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Abstract

Simple nontrivial s-resolvable t-designs for t ≥ 3 and 1 < s < t are still
very sparsely investigated up to now. The problem has been tackled in a recent
paper by the author. Here, we continue to explore the problem by focussing
on the case t = 3 and s = 2. In 1963 Shrikhande and Raghavarao published a
recursive construction for BIBD. Different authors have studied generalizations
of the method for constructing simple 3-designs. In this paper we show that
the method can be further extended to studying simple 3-designs having 2-
resolutions. As a result, we are able to construct many new infinite families of
simple 2-resolvable 3-designs.
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1 Introduction

When the complete k-(v, k, 1) design can be partitioned into s-(v, k, λs) designs, for
s < k, then we have large sets of s-designs. Thus large sets may be viewed as an
s-resolution of the complete design. Large sets have been intensively investigated
by many researchers for more than three decades. Unlike large sets, the question
of partitioning a nontrivial t-(v, k, λt) design into s-(v, k, λs) designs for 2 ≤ s < t
remains almost unexplored. By contrast much more is known about the case s = 1,
in particular, when the design can be partitioned into 1-(v, k, 1) designs, which are
called parallel classes, it is usually said to be resolvable. In this case, we will say
that the design has a parallelism. In a recent paper of the author [13] one can find
general recursive methods for constructing s-resolvable t-designs with arbitrary large
t. For t = 3 very few papers are known in the literature, nonetheless Baker [3] and
Teirlinck [11] have handled the most important case of partitioning certain Steiner
quadruple systems into Steiner 2-designs. In the present paper we focus on the case
t = 3, i.e., on 2-resolvable 3-designs. Among papers dealing with constructions of
3-designs with block size large than four, there are two papers, which may be viewed
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as generalizations of an old construction for BIBD by Shrikhande and Raghavarao
[8]. The first one is due to Jimbo et al. [6], where a significant result about conditions
for the simplicity of the constructed designs has been obtained, and the second due
to Stinson et al. [9]. We show that this approach can be extended to 2-resolvable
3-designs and, in fact, it provides a simple and efficient method for constructing 3-
designs with this property. A particular advantage of the method is that large sets
of 2-designs can be used in the construction, and thus a great source of ingredients is
available.

We assume that the reader is familiar with the concepts of t-designs. For com-
pleteness we include the following definition, see also [12, 13].

Definition 1.1 A t-(v, k, λ)-design (X,B) is said to be s-resolvable, or to have an
s-resolution, with 0 < s < t, if its block set B can be partitioned into N ≥ 2 classes
A1, . . . ,AN such that each (X,Ai) is an s-(v, k, δ) design for i = 1, . . . , N. Each Ai
is called an s-resolution class or simply a resolution class. The set of N classes is
called an s-resolution of the design.

For more information about s-resolvable t-designs, see [13].
The paper is organized as follows. In Section 2, we recall the Shrikhande-Raghavarao

construction for BIBD and its generalizations for 3-designs. Section 3 presents the
constructions of 2-resolvable 3-designs based on the generalizations. Section 4 summa-
rizes some known results in [6] and [9] and presents some conditions for the simplicity
of the constructed designs; to illustrate some small examples for simple 2-resolvable
3-designs are included. Section 5 presents infinite families of simple 2-resolvable 3-
designs obtained by applying the construction. Section 6 gives a brief discussion of a
construction for disjoint simple 3-designs. Section 7 shows a table of simple 3-designs
having 2-resolutions constructed in the paper. The paper closes with a conclusion in
Section 8.

2 Brief summary of previous results

We first begin with a description of the construction for balanced incomplete block
designs (BIBD) by Shrikhande and Raghavarao published in 1963 [8].

Construction 2.1 There are two ingredients for the construction:

1. Let (X,B) be a resolvable (v, b, r, k, λ)-BIBD and let Π1, . . . ,Πr denote the par-
allel classes in the resolution of (X,B). There are w = v/k blocks in each
parallel class. Let the blocks in Πi be named Bj

i , 1 ≤ j ≤ w. We call (X,B) the
master design.

2. Suppose (Y, C) is a (w, b′, r′, k′, λ′)-BIBD, where Y = {1, . . . , w}. We call (Y, C)
the indexing design.

Now, for each i, 1 ≤ i ≤ r, and for each C ∈ C, define

Di,C =
⋃
j∈C

Bj
i .

2



That is, for every block C of the indexing design and for every parallel class Πi of
the master design, we construct a block Di,C by taking the union of the blocks in Πi

indexed by C. Define
D = {Di,C : 1 ≤ i ≤ r, C ∈ C}.

Then (X,D) is a (v, b′′, r′′, k′′, λ′′)-BIBD with b′′ = rb′, r′′ = rr′, k′′ = kk′, and

λ′′ = λr′ + (r − λ)λ′.

(X,D) is called the constructed design.

It has been proved that the Shrikhande-Raghavarao construction can be extended
to 3-designs. In 2011 Jimbo, Kunihara, Laue and Sawa [6] have given a similar con-
struction for simple 3-designs when both master and indexing designs are 3-designs,
where the trivial 2-(v, 2, 1) design is viewed as a 3-design with λ3 = 0. In 2014 Stin-
son, Swanson and Tran [9] have studied 3-designs produced by the method where the
master design is a resolvable 2-design instead of a 3-design. Both constructions are,
in fact, generalizations of the Shrikhande-Raghavarao construction. The following
theorem in [9] shows the generalizations.

Theorem 2.1 [9] Suppose that (X,B) is a resolvable (v, k, λ)-BIBD and (Y, C) is a
3-(w, k′, λ′)-design where w = v/k. Let (X,D) be defined as in Construction 2.1.
Then (X,D) is a 3-design if and only if one of the following conditions is satisfied:

1. (X,B) is a 3-design,

2. k = 2, or

3. k′ = v/(2k).

The details of Cases 1. and 2. of Theorem 2.1 is given in the following theorem,
which is first presented in [6].

Theorem 2.2 [6] Suppose the following designs exist: a resolvable 3-(v, k, λ3) design,
and a 3-(w, k′, λ′3) design, where w = v/k. Then there exists a 3-(v, kk′, λ′′3) design,
where

λ′′3 = λ3λ
′
1 + 3(λ2 − λ3)λ′2 + (λ1 − 3λ2 + 2λ3)λ′3.

Moreover, if k = 2, then

λ′′3 = 3λ′2 + (v − 4)λ′3.

The next corollary gives the details of Case 3. of Theorem 2.1 as shown in [9].

Corollary 2.3 [9] Suppose there are the following designs: a resolvable (v, b, r, k, λ)-
BIBD, and a 3-(w,w/2, λ′) design with w = v/k even.

1. If w = v/k > 4, then there exists a 3-(v, v/2, λ′′) design, where

λ′′ = λ′
(

3λw

w − 4
+ r

)
.

2. If w = v/k = 4, then there is a 3-(v, v/2, 3λ) design.
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3 Construction of 2-resolvable 3-designs

In this section we show that the constructions in [6] and [9] can be further extended
to studying 2-resolvable 3-designs. The first result is given in the next theorem.

Theorem 3.1 Suppose that the indexing design is 2-resolvable. Then the constructed
3-design is 2-resolvable.

Proof. Let (X,B) be a resolvable 3-(v, k, λ3) design. i.e., we deal with Cases 1. and
2. of Theorem 2.1. Note that a trivial BIBD with k = 2 is viewed as a 3-design with
λ3 = 0. For (X,B) we have λ2 = λ3(v − 2)/(k − 2) and λ1 = λ3

(
v−1

2

)
/
(
k−1

2

)
. Let

Π1, . . . ,Πλ1 be the parallel classes from a partition of the blocks of B. Let w = v/k
and let 3-(w, k′, λ′3) be the parameters of the indexing design (Y, C). Let C1, . . . , CN
be a 2-resolution of (Y, C), where each (Y, Ci) is a 2-(w, k′, δ′2) design. Here δ′2 = λ′2/N
and λ′2 = λ′3(w− 2)/(k′− 2). The block set of the constructed design (X,D) is of the
form

D = {Di,C : 1 ≤ i ≤ λ1, C ∈ C}

with Di,C =
⋃
j∈C B

j
i , where Bj

i is a block in Πi. As C = C1 ∪ . . . ∪ CN is a disjoint
union, we may write

D = D1 ∪ . . . ∪ DN ,

where
Dh = {Di,C : 1 ≤ i ≤ λ1, C ∈ Ch},

h = 1, . . . , N. It follows that D1, . . . ,DN form a partition of D. Now each (X,Dh),
h = 1, . . . , N , is 2-design constructed from

• the master design: 2-(v, k, λ2)= 2-(v, k, λ3(v − 2)/(k − 2)),

• the indexing design : 2-(w, k′, δ′2), δ′2 = λ′2/N = λ′3(w − 2)/(k′ − 2)N.

Each (X,Dh) has parameters 2-(v, kk′, δ′′2), δ′′2 = λ2.δ
′
2

(w−1)
(k′−1)

+ (λ2
(v−1)
(k−1)

− λ2).δ′2.
The Case 3. of Theorem 2.1 can be treated in a similar way, hence we omit the

proof. 2

Theorem 3.1 deals with the case where the indexing design is 2-resolvable. We
may further proceed with the other case where the master design is not only resolvable
but also 2-resolvable. However, the detailed requirements for the master design are
given in the following theorem.

Theorem 3.2 Suppose that the 3-(v, k, λ3) master design (X,B) with k ≥ 3 satisfies
the following conditions.

1. (X,B) is 2-resolvable.

2. Each 2-resolution class of (X,B) has a parallelism.

Then the constructed 3-design is 2-resolvable.
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Proof. Let B1, . . . ,BN be N 2-resolution classes of (X,B). i.e., for h = 1, . . . , N ,
(X,Bh) is a 2-(v, k, δ2)-design, where δ2 = λ3(v − 2)/(k − 2)N. By the assumption,
(X,Bh) is resolvable with parallel classes denoted by

Πh
1 , . . . ,Π

h
δ1
,

where δ1 = δ2(v−1)/(k−1). For the construction we will arrange the parallel classes of
(X,B) as the concatenation of N groups of parallel classes, where each group consists
of δ1 parallel classes of the 2-resolution (X,Bh), 1 ≤ h ≤ N. In this way we write the
parallel classes of (X,B) as

Π1
1, . . . ,Π

1
δ1
, Π2

1, . . . ,Π
2
δ1
, . . . , ΠN

1 , . . . ,Π
N
δ1
.

Let (Y, C) be the indexing design with parameters 3-(w, k′, λ′3), where w = v/k. Then
the constructed design (X,D) can be written as the union of N pairwise disjoint
2-designs (X,D1), . . . , (X,DN) with

(X,Dh) = {Dh
i,C : 1 ≤ i ≤ δ1, C ∈ C},

Dh
i,C =

⋃
j∈C

Bh,j
i , 1 ≤ h ≤ N, 1 ≤ i ≤ δ1, B

h,j
i ∈ Πh

i .

Each (X,Dh) is a 2-design constructed from

• the master design: 2-(v, k, δ2),

• the indexing design: 2-(w, k′, λ′2), where λ′2 = w−2
k′−2

λ′3.

In other words, (X,D) is 2-resolvable with N resolution classes. 2

When both the master and indexing designs are 2-resolvable, we obtain an in-
teresting result about the number of 2-resolution classes of the constructed design.
By combining the proofs of Theorems 3.1 and 3.2 it is straightforward to prove the
following result.

Theorem 3.3 Suppose that the indexing design (Y, C) is a 2-resolvable 3-design with
N2 resolution classes. Further suppose that the master design (X,B) is a 3-design
satisfying the conditions of Theorem 3.2 and has N1 2-resolution classes. Then the
constructed design is a 2-resolvable 3-design with N = N1.N2 2-resolution classes.

Proof. (Sketch) Let B1, . . . ,BN1 be a 2-resolution of (X,B) and let C1, . . . , CN2 be a
2-resolution of (Y, C). Then it is clear that the constructed design (X,D) is a disjoint
union of N = N1.N2 2-designs (X,Dhi ) where (X,Dhi ) is a 2-design constructed from
the master design (X,Bh) and the indexing design (Y, Ci). 2

The following example illustrates Theorem 3.3.
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Example 3.1 Let the master and indexing designs be 2-resolvable 3-(22m, 4, 1) and 3-
(22m−2, 4, 1) Steiner quadruple systems, having N1 = (22m−1−1) and N2 = (22m−3−1)
2-resolution classes, respectively, as shown by Baker in [3]. Here the master design
satisfies the resolvability conditions of Theorem 3.2. Hence, by applying Theorem
3.3 we obtain a 2-resolvable 3-(22m, 16, 35

3
(22m−2 − 1)(22m−3 − 1)) design having N =

N1.N2 = (22m−1 − 1)(22m−3 − 1) 2-resolution classes, for any m ≥ 3. Note also that
the constructed design has a parallelism.

An interesting problem arises.

Problem Prove or disprove the simplicity of the constructed 3-designs in Example
3.1.

We include a simple lemma, however useful, without proof.

Lemma 3.4 If the indexing design has a parallelism, then the constructed design has
a parallelism.

The next corollary is an immediate consequence of Theorem 3.1, which presents
a connection between large sets of 2-designs and 3-designs having 2-resolutions.

Corollary 3.5 Suppose that there exists a large set LS[N ](2, k′, w). Then there exists
a 2-resolvable 3-(v, kk′, λ′′3) with N resolution classes for any k ≥ 2, where v = kw
and

1. λ′′3 =
(
v−3
k−3

)(
w−3
k′−3

) (w−1
2 )

(k′−1
2 )

+3
(
v−3
k−3

)
( v−2
k−2
−1)

(
w−3
k′−3

)
w−2
k′−2

+
(
v−3
k−3

)((v−1
2 )

(k−1
2 )
− 3 v−2

k−2
+ 2

)(
w−3
k′−3

)
,

if k ≥ 3,

2. λ′′3 =
(
w−3
k′−3

) (
3w−2
k′−2

+ (2w − 4)
)
, if k = 2.

Proof. Applying Theorem 3.1 for which

1. master design:

{
3− (v, k,

(
v−3
k−3

)
), if k ≥ 3,

2− (v, 2, 1), if k = 2

2. indexing design: 3− (w, k′,
(
w−3
k′−3

)
).

By a result of Baranyai [4], the master design is resolvable. The indexing design is
2-resolvable by the assumption of existence of the large set. Hence the constructed
design is 2-resolvable, and its index λ′′3 is computed according to Corollary 2.2. 2

4 Simplicity of the constructed designs

In [6] the authors have studied the simplicity of the constructed designs in Cases 1.
and 2. of Theorem 2.1. In particular, by using the graph-theoretical method the
authors prove the following significant results for the case k = 2 showing conditions
for the simplicity of the constructed designs.
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Theorem 4.1 [6] Suppose that the master design (X,B) is the resolvable trivial 2-
(v, 2, 1) design and the indexing design (Y, C) is a 3-(w, k′, λ′3) design with w = v/2.
Then the constructed design (X,D) with parameters 3-(v, 2k′, 3λ′2 + (v − 4)λ′3) is
simple, if one of the following conditions is satisfied:

(i) k′ = 2, or k′ = 3 and v ≡ 2 (mod 4),

(ii) gcd(2k′ − 1, v − 1) = gcd(k′, v − 1) = 1,

(iii) gcd(k′, w) = 1 and v ≡ 2 (mod 4).

For Case 1. and 3. (i.e., k ≥ 3) of Theorem 2.1 a condition for the simplicity of
the constructed design can be derived in terms of block intersection numbers of the
master design.

Theorem 4.2 Suppose that the master and indexing designs are simple with block
sizes k and k′, respectively. Suppose that |B1 ∩ B2| ≤ u for any two different blocks
B1 and B2 of the master design. If k ≥ uk′+1, then the constructed design is simple.

Proof. It is clear from the assumption that any two blocks of the constructed design
obtained from the same parallel class of the master design are distinct. It is sufficient
to prove that for any block Dj,C =

⋃
h∈C B

h
j constructed from a parallel class j of the

master design we have Bh′
i 6⊆ Dj,C for any block Bh′

i in the parallel class i with i 6= j.
In fact, we have

|Bh′

i ∩Dj,C | = |Bh′

i ∩ (
⋃
h∈C

Bh
j )| =

∑
h∈C

|Bh′

i ∩Bh
j | ≤ uk′.

From k ≥ uk′ + 1 it follows that Bh′
i 6⊆ Dj,C (i.e., any two blocks constructed from

different parallel classes of the master design are distinct). 2

It should be noted that Theorem 4.2 has been given in [6], when the index of the
master design is 1. It seems that for k ≥ 3 we are still far away from having general
conditions on the master design, which guarantee the simplicity of the constructed
design. Some efforts of finding conditions other than intersection numbers have been
explored in [9], of which the next theorem is a special case.

Theorem 4.3 Suppose that the master and indexing designs are simple. If the master
design has a unique parallelism, then the constructed design is simple.

Proof. We keep using the notation in Construction 2.1 with (X,B) as the mas-
ter design and (Y, C) as the indexing design. Let Π1, . . . ,Πr be the unique paral-
lel classes of (X,B). Recall that a block of the constructed design is of the form
Di,C =

⋃
j∈C B

j
i , i = 1, . . . , r, 1 ≤ j ≤ w. Remark that since the indexing design is

simple, any two blocks of the constructed design can only be equal if they are formed
from distinct parallel classes of the master design, in other words Di,C 6= Di,C′ for
any C,C ′ ∈ C. So, without loss of generality, we may assume that D1,C = D2,C′ . Let
C = {y1, . . . , yk′}, C ′ = {y′1, . . . , y′k′}.
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By reordering the blocks in Π1 and Π2, we may set

Π1 = {By1

1 , B
y2

1 , . . . , B
yk′
1 , B

yk′+1

1 , . . . , Byw
1 },

and

Π2 = {By′1
2 , B

y′2
2 , . . . , B

y′
k′

2 , B
y′
k′+1

2 , . . . , B
y′w
2 }.

Hence
D1,C = By1

1 ∪B
y2

1 ∪ . . . ∪B
yk′
1 ,

D2,C′ = B
y′1
2 ∪B

y′2
2 ∪ . . . ∪B

y′
k′

2 .

Define
Π∗1 = {By′1

2 , B
y′2
2 , . . . , B

y′
k′

2 , B
yk′+1

1 , . . . , Byw
1 },

Π∗2 = {By1

1 , B
y2

1 , . . . , B
yk′
1 , B

y′
k′+1

2 , . . . , B
y′w
2 }.

Since D1,C = D2,C′ , it follows that Π∗1 and Π∗2 form two new parallel classes of (X,B).
Thus {Π1,Π2,Π3, . . . ,Πr} and {Π∗1,Π∗2,Π3, . . . ,Πr} are two distinct parallelisms of
(X,B), which contradicts the assumption. Hence D1,C 6= D2,C′ and the constructed
design is simple. 2

We illustrate Corollary 3.5 (2.) by presenting some interesting special examples
of simple 2-resolvable 3-designs.

Examples 4.1 1. The master design is the complete 2-(32, 2, 1) design and the in-
dexing design is the complete 4-(16, 4, 1) design, i.e., a 3-(16, 4, 13) design, which
has a large set consisting of N = 91 disjoint copies of 2-(16, 4, 1) designs. The
constructed design has parameters 3-(32, 8, 91× 7) and is 2-resolvable by The-
orem 3.1 and it is simple by Theorem 4.1. The 2-resolution of the constructed
design has N = 91 classes, where each class is a 2-(32, 8, 35) design. Note that
the constructed design has a paralellism by Lemma 3.4. More precisely, the
2-design in each resolution class has a parallelism.

2. There exists a simple 2-resolvable 3-design with parameters 3-(26, 8, 55 × 7)
having N = 55 resolution classes. Each class is a 2-(26, 8, 28) design. In this
case, the complete 2-(26, 2, 1) design is the master design and the complete
4-(13, 4, 1) design is the indexing design, which is known to have a large set
comprised of 55 copies of 2-(13, 4, 1) designs. Note that the 2-(26, 8, 28) design
in each resolution class has the possible minimum index, i.e., any 2-(26, 8, λ)
design satisfies 28|λ.

3. There exists a simple 2-resolvable 3-design with parameters 3-(18, 6, 7×5) with
N = 7 resolution classes. Each class is a 2-(18, 6, 20) design. Here, the complete
2-(18, 2, 1) design is the master design and the complete 3-(9, 3, 1) design is the
indexing design, which is known to have a large set comprised of 7 copies of 2-
(9, 3, 1) designs. The constructed design as well as the 2-designs of the resolution
have parallelisms.
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We should remark that the three examples above are related to known large sets
of affine and projective planes. Here, the first example comes from a large set of the
affine plane of order 4, while the other two from large sets of projective and affine
plane of order 3, respectively.

5 Applications

In this section we apply the results from the previous two sections to derive the
existence of many infinite classes of simple 2-resolvable 3-designs.

5.1 Master designs with k = 2

Here the master design is a resolvable 2-(v, 2, 1) design.

We begin with the second case of Corollary 3.5. First consider the trivial 3-(w, 3, 1)
design as the indexing design. It is known that LSλmin

(2, 3, w) exists if and only if
v 6= 7, [7]. From (i) of Theorem 4.1, it follows that the constructed design is simple
if 2w ≡ 2 (mod 4). Therefore w ≡ 1, 3 (mod 6) or w ≡ 5 (mod 6). Moreover, if
w ≡ 1, 3 (mod 6), then λmin = 1, whereas if w ≡ 5 (mod 6), then λmin = 3.

1. The case w ≡ 1, 3 (mod 6) corresponds to a large set of 2-(w, 3, 1) Steiner
triple systems. So, the 3-(w, 3, 1) design is a union of N = (w − 2) disjoint
2-(w, 3, 1) designs. The constructed design has parameters 3-(2w, 6, 5(w − 2))
and is 2-resolvable with N resolution classes. Each class is a 2-(2w, 6, 5

2
(w− 1))

design.

2. The case w ≡ 5 (mod 6) corresponds to a large set of 2-(w, 3, 3) designs. The
3-(w, 3, 1) design is a union of N = (w − 2)/3 disjoint 2-(w, 3, 3) designs. The
constructed design is 2-resolvable with N resolution classes. Each class is a
2-(2w, 6, 15

2
(w − 1)) design.

In summary, we have the following theorem.

Theorem 5.1 Suppose w ≡ 1, 3 or 5 (mod 6). Then there exists a simple 2-resolvable
3-(2w, 6, 5(w − 2)) design (X,D). More precisely,

(i) If w ≡ 1, 3 (mod 6), then (X,D) has N = (w − 2) 2-resolution classes. Each
class is 2-(2w, 6, 5

2
(w − 1)) design.

(ii) If w ≡ 5 (mod 6), then (X,D) has N = (w − 2)/3 2-resolution classes. Each
class is 2-(2w, 6, 15

2
(w − 1)) design.

Next consider the indexing designs with parameters 3-(22m, 4, 1) and 3-(22m+1, 4, 5).
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1. In [3] Baker proves the 2-resolvability of the 3-(22m, 4, 1) Steiner quadruple
system whose blocks are the planes in an even dimensional affine space over the
field of two elements. Each 2-resolution class is a 2-(22m, 4, 1) design. Thus the
number of resolution classes is N = 22m−1 − 1. By applying Theorems 2.2 and
3.1 we obtain a 2-resolvable 3-(22m+1, 8, 7(22m−1− 1)) design with N resolution
classes. The constructed design is simple if the condition (ii) : gcd(7, 22m+1 −
1) = gcd(4, 22m+1 − 1) = 1 of Theorem 4.1 is satisfied. It is straightforward to
verify that this is the case if 2m+ 1 6≡ 0 (mod 3).

2. In [2] Alltop constructs simple 4-designs with paramters 4-(22m+1 + 1, 5, 5) for
2m+ 1 ≥ 5. Each design is 3-resolvable with N = (22m+1 − 2)/6 resolution
classes, see [13]. Hence its derived design (Y, C) with parameters 3-(22m+1, 4, 5)
is 2-resolvable with N resolution classes. By taking (Y, C) as the indexing de-
sign, we obtain a 2-resolvable 3-design with parameters 3-(22m+2, 8, 35(22m−1))
having N = (22m+1 − 2)/6 resolution classes. Again, the constructed design is
simple if gcd(7, 22m+2−1) = gcd(4, 22m+2−1) = 1. It follows that 2m+2 ≡ 2, 4
(mod 6).

Thus we have the following.

Theorem 5.2 Let n be a positive integer. Suppose that n 6≡ 0 (mod 3), if n is odd,
and n ≡ 2, 4 (mod 6), if n is even. Then there exists the following simple 2-resolvable
3-design (X,D).

(i) If n is odd and n ≥ 5, then (X,D) is a 3-(2n, 8, 7(2n−2 − 1)) design with N =
(2n−2 − 1) resolution classes. Each class is a 2-(2n, 8, 7

3
(2n−1 − 1)) design,

(ii) If n is even and n ≥ 6, then (X,D) is a 3-(2n, 8, 35(2n−2 − 1)) design with
N = (2n−1 − 2)/6 resolution classes. Each class is a 2-(2n, 8, 35(2n−1 − 1))
design.

The following families are derived from 2-resolvable indexing designs with param-
eters 3-(2(7n + 1), 4, 1) and 3-(2(31n + 1), 4, 1) due to Teirlinck [11].

1. The 2-resolvable 3-(2.(7n + 1), 4, 1) design for n ≥ 1 has N = 7n resolution
classes and each class is a 2-(2(7n + 1), 4, 1) design. Corollary 2.2 and Theorem
3.1 thus give a 2-resolvable 3-design with parameters 3-(4(7n + 1), 8, 7n+1) with
N resolution classes. Each class is a 2-(4(7n + 1), 8, 7

3
(2.7n + 1)) design. The

constructed design is simple because the condition (ii) : gcd(7, 4.7n + 3) =
gcd(4, 4.7n + 3) = 1 of Theorem 4.1 is satisfied.

2. The case with 2-resolvable 3-(2.(31n + 1), 4, 1) design for n ≥ 1 can be handled
similarly.

Thus we obtain the following.
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Theorem 5.3 (i) There exists a simple 2-resolvable 3-(4(7n + 1), 8, 7n+1) design
having N = 7n resolution classes, for any integer n ≥ 1. Each class is a
2-(4(7n + 1), 8, 7

3
(2.7n + 1)) design.

(ii) There exists a simple 2-resolvable 3-(4(31n + 1), 8, 7.31n) design having N =
31n resolution classes, for any integer n ≥ 1. Each class is a 2-(4(31n +
1), 8, 7

3
(2.31n + 1)) design.

Consider a further family. In [5] Bierbrauer constructs a simple 4-(22m−1 +1, 8, 35)
design for 2m − 1 ≥ 5 and 2m − 1 6≡ 0 (mod 3). The design is 3-resolvable with
N = (22m−1 − 2)/6 resolution classes, see [13]. Hence its derived design (Y, C) with
parameters 3-(22m−1, 7, 35) is 2-resolvable with N resolution classes. Taking (Y, C) as
the indexing design will yield a 2-resolvable 3-(22m, 14, 91(22m−1 − 2)) design with N
resolution classes. Each class is a 2-(22m, 14, 91(22m−1 − 1)) design. The constructed
design is simple if the condition (ii): gcd(13, 22m−1) = gcd(7, 22m−1) = 1 of Theorem
4.1 is satisfied. Now, it is straightforward to check that if gcd(7, 22m − 1) = 1, then
2m ≡ 2, 4 (mod 6) and if gcd(13, 22m − 1) = 1, then 2m ≡ 2, 4, 6, 8, 10 (mod 12).
From these two congruences it follows that if 2m ≡ 2, 4, 8, 10 (mod 12), then the
condition (ii) is satisfied.

We have proved the following.

Theorem 5.4 Let 2m be a positive integer such that 2m ≡ 2, 4, 8, 10 (mod 12). Then
there exists a simple 2-resolvable 3-design with parameters 3-(22m, 14, 91(22m−1 − 2))
having N = (22m−1−2)/6 resolution classes. Each class is a 2-(22m, 14, 91(22m−1−1))
design.

5.2 Master designs with k ≥ 3

Here the master designs will have block size k ≥ 3. We will differentiate the case with
3-designs from the case with 2-designs for the master designs.

The following noteworthy result can be found in [6].

Proposition 5.5 Let q be a prime power and n be a positive integer. Then the 3-
(qn + 1, q + 1, 1) design with PGL(2, qn) as an automorphism group has a parallelism
if and only if n ≡ 1 (mod 2).

Now take the master design as a resolvable 3-(qn + 1, q + 1, 1) design, n ≡ 1
(mod 2) and the indexing design is the trivial 3-(w, 3, 1) design, where w = qn+1

q+1
.

Then, the constructed design has parameters 3-(qn + 1, 3(q + 1),Λ), where

Λ =

( qn+1
q+1
− 1

2

)
+ 3(

qn − 1

q − 1
− 1)(

qn + 1

q + 1
− 2) + (qn−1 q

n − 1

q − 1
− 3

qn − 1

q − 1
+ 2).

Recall that there is a large set LSλmin
(2, 3, w). Now as w is odd, it follows that

w ≡ 1, 3, or 5 (mod 6). Thus, if w ≡ 1, 3 (mod 6), then λmin = 1 and the trivial
3-(w, 3, 1) design is the union of N = (w − 2) disjoint 2-(w, 3, 1) designs. If w ≡ 5
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(mod 6), then λmin = 3 and it is the union of N = (w − 2)/3 disjoint 2-(w, 3, 3)
designs.

From Theorem 4.2, the constructed design is simple for q > 5, and is 2-resolvable
with N resolution classes, where N = (w−2), if w ≡ 1, 3 (mod 6) and N = (w−2)/3,
if w ≡ 5 (mod 6). The result is recorded in the following theorem.

Theorem 5.6 Let q be a prime power with q > 5 and let n be any positive odd integer.
Then there is a simple 2-resolvable 3-design with parameters 3-(qn + 1, 3(q + 1),Λ),
where

Λ =

( qn+1
q+1
− 1

2

)
+ 3
(qn − 1

q − 1
− 1
)(qn + 1

q + 1
− 2
)

+
(
qn−1 − 3

)qn − 1

q − 1
+ 2.

Moreover,

1. if qn+1
q+1
≡ 1, 3 (mod 6), the design has N = ( q

n+1
q+1
− 2) 2-resolution classes,

2. if qn+1
q+1
≡ 5 (mod 6), the design has N = ( q

n+1
q+1
− 2)/3 2-resolution classes.

The following examples are about the case 3 of Theorem 2.1, i.e., the master
design is 2-(v, k, λ)- BIBD and not necessary a 3-design with k ≥ 3.

Let the affine resolvable BIBD with parameters 2-(8m, 8m−1, 8m−1−1
8−1

) be the master
design and the indexing design be the complete 3-(8, 4, 5) design. It is known that
there exists a LS[5](2, 4, 8), i.e., the indexing design is 2-resolvable with N = 5
resolution classes. By Corollary 2.3 and Theorem 4.3 the constructed design is a
simple 2-resolvable 3-(8m, 4.8m−1, 5(2.8m−1−1)) design with N = 5 resolution classes.

Further, a LS[13](2, 7, 15) is known to exist, see [7]. By Corollary 4.3 of [13] it
follows that there is a LS[13](2, 8, 16). Taking the affine resolvable BIBD with param-
eters 2-(16m, 16m−1, 16m−1−1

16−1
), as the master design and the complete 3-(16, 8, 13.99)

design as the indexing design, will give a 2-resolvable 3-(16m, 8.16m−1, 13.33(4.16m−1−
1)) design with N = 13 resolution classes. The constructed design is simple by The-
orem 4.3. In summary, we have obtained the following.

Theorem 5.7 Let m ≥ 2 be an integer.

1. There exists a simple 2-resolvable 3-(8m, 4.8m−1, 5(2.8m−1−1)) design with N =
5 resolution classes.

2. There exists a simple 2-resolvable 3-(16m, 8.16m−1, 13.33(4.16m−1 − 1)) design
with N = 13 resolution classes.

Remark 5.1 The case of master designs with k ≥ 3 is worthy of a comment. Ac-
tually, for this case Theorems 4.2, 4.3 merely present two specific conditions for the
simplicity of the constructed design. We will give an example for k = 3 to illustrate
the more involved situation in general. Take the master design as a simple resolvable
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2-(24, 3, 2) design having a cyclic automorphism group of order 23, see [1]. Its six
base blocks form a parallel class:

{∞, 16, 20}, {0, 7, 21}, {1, 3, 11}, {4, 5, 18}, {6, 12, 17}, {2, 10, 13}, {8, 9, 14}, {15, 19, 22}.

It is easy to check that |A ∩ B| = 0, or 1, or 2, for any two distinct blocks A, B.
Moreover, a computer search shows that there are 9 parallelisms for this design. So,
neither of the conditions of Theorems 4.2 and 4.3 is satisfied. However, when we
take the complete 3-(8, 4, 5) design as the indexing design, then we get a simple 2-
resolvable 3-(24, 12, 175) design with N = 5 resolution classes. The simplicity of the
latter can be checked with a computer, see [9]. The example displays a paradigm that
is not yet well investigated. It would seem that finding general necessary conditions
for the simplicity of the constructed design when k ≥ 3 is a very challenging problem.

6 Disjoint simple 3-designs

In this section, we briefly discuss a consequence of the method for constructing 2-
resolvable 3-designs in the paper. The construction gives a connection to the problem
of finding mutually disjoint 3-designs. It is routine to check that when the require-
ment for the indexing design as a union of disjoint 2-designs is replaced by the union
of disjoint 3-designs, then obviously the constructed design is the union of disjoint
3-designs. In particular, the results for large sets of 3-designs will give a source for
constructing mutually disjoint simple 3-designs. The following example illustrates the
idea. Take the 2-(24, 2, 1) design as the master design and the complete 3-(12, 6, 84)
design as the indexing design. It is known that there is a LS[42](3, 6, 12), i.e., the
3-(12, 6, 84) design is a union of 42 mutually disjoint 3-(12, 6, 2) designs. The con-
structed design is a simple 3-(24, 12, 42.55) design and is a union of 42 pairwise disjoint
3-(24, 12, 55) designs. To put it another way, there are 42 pairwise disjoint simple 3-
(24, 12, 55) designs.

Based on a result of Teirlinck [10] about the existence of LSλmin
(3, 4, w) for w ≡ 0

(mod 3) we can prove the following theorem.

Theorem 6.1 Let w be an integer such that w ≡ 0 (mod 3) and gcd(7, 2w− 1) = 1.
Then there exists N = (w − 3)/λmin mutually disjoint simple 3-(2w, 8, 7

2
λmin(w − 2))

designs, where λmin is the smallest λ of a 3-(w, 4, λ) quadruple system.

Proof. Take 2-(2w, 2, 1) design as the master design and the complete 3-(w, 4, w−3)
design as the indexing design, where w ≡ 0 (mod 3) and gcd(7, 2w − 1) = 1. Then
the constructed design has parameters 3-(2w, 8, 7

2
(w − 2)(w − 3)), which is simple

by Theorem 4.1. As there is a LSλmin
(3, 4, w), the constructed design is a union of

N = (w − 3)/λmin pairwise disjoint 3-(2w, 8, 7
2
λmin(w − 2)) designs. 2
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7 Table of simple 3-designs having 2-resolutions

The table below summarizes families of simple 2-resolvable 3-designs constructed in
the paper.

Table 1: Families of simple 2-resolvabe 3-designs in Section 5.

No. Parameters Conditions 2-resolutions Theorems

1 3-(2w, 6, 5(w − 2)) w ≡ 1, 3 mod 6 N = (w − 2) Th.5.1
2-(2w, 6, 5

2
(w − 1))

2 3-(2w, 6, 5(w − 2)) w ≡ 5 mod 6 N = (w − 2)/3 Th.5.1
2-(2w, 6, 15

2
(w − 1))

3 3-(2n, 8, 7(2n−2 − 1)) n 6≡ 0 mod 3 N = (2n−2 − 1) Th.5.2
n ≥ 5 odd 2-(2n, 8, 7

3
(2n−1 − 1))

4 3-(2n, 8, 35(2n−2 − 1)) n ≡ 2, 4 mod 6, n ≥ 6 N = (2n−1 − 2)/6 Th.5.2
2-(2n, 8, 35(2n−1 − 1))

5 3-(4(7n + 1), 8, 7n+1) n ≥ 1 N = 7n Th.5.3
2-(4(7n + 1), 8, 7

3
(2.7n + 1))

6 3-(4(31n + 1), 8, 7.31n) n ≥ 1 N = 31n Th.5.3
2-(4(31n + 1), 8, 7

3
(2.31n + 1))

7 3-(22m, 14, 91(22m−1 − 2)) 2m ≡ 2, 4, 8, 10 mod 12 N = (22m−1 − 2)/6 Th.5.4
2-(22m, 14, 91(22m−1 − 1))

8 3-(qn + 1, 3(q + 1),Λ) q > 5 prime power N = qn+1
q+1

− 2 Th. 5.6

Λ =
( qn+1

q+1
−1

2

)
n ≡ 1 mod 2 2-(qn + 1, 3(q + 1),

Λ(qn−1)
N(3q+1)

)

+3( qn−1
q−1

− 1)( qn+1
q+1

− 2) qn+1
q+1

≡ 1, 3 mod 6

+(qn−1 − 3) qn−1
q−1

+ 2

9 3-(qn + 1, 3(q + 1),Λ) qn+1
q+1

≡ 5 mod 6 N = ( qn+1
q+1

− 2)/3 Th. 5.6

(Λ as in 8) 2-(qn + 1, 3(q + 1),
Λ(qn−1)
N(3q+1)

)

10 3-(8m, 4.8m−1,Λ) m ≥ 2 N = 5 Th. 5.7
Λ = 5(2.8m−1 − 1) 2-(8m, 4.8m−1, 4.8m−1 − 1)

11 3-(16m, 8.16m−1,Λ) m ≥ 2 N = 13 Th. 5.7
Λ = 13.33(4.16m−1 − 1) 2-(16m, 8.16m−1, 33(8.16m−1 − 1))

8 Conclusion

The paper concerns 2-resolvable 3-designs, for which very little was known up to
now. Based on the two main papers [6] and [9] which generalize an old recursive
construction of Shrikhande and Raghavarao for BIBD to 3-designs, we further extend
the method for studying 2-resolvable 3-designs. It turns out that the approach is very
efficient as it provides a simple way to construct these 3-designs. As an application
we obtain many infinite families of simple 2-resolvable 3-designs. In general, however,
the question of simplicity of the constructed designs remains a challenging problem,
which is worth further studying.
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