}^{n_B} \big\{ m_i \ \underline{\tilde{\mathbf{s}}}_i^{(j)}. \ \underline{\tilde{\mathbf{s}}}_i^{(k)} + \ \underline{\tilde{\boldsymbol{\omega}}}_i^{(j)}. \ (\underline{\boldsymbol{\theta}}_{si} \ \underline{\tilde{\boldsymbol{\omega}}}_i^{(k)}) \big\} \\ b_j &= \sum_{i=1}^{n_B} \big\{ m_i \ \underline{\tilde{\mathbf{s}}}_i^{(j)}. \ \underline{\tilde{\mathbf{s}}}_i^{(j)}. \ \underline{\tilde{\mathbf{s}}}_i^{(j)}. \ \underline{\tilde{\boldsymbol{\theta}}}_{si} \ \underline{\tilde{\boldsymbol{\omega}}}_i^{(j)}. \ \underline{\boldsymbol{\theta}}_{si} \ \underline{\tilde{\boldsymbol{\omega}}}_i^{(j)}. \\ Q_j &= \sum_{i=1}^{n_B} \big\{ \underline{\tilde{\mathbf{s}}}_i^{(j)}. \ \underline{\tilde{\boldsymbol{F}}}_i^{(j)}. \ \underline{\tilde{\boldsymbol{\xi}}}_i^{(j)}. \ \underline{\tilde{\boldsymbol{T}}}_i^{(j)}. \end{split}$$

$$Q_{j} = \sum_{i=1}^{n_{B}} \left\{ \underbrace{\tilde{\underline{s}}_{i}^{(j)}}_{i} \underline{F}_{i} + \underline{\omega}_{i}^{(j)} \underline{T}_{i} \right\}$$

Equations of Motion of Complex Multibody System using "Kinematical Differentials"



3.2 Equations of motion for Multi-Body systems



Lagrange 1. order

Dynamic und kinematic Equations are set up and worked with in parallel.

Description results in Body coordinates and/or Relative coordinates.

Lagrange 2. order

Only dynamic equations.

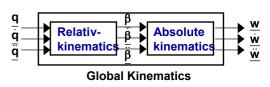
Kinematic equations will be set up
Earlier und incorporated into the
Dynamic equations.

Description results in Minimal coordinates (Relative coordinates in the most cases):

Applicable only for holonomic Systems.

Kinematic Differentials

Using d'Alembert's Principle
Transition over to dynamic
Equations in Minimal coordinates;
i. e. Setting up the kinematic
equations beforehand
in Minimal coordinates und its
Incorporation into the dynamic
Equations.



3.2 Equations of motion for Multi-Body systems

Fundamental problems of the Dynamics

1. "Direct" Problems

given: forces = $^{\land}$ generalised forces $Q = [Q_1, ..., Q_f]$

required: motion $\stackrel{\frown}{=}$ generalised accelerations $\ddot{q} = [\ddot{q}_1, ..., \ddot{q}_f]$ and generalised coordinates respectively $q = [q_1, ..., q_f]$ as a solution of the Differential equation

$$\begin{bmatrix} M_{11} & \cdot & \cdot & \cdot & M_{1f} \\ \cdot & M_{22} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \dot{M}_{f1} & \cdot & \cdot & \dot{M}_{ff} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \cdot \\ \cdot \\ \ddot{q}_f \end{bmatrix} + \begin{bmatrix} b_1 \\ \cdot \\ \cdot \\ \dot{b}_f \end{bmatrix} = \begin{bmatrix} Q_1 \\ \cdot \\ \cdot \\ Q_f \end{bmatrix}$$
required given

"Non-linear Problem"

2. "Inverse" Problem

"Linear Problem"

3. Reactive forces (Zwangskräfte)

given: loads and motion

required: reactive forces

Principle of linear momentum and principle of conservation of angular momentum (Newton – Euler)