A method of constructing 2-resolvable t-designs for $t=3,4$

Tran van Trung
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Thea-Leymann-Straße 9, 45127 Essen, Germany

Abstract

The paper introduces a method for constructing 2 -resolvable t-designs for $t=3,4$. The main idea is based on the assumption that there exists a partition of a t-design into Steiner 2-designs. A remarkable property of the method is that it enables the construction of 2 -resolvable t-designs with a large variety of block sizes. For $t=4$, it is required that the Steiner 2-designs of the partition are projective planes and this case would also lead to a construction of 3resolvable 5 -designs. For instance, we show the existence of an infinite series of 3 -resolvable 5 -designs having $N=5$ resolution classes with parameters 5 $(14+8 m, 7,10(9+8 m)(1+m))$ for any $m \geq 0$ as a byproduct. Moreover, it turns out that the method is very effective, as it yields infinitely many 2 -resolvable 3 -designs. However, the question of simplicity of the constructed designs has not been yet investigated.

Mathematics Subject Classification: 05B05
Keywords: s-resolvable t-design, Steiner 2-design, projective plane.

1 Introduction

A $t-(v, k, \lambda)$ design is called s-resolvable if it can be partitioned into s - (v, k, δ) designs with $s<t$. The interesting case is $s \geq 2$. Especially, the s-resolvability of the complete k - $(v, k, 1)$ design is known in the literature as a large set of an $s-(v, k, \delta)$ design. Large sets are an essential element in proving the existence of simple t-designs for arbitrarily large t which have been intensively studied over three decades, see for instance $[1,10,11,12,13,14]$. By contrast, very little is known about s-resolvability of non-trivial t-designs, when $s>1$, see $[4,15,17,18,19]$. We are interested in non-trivial t-designs having s-resolutions. By focussing on $s=2$ we introduce a method of constructing 2 -resolvable t-designs, for $t=3$, 4. In essence, the method is based on the assumption that there exists a t-design which can be partitioned into Steiner 2-designs, and for $t=4$ it is further required that the Steiner 2-designs must
be projective planes. Some examples among others satisfying the assumption can be found in large sets of $2-(v, 3,1)$ Steiner triple systems for $v \equiv 1,3 \bmod 6, v \neq 7$, in partition of certain infinite classes of $3-(v, 4,1)$ Steiner quadruple systems into 2 $(v, 4,1)$ designs, for $v=2^{2 m}, m \geq 2$, [4], and $v=2 p^{n}+2, p \in\{7,31,127\}$ [15], or in large sets of the projective planes of order 3 , i.e. a symmetric $2-(13,4,1)$ design, $[6,8]$. It appears that the method is very effective, actually, when starting with examples above, it will provide a huge number of 2-resolvable 3-designs for a large variety of block sizes. Moreover, with suitable parameters for $t=4$, we can also construct $4-(2 k+1, k, \Lambda)$ designs having 2-resolutions and therefore they can be extended to 3 -resolvable $5-(2 k+2, k+1, \Lambda)$ designs. For instance, the case corresponding to the projective plane of order 3 yields a 3 -resolvable $5-(14,7,90)$ design, which in turn leads to the existence of an infinite series of 3-resolvable 5 -designs having $N=5$ resolution classes with parameters $5-(14+8 m, 7,10(9+8 m)(1+m))$ for any $m \geq 0$ as a byproduct.

We recall a few basic definitions. A t-design, denoted by $t-(v, k, \lambda)$, is a pair (X, \mathcal{B}), where X is a v-set of points and \mathcal{B} is a collection of k-subsets of X, called blocks, such that every t-subset of X is a subset of exactly λ blocks of \mathcal{B}. A t-design is called simple if no two blocks are identical, otherwise, it is called non-simple. A $t-(v, k, 1)$ design is called a Steiner t-design. It can be shown by simple counting that a $t-(v, k, \lambda)$ design is an $s-\left(v, k, \lambda_{s}\right)$ design for $0 \leq s \leq t$, where $\lambda_{s}=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}$. Since λ_{s} is an integer, necessary conditions for the parameters of a t-design are $\binom{k-s}{t-s} \left\lvert\, \lambda\binom{v-s}{t-s}\right.$ for $0 \leq s \leq t$. The smallest positive integer λ for which these necessary conditions are satisfied is denoted by $\lambda_{\min }(t, k, v)$ or simply $\lambda_{\min }$. If \mathcal{B} is the set of all k-subsets of X, then (X, \mathcal{B}) is a $t-\left(v, k, \lambda_{\max }\right)$ design, called the complete design, where $\left.\lambda_{\max }=\binom{v-t}{k-t}\right)$. If we take δ copies of the complete design, we obtain a $t-\left(v, k, \delta\binom{v-t}{k-t}\right)$ design, to which we refer as a trivial t-design. Again a $t-(v, k, \lambda)$ design (X, \mathcal{B}) is said to be s-resolvable, for $0<s<t$, if its block set \mathcal{B} can be partitioned into $N \geq 2$ classes $\mathcal{A}_{1}, \ldots, \mathcal{A}_{N}$ such that each $\left(X, \mathcal{A}_{i}\right)$ is an s - (v, k, δ) design for $i=1, \ldots, N$. Each \mathcal{A}_{i} is called an s-resolution class or simply a resolution class and the set of N classes is called an s-resolution of (X, \mathcal{B}). If the complete $k-(v, k, 1)$ design is t-resolvable, i.e. it can be partitioned into N disjoint $t-(v, k, \lambda)$ designs, where $k>t$, then we say that there exists a large set of size N of t-designs denoted by $L S[N](t, k, v)$ or by $L S_{\lambda}(t, k, v)$ to emphasize the value λ.

For more information about s-resolvable t-designs with $1<s<t$, see for instance $[16,17,18,19]$. It should be remarked that s-resolvable t-designs have been used in the construction of t-designs [16].

2 Description of the method

The details of the method are described in this section. Here, two elements are required.

1. Let (X, \mathcal{B}) be a 2 -resolvable $t-(v, k, \lambda)$ design, where each class is a $2-(v, k, 1)$ design. Thus, there are $N=\lambda\left(\begin{array}{c}\binom{v-2}{t-2} \\ \binom{k-2}{t-2}\end{array}\right.$ resolution classes. Let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{N}$ denote
the resolution classes of (X, \mathcal{B}), so each $\left(X, \mathcal{B}_{i}\right)$ is a $2-(v, k, 1)$ design. We call (X, \mathcal{B}) the outer design.
2. Let (Y, \mathcal{C}) be a $t-\left(\frac{v-1}{k-1}, \ell, \mu\right)$ design. We call (Y, \mathcal{C}) the inner design.

Consider a fixed resolution class $\left(X, \mathcal{B}_{i}\right)$. Let $Y=\left\{1, \ldots, \frac{v-1}{k-1}\right\}$ be the point set of the inner design. For a point $x \in X$, let $\mathcal{Y}_{i, x}=\left\{B_{i, x}^{1}, \ldots, B_{i, x}^{\frac{v-1}{k-1}}\right\}$ denote the set of $\frac{v-1}{k-1}$ blocks through x of \mathcal{B}_{i}, i.e. $B_{i, x}^{j} \in \mathcal{B}_{i}$ with $x \in B_{i, x}^{j}, 1 \leq j \leq|Y|$. For a block $C \in \mathcal{C}$, define

$$
D_{i, x}^{C}=\bigcup_{j \in C} B_{i, x}^{j},
$$

and

$$
\mathcal{D}_{i, x}=\left\{D_{i, x}^{C} \mid C \in \mathcal{C}\right\} .
$$

That is, block $D_{i, x}^{C}$ is formed by the union of blocks in $\mathcal{Y}_{i, x}$ indexed by C, and $\mathcal{D}_{i, x}$ is the set of μ_{0} such blocks $D_{i, x}^{C}$. Further, define

$$
\mathcal{D}_{i}=\bigcup_{x \in X} \mathcal{D}_{i, x}
$$

and

$$
\mathcal{D}=\bigcup_{i=1}^{N} \mathcal{D}_{i}
$$

Similarly, define

$$
\begin{gathered}
D_{i, x}^{* C}=\bigcup_{j \in C} B_{i, x}^{j} \backslash\{x\}, \quad \mathcal{D}_{i, x}^{*}=\left\{D_{i, x}^{* C} \mid C \in \mathcal{C}\right\} \\
\mathcal{D}_{i}^{*}=\bigcup_{x \in X} \mathcal{D}_{i, x}^{*}
\end{gathered}
$$

and

$$
\mathcal{D}^{*}=\bigcup_{i=1}^{N} \mathcal{D}_{i}^{*}
$$

If (X, \mathcal{D}) or $\left(X, \mathcal{D}^{*}\right)$ forms a t-design, we call it the constructed design.
For $t=3$, we show that (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ are 3 -designs. For $t=4$, if each resolution class of the outer design is a symmetric $2-(v, k, 1)$ design, i.e. a projective plane of order $(k-1)$ with $v=q^{2}+q+1, k=q+1$, we prove that (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ will form 4 -designs. Further, it is shown that $\left(X, \mathcal{D}_{i}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ are 2 designs. Obviously, the construction method makes clear that the constructed designs (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ are 2-resolvable, as they are the union of designs $\left(X, \mathcal{D}_{i}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$, respectively. In case $t=4$ and for suitable parameters of the outer design, the constructed design can be extended to a 3-resolvable 5-design, as shown in the subsequent section. A further investigation shows that if the inner design is also 2resolvable with L resolution classes, then the constructed design is 2-resolvable with $N L$ resolution classes. A major advantage of the method is the fact that it enables us to construct 2-resolvable t-designs with a large variety of block sizes, because there is no restriction on the parameters of the inner designs.

3 2-resolvable 3-designs

In this section we deal with the case $t=3$. We prove that (X, \mathcal{D}) and $\left(X, \mathcal{D}_{i}\right)$ are $3-(v, \ell(k-1)+1, \Lambda)$ and $2-(v, \ell(k-1)+1, \delta)$ designs, respectively. Similarly, $\left(X, \mathcal{D}^{*}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ are $3-\left(v, \ell(k-1), \Lambda^{*}\right)$ and $2-\left(v, \ell(k-1), \delta^{*}\right)$ designs. Thus, we need to determine $\Lambda, \delta, \Lambda^{*}, \delta^{*}$. Recall that we consider the complete 2-($\left.v, 2,1\right)$ design as a $t-(v, 2,0)$ design for $t \geq 3$.

$3.1(X, \mathcal{D})$ and $\left(X, \mathcal{D}_{i}\right)$ designs

We use the notation as described in the construction method. In the first step we show that $\left(X, \mathcal{D}_{i}\right)$ is a $2-(v, \ell(k-1)+1, \delta)$ design, and in the next step (X, \mathcal{D}) is a $3-(v, \ell(k-1)+1, \Lambda)$ design.

Step 1: $\left(X, \mathcal{D}_{i}\right)$ is a $2-(v, \ell(k-1)+1, \delta)$ design.
Recall that $\left(X, \mathcal{B}_{i}\right)$ is a $2-(v, k, 1)$ design and (Y, \mathcal{C}) is a $3-\left(\frac{v-1}{k-1}, \ell, \mu\right)$ design with $Y=\left\{1, \ldots, \frac{v-1}{k-1}\right\}$. As usual $\mu_{1}\left(\right.$ resp. $\left.\mu_{2}\right)$ denote the number of blocks of (Y, \mathcal{C}) containing a point (resp. two points). For a given point $x \in X$, there are $|Y|$ blocks of \mathcal{B}_{i}, say $B_{i, x}^{1}, \ldots, B_{i, x}^{|Y|}$ containing x. Let $C=\left\{j_{1}, \ldots, j_{\ell}\right\} \subseteq Y$ be a block of \mathcal{C}. Then block $D_{i, x}^{C} \in \mathcal{D}_{i, x}$ is defined by $D_{i, x}^{C}=B_{i, x}^{j_{1}} \cup \cdots \cup B_{i, x}^{j \ell}$. Now let $a, b \in X$, $a \neq b$. Let B be the unique block of \mathcal{B}_{i} containing $\{a, b\}$. We distinguish two types of points of X, namely points $x \in B$ and points $x \in X \backslash B$. If $x \in B$, then B is one of the blocks $B_{i, x}^{1}, \ldots, B_{i, x}^{|Y|}$, thus by forming the blocks of $\mathcal{D}_{i, x}$ we see that block B is contained in μ_{1} blocks of $\mathcal{D}_{i, x}$, consequently $\{a, b\}$ appears in μ_{1} blocks D of $\mathcal{D}_{i, x}$. Thus k points of B contribute $k \mu_{1}$ blocks $D \supseteq\{a, b\}$. If $x \in X \backslash B$, then $\{a, x\}$ and $\{b, x\}$ determine two distinct blocks $\{a, x, \ldots\}$ and $\{b, x, \ldots\}$ of $B_{i, x}^{1}, \ldots, B_{i, x}^{|Y|}$. All the blocks $D \in \mathcal{D}_{i, x}$ containing $\{a, x, \ldots\}$ and $\{b, x, \ldots\}$ will contain $\{a, b\}$. So, there are μ_{2} blocks D containing $\{a, x, \ldots\}$ and $\{b, x, \ldots\}$. Thus $\{a, b\}$ appears in μ_{2} blocks D of $\mathcal{D}_{i, x}$. Hence, $(v-k)$ points of $x \in X \backslash B$ contribute $(v-k) \mu_{2}$ blocks $D \supseteq\{a, b\}$. Altogether it gives

$$
\delta=k \mu_{1}+(v-k) \mu_{2} .
$$

Hence, $\left(X, \mathcal{D}_{i}\right)$ is a $2-(v, \ell(k-1)+1, \delta)$ design.
Step 2: (X, \mathcal{D}) is a $3-(v, \ell(k-1)+1, \Lambda)$ design.
Let $T=\{a, b, c\} \subseteq X$. Note that among the N resolution classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{N}$ of (X, \mathcal{D}) there are λ classes, say, $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\lambda}$ having the property that each has a unique block containing T.
(i) We first focus on blocks D containing T constructed from classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\lambda}$. Consider \mathcal{B}_{1}. Let B be its unique block containing T. Each point of B gives μ_{1} blocks D containing T. Whereas, each point of $X \backslash B$ gives μ blocks D containing T. Thus class \mathcal{B}_{1} contributes $k \mu_{1}+(v-k) \mu$ blocks $D \supseteq T$. It follows that the classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\lambda}$ together give $\lambda\left(k \mu_{1}+(v-k) \mu\right)$ blocks $D \supseteq T$.
(ii) The remaining $N-\lambda=\lambda \frac{v-k}{k-2}$ classes $\mathcal{B}_{\lambda+1}, \ldots, \mathcal{B}_{N}$ of (X, \mathcal{B}) have the property that $|B \cap T| \leq 2$, for any block $B \in \mathcal{B}_{i}, i=\lambda+1, \ldots, N$. Consider $\mathcal{B}_{\lambda+1}$. Let $B_{a b}=\left\{a, b, x_{2}, \ldots, x_{k}\right\}, B_{a c}=\left\{a, c, y_{2}, \ldots, y_{k}\right\}$, and $B_{b c}=\left\{b, c, z_{2}, \ldots, z_{k}\right\}$ be three unique blocks in $\mathcal{B}_{\lambda+1}$ containing $\{a, b\},\{a, c\},\{b, c\}$, respectively. Two types of points of X need to be distinguished
(I) $3(k-1)$ points of $B_{a b} \cup B_{a c} \cup B_{b c}$,
(II) $(v-3(k-1))$ points of $X \backslash B_{a b} \cup B_{a c} \cup B_{b c}$.

Each point of type (I) gives μ_{2} blocks $D \supseteq T$. Hence points of type (I) contribute $3(k-1) \mu_{2}$ blocks $D \supseteq T$.
Each point of type (II) gives μ blocks $D \supseteq T$. Hence points of type (II) contribute $(v-3(k-1)) \mu$ blocks $D \supseteq T$.
It follows that all $N-\lambda$ classes $\mathcal{B}_{\lambda+1}, \ldots, \mathcal{B}_{N}$ contribute

$$
(N-\lambda)\left(3(k-1) \mu_{2}+(v-3(k-1)) \mu\right)
$$

blocks $D \supseteq T$.
Hence, Cases (i) and (ii) together show that

$$
\Lambda=\lambda\left(k \mu_{1}+(v-k) \mu\right)+(N-\lambda)\left(3(k-1) \mu_{2}+(v-3(k-1)) \mu\right)
$$

Thus (X, \mathcal{D}) is a 3 -design.
To compute the values of Λ and δ in terms of v, k, λ, ℓ, μ we have to separate two cases: $\ell=2$ and $\ell=3$.
$\ell=2$:
In this case the inner design is the $2-\left(\frac{v-1}{k-1}, 2,1\right)$ design, which is considered as a degenerated 3 -design with $\mu=0, \mu_{2}=1$ and $\mu_{1}=\frac{v-k}{k-1}$. Therefore

$$
\begin{aligned}
\delta & =k \mu_{1}+(v-k) \mu_{2} \\
& =k \frac{v-k}{k-1}+(v-k) \\
& =(v-k) \frac{(2 k-1)}{(k-1)}
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda & =\lambda\left(k \mu_{1}+(v-k) \mu\right)+(N-\lambda)\left(3(k-1) \mu_{2}+(v-3(k-1)) \mu\right) \\
& =\lambda\left(k \frac{v-k}{k-1}\right)+\lambda \frac{v-k}{k-2}(3(k-1)) \\
& =\lambda(v-k) \frac{(2 k-1)(2 k-3)}{(k-1)(k-2)} .
\end{aligned}
$$

$\ell \geq 3:$

The inner design with parameters $3-\left(\frac{v-1}{k-1}, \ell, \mu\right)$ will give $\mu_{2}=\mu \frac{(v-2 k+1)}{(k-1)(\ell-2)}$ and $\mu_{1}=\mu \frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)}$. Replacing μ_{2} and μ_{1} by their values in the formulas for δ and Λ and so simplifying we obtain

$$
\begin{aligned}
\delta & =k \mu_{1}+(v-k) \mu_{2} \\
& =k \mu \frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)}+(v-k) \mu \frac{(v-2 k+1)}{(k-1)(\ell-2)} \\
& =\frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)} \mu(k \ell-\ell+1),
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda= & \lambda\left(k \mu_{1}+(v-k) \mu\right)+\lambda \frac{(v-k)}{(k-2)}\left(3(k-1) \mu_{2}+(v-3(k-1)) \mu\right) \\
= & \lambda\left(k \mu \frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)}+(v-k) \mu\right)+ \\
& \lambda \frac{(v-k)}{(k-2)}\left(3(k-1) \mu \frac{(v-2 k+1)}{(k-1)(\ell-2)}+(v-3(k-1)) \mu\right) \\
= & \frac{(v-k)(v-2 k+1)}{(k-1)^{2}(k-2)(\ell-1)(\ell-2)} \lambda \mu\left((k-1)^{2} \ell^{2}-1\right) .
\end{aligned}
$$

3.1.1 The case with 2-resolvable inner designs

We further study the resolvability of the constructed designs when the inner designs are 2-resolvable. Suppose that the inner $3-\left(\frac{v-1}{k-1}, \ell, \mu\right)$ design (Y, \mathcal{C}) is 2-resolvable with L resolution classes. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{L}$ be the L classes of (Y, \mathcal{C}). Then

$$
(Y, \mathcal{C})=\left(Y, \mathcal{C}_{1}\right) \cup \cdots \cup\left(Y, \mathcal{C}_{L}\right)
$$

where each $\left(Y, \mathcal{C}_{i}\right)$ is a $2-\left(\frac{v-1}{k-1}, \ell, \frac{\mu_{2}}{L}\right)$ design, and $\mu_{2}=\mu \frac{v-2 k+1}{(k-1)(\ell-2)}$. It follows that

$$
\left(X, \mathcal{D}_{i}\right)=\left(X, \mathcal{E}_{i}^{(1)}\right) \cup \cdots \cup\left(X, \mathcal{E}_{i}^{(L)}\right)
$$

This is because the $2-(v, \ell(k-1)+1, \delta)$ design $\left(X, \mathcal{D}_{i}\right)$ constructed from $\left(X, \mathcal{B}_{i}\right)$ and (Y, \mathcal{C}) in Step 1 is the union of L disjoint $2-\left(v, \ell(k-1)+1, \frac{\delta}{L}\right)$ designs $\left(X, \mathcal{E}_{i}^{(j)}\right)$, $j=1, \ldots, L$. Each $\left(X, \mathcal{E}_{i}^{(j)}\right)$ is the 2-design constructed from $\left(X, \mathcal{B}_{i}\right)$ and $\left(Y, \mathcal{C}_{j}\right)$.

As a result, the constructed design (X, \mathcal{D}) is 2-resolvable with $N L$ resolution classes, and each class is a $2-\left(v, \ell(k-1)+1, \frac{\delta}{L}\right)$ design.

$3.2\left(X, \mathcal{D}^{*}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ designs

To show that $\left(X, \mathcal{D}^{*}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ are designs, a very similar proof as above is to be employed, therefore it will be omitted. The results show that $\left(X, \mathcal{D}_{i}^{*}\right)$ is a 2 $\left(v, \ell(k-1), \delta^{*}\right)$ design with

$$
\delta^{*}=(k-2) \mu_{1}+(v-k) \mu_{2},
$$

and $\left(X, \mathcal{D}^{*}\right)$ is a $3-\left(v, \ell(k-1), \Lambda^{*}\right)$ design with

$$
\Lambda^{*}=\lambda\left((k-3) \mu_{1}+(v-k) \mu\right)+\lambda \frac{(v-k)}{(k-2)}\left(3(k-2) \mu_{2}+(v-3(k-1)) \mu\right)
$$

Putting the explicit values of μ_{1}, μ_{2}, both δ^{*} and Λ^{*} are expressed in terms of v, k, λ, ℓ, μ as shown in the next theorem.

The resolvability of $\left(X, \mathcal{D}^{*}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ is the same as that of (X, \mathcal{D}) and $\left(X, \mathcal{D}_{i}\right)$.
We summarize the results in the following theorem.
Theorem 3.1 Assume that the following designs exist.
(i) A 2-resolvable $3-(v, k, \lambda)$ design (X, \mathcal{B}) having $N=\lambda \frac{v-2}{k-2}$ resolution classes and each class is a $2-(v, k, 1)$ design.
(ii) A $3-\left(\frac{v-1}{k-1}, \ell, \mu\right) \operatorname{design}(Y, \mathcal{C})$.

Then there exist 2-resolvable 3- $(v,(k-1) \ell+1, \Lambda)$ and $3-\left(v,(k-1) \ell, \Lambda^{*}\right)$ designs (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$, with N resolution classes, where each class is a $2-(v,(k-1) \ell+1, \delta)$ and $2-\left(v,(k-1) \ell, \delta^{*}\right)$ design, respectively.
(i) $\operatorname{For} \ell=2$,

$$
\begin{aligned}
\Lambda & =\lambda(v-k) \frac{(2 k-1)(2 k-3)}{(k-1)(k-2)}, \quad \delta=(v-k) \frac{(2 k-1)}{(k-1)} \\
\Lambda^{*} & =2 \lambda(v-k) \frac{(2 k-3)}{(k-1)}, \quad \delta^{*}=(v-k) \frac{(2 k-3)}{(k-1)}
\end{aligned}
$$

(ii) For $\ell \geq 3$,

$$
\begin{aligned}
\Lambda & =\frac{(v-k)(v-2 k+1)}{(k-1)^{2}(k-2)(\ell-1)(\ell-2)} \lambda \mu\left((k-1)^{2} \ell^{2}-1\right) \\
\delta & =\frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)} \mu(k \ell-\ell+1) \\
\Lambda^{*} & =\frac{(v-k)(v-2 k+1)}{(k-1)^{2}(k-2)(\ell-1)(\ell-2)} \lambda \mu((\ell(k-1)-1)(\ell(k-1)-2)), \\
\delta^{*} & =\frac{(v-k)(v-2 k+1)}{(k-1)^{2}(\ell-1)(\ell-2)} \mu(k \ell-\ell-1)
\end{aligned}
$$

Further, if (Y, \mathcal{C}) is 2-resolvable with L resolution classes, then (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ are 2-resolvable with $N L$ resolution classes and each class is a 2-$\left(v,(k-1) \ell+1, \frac{\delta}{L}\right)$ and $2-\left(v,(k-1) \ell, \frac{\delta^{*}}{L}\right)$ design, respectively.

To illustrate the effectiveness of Theorem 3.1 we show a concrete example. For the outer design take a $3-(64,4,1)$ design [4] which is partitioned into $N=31$ Steiner 2$(64,4,1)$ designs. The inner design can be chosen from all possible $3-(21, \ell, \mu)$ designs with the following parameters.

1. $2-(21,2,1)$,
2. $3-(21,3,1)$,
3. $3-(21,4, m 6), 1 \leq m \leq 3$
4. $3-(21,5, m 3), 1 \leq m \leq 51$
5. $3-(21,6, m 4), 1 \leq m \leq 204$
6. $3-(21,7, m 15), 1 \leq m \leq 204$
7. $3-(21,8, m 84), 1 \leq m \leq 102$
8. $3-(21,9, m 42), 1 \leq m \leq 442$
9. $3-(21,10, m 72), 1 \leq m \leq 442$.

The existence of $3-(21, \ell, \mu)$ designs above for $4 \leq \ell \leq 10$ can be found in [7]. For each value of m for which a $3-(21, \ell, \mu)$ design exists, the parameters of 2-resolvable $3-(64,3 \ell+1, \Lambda)$ and $3-\left(64,3 \ell, \Lambda^{*}\right)$ designs for $\ell=2, \ldots, 10$, and their corresponding 2 -designs in the resolution constructed from Theorem 3.1 are as follows.
(i) $3-(64,7,70 \times 5), 2-(64,7,70 \times 2)$,
$3-(64,6,20 \times 10), 2-(64,6,20 \times 5)$,
(ii) $3-(64,10,380 \times 20), 2-(64,10,20 \times 5)$,
$3-(64,9,190 \times 28), 2-(64,9,10 \times 8)$,
(iii) $3-(64,13,95 \mathrm{~m} \times 286), 2-(64,13,95 \mathrm{~m} \times 52)$,
$3-(64,12,380 m \times 55), 2-(64,12,380 m \times 11), \quad 1 \leq m \leq 3$,
(iv) $3-(64,16,304 m \times 35), 2-(64,16,304 m \times 5)$,
$3-(64,15,133 m \times 65), 2-(64,15,133 m \times 10), \quad 1 \leq m \leq 51$,
(v) $3-(64,19,38 m \times 323), 2-(64,19,38 m \times 38)$,
$3-(64,18,76 m \times 136), 2-(64,18,76 m \times 17), \quad 1 \leq m \leq 204$,
(vi) $3-(64,22,380 \mathrm{~m} \times 110), 2-(64,22,380 \mathrm{~m} \times 11)$,
$3-(64,21,190 m \times 190), 2-(64,21,190 m \times 20), \quad 1 \leq m \leq 204$,
(vii) $3-(64,25,95 m \times 2300), 2-(64,25,95 m \times 200)$,
$3-(64,24,760 m \times 253), 2-(64,24,760 m \times 23), \quad 1 \leq m \leq 102$,
(viii) $3-(64,28,2660 m \times 39), 2-(64,28,2660 m \times 3)$,
$3-(64,27,95 m \times 975), 2-(64,27,95 m \times 78), \quad 1 \leq m \leq 442$,
(ix) $3-(64,31,1178 m \times 145), 2-(64,31,38 m \times 310)$,
$3-(64,30,76 m \times 2030), 2-(64,30,76 m \times 145), \quad 1 \leq m \leq 442$.

Remarks 3.1

1. Observe that all values of Λ and Λ^{*} of the constructed designs above are really small. For example, by taking a $3-(21,9,42)$ design as the inner design, the parameters of the $3-\left(64,27, \Lambda^{*}\right)$ constructed design become $3-(64,27,95 \times 975)$, compared with its general parameters $3-\left(64,27, m^{*} \times 975\right)$, where $1 \leq m^{*} \leq$ 60961764003119. Even if the complete $3-(21,9,442 \times 42)$ design is used, the corresponding constructed design will be of parameters $3-(64,27,41990 \times 975)$, showing that $m^{*}=41990 \ll 60961764003119$ is still quite small.
2. The constructed $3-(64,10,380 \times 20)$ and $3-(64,9,190 \times 28)$ designs under $(i i)$ are 2-resolvable with $N L=31.19=589$ resolution classes each, this is because the 3 - $(21,3,1)$ inner design can be partitioned into $L=19$ Steiner 2- $(21,3,1)$ designs.
Other examples are the $3-(64,13,95 m \times 286)$ and $3-(64,12,380 m \times 55)$ designs with $m=3$ from ($i i i$). Here, the inner design is the complete $3-(21,4,3 \times 6)$ design, which again can be partitioned into $L=19$ disjoint 2-($21,4,9$) designs. Thus, both $3-(64,13,95 * 3 \times 286)$ and $3-(64,12,380 * 3 \times 55)$ designs are 2 resolvable with $N L=589$ resolution classes.
In general, when the inner design is the complete $3-\left(21, \ell,\binom{18}{\ell-3}\right)$ design, we may employ the knowledge of large sets $L S_{L}(2, \ell, 21)$ to obtain further refinement of the resolution for the constructed design. For instance, there are $L S_{17}(2, \ell, 21)$ for $\ell=5,6,7,8$, thus the constructed designs under (iv), (v), (vi), (vii) have $N L=31.17=527$ resolution classes.

The following corollaries show some applications of Theorem 3.1. It is a wellknown result that there exists an $L S_{\nu_{\text {min }}}(2,3, v)$ for $v \neq 7$. In particular, if $v \equiv 1,3$ $(\bmod 6)$, then $\nu_{\min }=1$, i.e. the $3-(v, 3,1)$ design can be partitioned into $N=(v-2)$ disjoint $2-(v, 3,1)$ designs. Take the $3-(v, 3,1)$ design as the outer design. Take the $2-\left(\frac{v-1}{2}, 2,1\right)$ and $3-\left(\frac{v-1}{2}, 3,1\right)$ design as the inner design. Again, in the second case the $3-\left(\frac{v-1}{2}, 3,1\right)$ design is 2-resolvable with $L=\frac{v-5}{2 \nu_{\text {min }}}$ resolution classes, each class is a $2-\left(\frac{v-1}{2}, 3, \nu_{\text {min }}\right)$. Now applying Theorem 3.1 we have the following result.

Corollary 3.2 Let $\nu_{\text {min }}=\nu_{\text {min }}\left(2,3, \frac{v-1}{2}\right)$, where v is an integer such that $v \equiv 1,3$ $(\bmod 6), v \neq 7$. Let $N=(v-2)$ and $L=\frac{v-5}{2 \nu_{\min }}$. Then
(i) There exists a 2-resolvable $3-\left(v, 5, \frac{15}{2}(v-3)\right)$ design having $N=(v-2)$ resolution classes, each class is a $2-\left(v, 5, \frac{5}{2}(v-3)\right)$ design.
(ii) There exists a 2-resolvable $3-\left(v, 7, \frac{35}{8}(v-3)(v-5)\right)$ design having $N L$ resolution classes, each class is a $2-\left(v, 7, \frac{7}{4} \nu_{\min }(v-3)\right)$ design.
(iii) There exists a 2-resolvable 3-(v,6, $\left.\frac{5}{2}(v-3)(v-5)\right)$ design having $N L$ resolution classes, each class is a $2-\left(v, 6, \frac{5}{4} \nu_{\min }(v-3)\right)$ design.

For $n \geq 2$ there is a 2 -resolvable $3-\left(2^{2 n}, 4,1\right)$ design with $N=2^{2 n-1}-1$ resolution classes and each class is a $2-\left(2^{2 n}, 4,1\right)$ design, see [4]. Take this design as the outer design. Now any $3-\left(\frac{2^{2 n}-1}{3}, \ell, \mu\right)$ design can be used as the inner design. Thus it produces innumerable 2-resolvable 3 -designs with a large variety of block sizes. As an example, the next corollary shows the results for the first two cases with $\ell=2,3$, i.e. the inner design is the $2-\left(\frac{2^{2 n}-1}{3}, 2,1\right)$ and $3-\left(\frac{2^{2 n}-1}{3}, 3,1\right)$ design. Again, note that the $3-\left(\frac{2^{2 n}-1}{3}, 3,1\right)$ design can be partitioned into $L=\frac{2^{2 n}-7}{3 \nu_{\text {min }}}$ classes of $2-\left(\frac{2^{2 n}-1}{3}, 3, \nu_{\text {min }}\right)$ designs.

Corollary 3.3 Let $\nu_{\text {min }}=\nu_{\text {min }}\left(2,3, \frac{\left(2^{2 n}-1\right)}{3}\right), n \geq 2$. Let $N=\left(2^{2 n-1}-1\right)$ and $L=$ $\frac{2^{2 n}-7}{3 \nu_{\text {min }}}$. Then
(i) There exists a 2-resolvable $3-\left(2^{2 n}, 7, \frac{35}{6}\left(2^{2 n}-4\right)\right)$ design having N resolution classes, each class is a $2-\left(2^{2 n}, 7, \frac{7}{3}\left(2^{2 n}-4\right)\right)$ design.
(ii) There exists a 2-resolvable $3-\left(2^{2 n}, 6, \frac{10}{3}\left(2^{2 n}-4\right)\right)$ design having N resolution classes, each class is a $2-\left(2^{2 n}, 6, \frac{5}{3}\left(2^{2 n}-4\right)\right)$ design.
(iii) There exists a 2-resolvable 3-($\left.2^{2 n}, 10, \frac{20}{9}\left(2^{2 n}-4\right)\left(2^{2 n}-7\right)\right)$ design having $N L$ resolution classes, each class is a $2-\left(2^{2 n}, 10, \frac{5}{3} \nu_{\min }\left(2^{2 n}-4\right)\right)$ design.
(iv) There exists a 2-resolvable $3-\left(2^{2 n}, 9, \frac{14}{9}\left(2^{2 n}-4\right)\left(2^{2 n}-7\right)\right)$ design having $N L$ resolution classes, each class is a $2-\left(2^{2 n}, 9, \frac{4}{3} \nu_{\min }\left(2^{2 n}-4\right)\right)$ design.

4 2-resolvable 4-designs

This section deals with the case, where the designs in the resolution of the outer design are symmetric $2-(v, k, 1)$ designs, i.e. each resolution class is a projective plane of parameters $2-\left(q^{2}+q+1, q+1,1\right)$. Obviously, $\left(X, \mathcal{D}_{i}\right)$ and $\left(X, \mathcal{D}_{i}^{*}\right)$ are 2-designs, as shown in the previous section. We prove that (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ are 4-designs.

$4.14-(v, \ell(k-1)+1, \Lambda) \operatorname{design}(X, \mathcal{D})$

Again use the notation as described in the construction method. We omit the proof that $\left(X, \mathcal{D}_{i}\right)$ is a $2-(v, \ell(k-1)+1, \delta)$ design, as it is the same as that in the previous section. Here, we focus on the proof in the main step that (X, \mathcal{D}) is a $4-(v, \ell(k-1)+$ $1, \Lambda)$ design.

Main step: (X, \mathcal{D}) is a $4-(v, \ell(k-1)+1, \Lambda)$ design.
To simplify the writing we temporarily keep the parameters $2-(v, k, 1)$ for the symmetric design of the resolution, and will replace them with $2-\left(q^{2}+q+1, q+1,1\right)$ at the end of the proof.

Let $T=\{a, b, c, d\} \subseteq X$. With respect to T, there are three types of resolution classes:
(i) Classes having a unique block B containing T,
(ii) Classes having a unique block B with $|B \cap T|=3$,
(iii) Classes having only blocks B with $|B \cap T| \leq 2$.

The number of classes of type (i) is λ, of type (ii) $4\left(\lambda \frac{v-3}{k-3}-\lambda\right)=4 \lambda \frac{v-k}{k-3}$. The remaining $N-\left(4 \lambda \frac{v-k}{k-3}+\lambda\right)$ classes are of type (iii). So, w.l.o.g., we may assume that $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\lambda}$ are classes of type (i) and $\mathcal{B}_{\lambda+1}, \ldots, \mathcal{B}_{\lambda+4 \lambda \frac{v-k}{k-3}}$ classes of type (ii).
(i) Consider class \mathcal{B}_{1} of type (i). Let B be its unique block containing T. Each point of B gives μ_{1} blocks D containing T. Whereas, each point of $X \backslash B$ gives μ blocks D containing T. Thus class \mathcal{B}_{1} produces $k \mu_{1}+(v-k) \mu$ blocks D. It follows that the classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\lambda}$ together give $\lambda\left(k \mu_{1}+(v-k) \mu\right)$ blocks $D \supseteq T$.
(ii) Each of $\mathcal{B}_{\lambda+1}, \ldots, \mathcal{B}_{\lambda+4 \lambda \frac{v-k}{k-3}}$ classes of type (ii) has a unique block B with $\mid B \cap$ $T \mid=3$. Consider class $\mathcal{B}_{\lambda+1}$. There are four 3 -subsets of T. So, w.l.o.g., we assume that $B \cap T=\{a, b, c\}$. Let $B:=B_{a b c}=\left\{a, b, c, u_{3}, \ldots, u_{k}\right\}, B_{d a}=$ $\left\{d, a, x_{2}, \ldots, x_{k}\right\}, B_{d b}=\left\{d, b, y_{2}, \ldots, y_{k}\right\}$, and $B_{d c}=\left\{d, c, z_{2}, \ldots, z_{k}\right\}$ be the four unique blocks in $\mathcal{B}_{\lambda+1}$ containing $\{a, b, c\},\{d, a\},\{d, b\}$ and $\{d, c\}$, respectively. In $\mathcal{B}_{\lambda+1}$, the contribution to blocks $D \supseteq T$ depends on three distinct point types of X, that are the following.
(I) k points of $B_{a b c}$. These points produce $k \mu_{2}$ blocks $D \supseteq T$.
(II) $1+3(k-2)=3 k-5$ points of $B_{d a}, B_{d b}$ and $B_{d c}$ different from a, b, c. These points give $(3 k-5) \mu_{3}$ blocks $D \supseteq T$.
(III) $(v-4 k+5)$ points of $X \backslash B_{a b c} \cup B_{d a} \cup B_{d b} \cup B_{d c}$. These points produce $(v-4 k+5) \mu$ blocks $D \supseteq T$.

So, class $\mathcal{B}_{\lambda+1}$ gives $\left(k \mu_{2}+(3 k-5) \mu_{3}+(v-4 k+5) \mu\right)$ blocks $D \supseteq T$. It follows that for all four 3 -subsets $\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$ of T, the $4 \lambda \frac{v-k}{k-3}$ classes of type (ii) produce $4 \lambda \frac{v-k}{k-3}\left(k \mu_{2}+(3 k-5) \mu_{3}+(v-4 k+5) \mu\right)$ blocks $D \supseteq T$ in total.
(iii) Consider the remaining $N-\left(4 \lambda \frac{v-k}{k-3}+\lambda\right)$ classes of type (iiii). Let \mathcal{B}_{j} be such a class. Since $\left(X, \mathcal{B}_{j}\right)$ is a $2-(v, k, 1)$ projective plane, and $|B \cap T| \leq 2$ for any block $B \in \mathcal{B}_{j}$, the 6 pairs of points of $T=\{a, b, c, d\}$ are on 6 unique blocks.

$$
\begin{aligned}
B_{a b} & =\left\{a, b, x_{3}, x_{4}, \ldots, x_{k}\right\}, \\
B_{c d} & =\left\{c, d, x_{3}, y_{4}, \ldots, y_{k}\right\}, \\
B_{a d} & =\left\{a, d, x_{3}^{\prime}, x_{4}^{\prime}, \ldots, x_{k}^{\prime}\right\}, \\
B_{b c} & =\left\{b, c, x_{3}^{\prime}, y_{4}^{\prime}, \ldots, y_{k}^{\prime}\right\}, \\
B_{a c} & =\left\{a, c, x_{3}^{\prime \prime}, x_{4}^{\prime \prime}, \ldots, x_{k}^{\prime \prime}\right\}, \\
B_{b d} & =\left\{b, d, x_{3}^{\prime \prime}, y_{4}^{\prime \prime}, \ldots, y_{k}^{\prime \prime}\right\} .
\end{aligned}
$$

These blocks partition the points of X in 3 types.
(I) $(6 k-14)$ points:

$$
a, b, c, d, x_{4}, \ldots, x_{k}, y_{4}, \ldots, y_{k}, x_{4}^{\prime}, \ldots, x_{k}^{\prime}, y_{4}^{\prime}, \ldots, y_{k}^{\prime}, x_{4}^{\prime \prime}, \ldots, x_{k}^{\prime \prime}, y_{4}^{\prime \prime}, \ldots, y_{k}^{\prime \prime}
$$

These points give $(6 k-14) \mu_{3}$ blocks $D \supseteq T$.
(II) 3 points: $x_{3}, x_{3}^{\prime}, x_{3}^{\prime \prime}$. These points give $3 \mu_{2}$ blocks $D \supseteq T$.
(III) $(v-6 k+11)$ points of $X \backslash\left(B_{a b} \cup B_{c d} \cup B_{a d} \cup B_{b c} \cup B_{a c} \cup B_{b d}\right)$. These points produce $(v-6 k+11) \mu$ blocks $D \supseteq T$.

Altogether \mathcal{D}_{j} has $3 \mu_{2}+(6 k-14) \mu_{3}+(v-6 k+11) \mu$ blocks $D \supseteq T$. Hence the $N-\left(4 \lambda \frac{v-k}{k-3}+\lambda\right)$ classes of type (iii) produce

$$
\left(N-\left(4 \lambda \frac{v-k}{k-3}+\lambda\right)\right)\left(3 \mu_{2}+(6 k-14) \mu_{3}+(v-6 k+11) \mu\right)
$$

blocks $D \supseteq T$.
In summary, cases $(i),(i i),(i i i)$ together yield

$$
\begin{aligned}
\Lambda & =\lambda\left(k \mu_{1}+(v-k) \mu\right)+4 \lambda \frac{v-k}{k-3}\left(k \mu_{2}+(3 k-5) \mu_{3}+(v-4 k+5) \mu\right) \\
& +\left(N-\left(4 \lambda \frac{v-k}{k-3}+\lambda\right)\right)\left(3 \mu_{2}+(6 k-14) \mu_{3}+(v-6 k+11) \mu\right)
\end{aligned}
$$

Putting $v=q^{2}+q+1, k=q+1, N=\lambda \frac{\left(q^{2}+q-1\right)\left(q^{2}+q-2\right)}{(q-1)(q-2)}, \mu_{i}=\mu \frac{\binom{q+1-i}{4-i}}{\binom{-i-i}{4-i}}, i=1,2,3$, we find that
(1) for $\ell=2$,

$$
\Lambda=\frac{2 \lambda q}{(q-2)}\left(4 q^{2}-1\right), \quad \delta=q(2 q+1)
$$

(2) for $\ell=3$,

$$
\Lambda=\frac{\lambda q}{2(q-2)}\left(9 q^{2}-1\right)(3 q-2), \quad \delta=\frac{q(q-1)}{2}(3 q+1)
$$

(3) for $\ell \geq 4$,

$$
\Lambda=\frac{\lambda \mu q}{(\ell-1)(\ell-2)(\ell-3)}\left(q^{2} \ell^{2}-1\right)(q \ell-2), \quad \delta=\frac{q(q-1)(q-2)(q \ell+1)}{(\ell-1)(\ell-2)(\ell-3)} \mu
$$

The 4-design (X, \mathcal{D}) is 2-resolvable with N resolutions classes, because it is the union of 2-designs $\left(X, \mathcal{D}_{i}\right)$ s. Further, if the inner design (Y, \mathcal{C}) is also 2-resolvable with L resolution classes, then the same argument as above shows that (X, \mathcal{D}) is 2-resolvable with $N L$ resolution classes.

$4.24-\left(v, \ell(k-1), \Lambda^{*}\right) \operatorname{design}\left(X, \mathcal{D}^{*}\right)$

Again, this case may be handled in a similar manner as that of (X, \mathcal{D}), and therefore we will omit the proof, despite the fact that several tiresome calculations for Λ^{*} have to be carefully carried out.

We record the results for both cases in the following theorem.
Theorem 4.1 Assume that the following designs exist.
(1) A $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design (X, \mathcal{B}) that can be partitioned into $N=$ $\lambda \frac{\left(q^{2}+q-1\right)\left(q^{2}+q-2\right)}{(q-1)(q-2)}$ symmetric $2-\left(q^{2}+q+1, q+1,1\right)$ designs, i.e. projective planes.
(2) A 4- $(q+1, \ell, \mu)$ design (Y, \mathcal{C}).

Then there exist 2-resolvable $4-\left(q^{2}+q+1, q \ell+1, \Lambda\right)$ and $4-\left(q^{2}+q+1, q \ell, \Lambda^{*}\right)$ designs (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ with N resolution classes, where each class is a $2-\left(q^{2}+q+1, q \ell+\right.$ $1, \delta)$ and a $2-\left(q^{2}+q+1, q \ell, \delta^{*}\right)$ design, respectively,
(i) For $\ell=2$,

$$
\begin{aligned}
\Lambda & =\frac{2 \lambda q}{(q-2)}\left(4 q^{2}-1\right), \quad \delta=q(2 q+1) \\
\Lambda^{*} & =\frac{2 \lambda q}{(q-2)}(2 q-1)(2 q-3), \quad \delta^{*}=q(2 q-1)
\end{aligned}
$$

(ii) For $\ell=3$,

$$
\begin{aligned}
\Lambda & =\frac{\lambda q}{2(q-2)}\left(9 q^{2}-1\right)(3 q-2), \quad \delta=\frac{q(q-1)}{2}(3 q+1) \\
\Lambda^{*} & =\frac{3 \lambda q}{2(q-2)}(3 q-1)(3 q-2)(q-1), \quad \delta^{*}=\frac{q(q-1)}{2}(3 q-1)
\end{aligned}
$$

(ii) For $\ell \geq 4$,

$$
\begin{aligned}
\Lambda & =\frac{\lambda \mu q}{(\ell-1)(\ell-2)(\ell-3)}\left(q^{2} \ell^{2}-1\right)(q \ell-2) \\
\delta & =\frac{q(q-1)(q-2)(q \ell+1)}{(\ell-1)(\ell-2)(\ell-3)} \mu \\
\Lambda^{*} & =\frac{\lambda \mu q}{(\ell-1)(\ell-2)(\ell-3)}(q \ell-1)(q \ell-2)(q \ell-3), \\
\delta^{*} & =\frac{q(q-1)(q-2)(q \ell-1)}{(\ell-1)(\ell-2)(\ell-3)} \mu
\end{aligned}
$$

Further, if (Y, \mathcal{C}) is 2-resolvable with L resolution classes, then (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ are 2-resolvable with $N L$ resolution classes and each class is a 2$\left(q^{2}+q+1, q \ell+1, \frac{\delta}{L}\right)$ and a $2-\left(q^{2}+q+1, q \ell, \frac{\delta^{*}}{L}\right)$ design, respectively.

We illustrate Theorem 4.1 by showing the following examples. Let $q=2^{m}, m \geq 5$ odd. Consider two infinite classes of 4 -designs with parameters $4-(q+1,5,5)$ and $4-(q+1,6,10)$. The first one can be found in [2] and the second in [5]. All these designs are 3-resolvable with $L=\frac{(q-2)}{6}$ resolution classes. Each resolution class of the $4-(q+1,5,5)$ designs is a $3-(q+1,5,15)$ design, which is also a $2-(q+1,5,5(q-1))$ design. Further, each resolution class of the $4-(q+1,6,10)$ designs is a $3-(q+1,6,20)$ design, which is also a $2-(q+1,6,5(q-1))$ design. Taking these $4-(q+1,5,5)$ and $4-(q+1,6,10)$ designs as the inner design (Y, \mathcal{C}) and applying Theorem 4.1 we obtain the following result.
Corollary 4.2 Let $q=2^{m}, m \geq 5$ odd and let $L=\frac{(q-2)}{6}$. Assume that there exists a $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design that can be partitioned into $N=\lambda \frac{\left(q^{2}+q-1\right)\left(q^{2}+q-2\right)}{(q-1)(q-2)}$ projective planes of order q. Then there exist 2-resolvable $4-\left(q^{2}+q+1, q \ell+1, \Lambda\right)$ and $4-\left(q^{2}+q+1, q \ell, \Lambda^{*}\right)$ designs (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ with $N L=\lambda \frac{\left(q^{2}+q-1\right)(q+2)}{6}$ resolution classes, where classes are $2-\left(q^{2}+q+1, q \ell+1, \frac{\delta}{L}\right)$ and $2-\left(q^{2}+q+1, q \ell, \frac{\delta^{*}}{L}\right)$ designs $\left(X, \mathcal{E}_{i}\right)$ and $\left(X, \mathcal{E}_{i}^{*}\right)$, respectively.
(i) $(X, \mathcal{D}): 4-\left(q^{2}+q+1,5 q+1, \Lambda\right), \quad \Lambda=\frac{5 \lambda q}{24}(5 q+1)(5 q-1)(5 q-2)$, $\left(X, \mathcal{E}_{i}\right): 2-\left(q^{2}+q+1,5 q+1, \frac{\delta}{L}\right), \quad \frac{\delta}{L}=\frac{5}{4} q(q-1)(5 q+1)$,
(ii) $\left(X, \mathcal{D}^{*}\right): 4-\left(q^{2}+q+1,5 q, \Lambda^{*}\right), \quad \Lambda^{*}=\frac{5 \lambda q}{24}(5 q-1)(5 q-2)(5 q-3)$, $\left(X, \mathcal{E}_{i}^{*}\right): 2-\left(q^{2}+q+1,5 q, \frac{\delta^{*}}{L}\right), \quad \frac{\delta^{*}}{L}=\frac{5}{4} q(q-1)(5 q-1)$,
(iii) $(X, \mathcal{D}): 4-\left(q^{2}+q+1,6 q+1, \Lambda\right), \quad \Lambda=\frac{\lambda q}{6}(6 q+1)(6 q-1)(6 q-2)$, $\left(X, \mathcal{E}_{i}\right): 2-\left(q^{2}+q+1,6 q+1, \frac{\delta}{L}\right), \quad \frac{\delta}{L}=q(q-1)(6 q+1)$,
(iv) $\left(X, \mathcal{D}^{*}\right): 4-\left(q^{2}+q+1,6 q, \Lambda^{*}\right), \quad \Lambda^{*}=\frac{\lambda q}{6}(6 q-1)(6 q-2)(6 q-3)$, $\left(X, \mathcal{E}_{i}^{*}\right): 2-\left(q^{2}+q+1,6 q, \frac{\delta^{*}}{L}\right), \quad \frac{\delta^{*}}{L}=q(q-1)(6 q-1)$.

Under the condition of Corollary 4.2 we may find more infinite classes of 2-resolvable 4 -designs by using the inner design (Y, \mathcal{C}) as 3 -resolvable $4-(q+1, k, \lambda)$ designs for $k=8,9$ in $[5,17]$.

We include a further application of Theorem 4.1. In [12] Teirlinck proves that an $L S_{\nu_{\text {min }}}(3,4, n)$ exists if $n \equiv 0(\bmod 3)$. Let q be a prime power such that $q \equiv 2$ $(\bmod 3)$. Take the $4-(q+1,4,1)$ design as the inner design, which is the union of L disjoint $3-\left(q+1,4, \nu_{\min }\right)$ designs. Thus $L=\frac{q-2}{\nu_{\min }}$. Notice that a $3-\left(q+1,4, \nu_{\min }\right)$ design is also a $2-\left(q+1,4, \nu_{\min } \frac{q-1}{2}\right)$ design. Now applying Theorem 4.1 gives the following result.

Corollary 4.3 Let q be a prime power such that $q \equiv 2(\bmod 3)$. Let $\nu_{\min }=\nu_{\min }(3,4, q+$ 1) and let $L=\frac{q-2}{\nu_{\text {min }}}$. Assume that there exists a $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design that can be partitioned into $N=\lambda \frac{\left(q^{2}+q-1\right)\left(q^{2}+q-2\right)}{(q-1)(q-2)}$ projective planes of order q. Then there exist 2-resolvable $4-\left(q^{2}+q+1,4 q+1, \Lambda\right)$ and $4-\left(q^{2}+q+1,4 q, \Lambda^{*}\right)$ designs (X, \mathcal{D}) and $\left(X, \mathcal{D}^{*}\right)$ with $N L=\frac{\lambda}{\nu_{\min }}\left(q^{2}+q-1\right)(q+2)$ resolution classes, where classes are $2-\left(q^{2}+q+1,4 q+1, \frac{\delta}{L}\right)$ and $2-\left(q^{2}+q+1,4 q, \frac{\delta^{*}}{L}\right)$ designs $\left(X, \mathcal{E}_{i}\right)$ and $\left(X, \mathcal{E}_{i}^{*}\right)$, respectively.
(i) $(X, \mathcal{D}): 4-\left(q^{2}+q+1,4 q+1, \Lambda\right), \quad \Lambda=\frac{\lambda q}{6}(4 q-1)(4 q+1)(4 q-2)$, $\left(X, \mathcal{E}_{i}\right): 2-\left(q^{2}+q+1,4 q+1, \frac{\delta}{L}\right), \quad \frac{\delta}{L}=\nu_{\min } \frac{q(q-1)(4 q+1)}{6}$,
(ii) $\left(X, \mathcal{D}^{*}\right): 4-\left(q^{2}+q+1,4 q, \Lambda^{*}\right), \quad \Lambda^{*}=\frac{\lambda q}{6}(4 q-1)(4 q-2)(4 q-3)$, $\left(X, \mathcal{E}_{i}^{*}\right): 2-\left(q^{2}+q+1,4 q, \frac{\delta^{*}}{L}\right), \quad \frac{\delta^{*}}{L}=\nu_{\min } \frac{q(q-1)(4 q-1)}{6}$.

5 5-designs

Let us take a close look at the constructed design $\left(X, \mathcal{D}^{*}\right)$ with parameters $4-\left(q^{2}+q+\right.$ $\left.1, q \ell, \Lambda^{*}\right)$ in Theorem 4.1, when q is odd. Observe that if the inner design (Y, \mathcal{C}) is a $4-\left(q+1, \frac{q+1}{2}, \mu\right)$ design, then the parameters of $\left(X, \mathcal{D}^{*}\right)$ become $4-\left(q^{2}+q+1, \frac{q(q+1)}{2}, \Lambda^{*}\right)$. In this case, $\left(X, \mathcal{D}^{*}\right)$ can be extended to a $5-\left(q^{2}+q+2, \frac{q(q+1)}{2}+1, \Lambda^{*}\right)$ design, by a theorem of Alltop [2, 3], which is described as follows.

Let (X, \mathcal{B}) be a $t-(2 k+1, k, \lambda)$ design with t even, and let $\infty \notin X$. Define

$$
\begin{aligned}
\mathcal{B}^{+} & =\{B \cup\{\infty\} \mid B \in \mathcal{B}\} \\
\mathcal{B}^{-} & =\{X \backslash B \mid B \in \mathcal{B}\}
\end{aligned}
$$

Then $\left(X \cup\{\infty\}, \mathcal{B}^{+} \cup \mathcal{B}^{-}\right)$is a $(t+1)-(2 k+2, k+1, \lambda)$ design.
We prove the following lemma.
Lemma 5.1 Let (X, \mathcal{B}) be a $t-(2 k+1, k, \lambda)$ design with t even. Let $\left(X \cup\{\infty\}, \mathcal{B}^{+} \cup \mathcal{B}^{-}\right)$ be its $(t+1)-(2 k+2, k+1, \lambda)$ extending design. Assume that (X, \mathcal{B}) is s-resolvable with N resolution classes; each class is an $s-(2 k+1, k, \delta)$ design.
(i) If s is even, then the extending design is $(s+1)$-resolvable with N resolution classes, each class is an $(s+1)-(2 k+2, k+1, \delta)$ design.
(ii) If s is odd, then the extending design is s-resolvable with N resolution classes, each class is an $s-\left(2 k+2, k+1, \delta \frac{2 k+2-s}{k+1-s}\right)$ design.

Proof. Let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{N}$ be the N resolution classes of (X, \mathcal{B}), where each $\left(X, \mathcal{B}_{i}\right)$ is an $s-(2 k+1, k, \delta)$ design and $\delta=\frac{\lambda_{s}}{N}$.
(i) s even. Applying the Alltop theorem, we find

$$
\begin{aligned}
& \mathcal{B}^{+}=\mathcal{B}_{1}^{+} \cup \cdots \cup \mathcal{B}_{N}^{+}, \\
& \mathcal{B}^{-}=\mathcal{B}_{1}^{-} \cup \cdots \cup \mathcal{B}_{N}^{-} .
\end{aligned}
$$

Hence

$$
\mathcal{B}^{+} \cup \mathcal{B}^{-}=\left(\mathcal{B}_{1}^{+} \cup \mathcal{B}_{1}^{-}\right) \cup \cdots \cup\left(\mathcal{B}_{N}^{+} \cup \mathcal{B}_{N}^{-}\right) .
$$

Each $\left(X \cup\{\infty\}, \mathcal{B}_{i}^{+} \cup \mathcal{B}_{i}^{-}\right)$is an $(s+1)-(2 k+2, k+1, \delta)$ design, for $i=1, \ldots, N$. Thus, $\left(X \cup\{\infty\}, \mathcal{B}^{+} \cup \mathcal{B}^{-}\right)$is $(s+1)$-resolvable.
(ii) s odd. Each class $\left(X, \mathcal{B}_{i}\right)$ is an $s-(2 k+1, k, \delta)$ design. Thus, $\left(X, \mathcal{B}_{i}\right)$ may be considered as an $(s-1)-\left(2 k+1, k, \delta_{s-1}\right)$ design with $(s-1)$ even and $\delta_{s-1}=\delta \frac{2 k+1-(s-1)}{k-(s-1)}$. Again, applying the Alltop theorem shows that the extending design $\left(X \cup\{\infty\}, \mathcal{B}^{+} \cup \mathcal{B}^{-}\right)$is s-resolvable, and each resolution class is an $s-\left(2 k+2, k+1, \delta \frac{2 k+2-s}{k+1-s}\right)$ design.
Thus, starting with an inner design (Y, \mathcal{C}) of parameters $4-\left(q+1, \frac{q+1}{2}, \mu\right)$ for q odd and applying Lemma 5.1 we find that the constructed design $\left(X, \mathcal{D}^{*}\right)$ in Theorem 4.1 is extended to a 3 -resolvable 5-design $\left(X \cup\{\infty\}, \mathcal{D}^{*+} \cup \mathcal{D}^{*-}\right)$.

We state the result in the following theorem.
Theorem 5.2 Let q be an odd positive integer. Assume that there is a 2-resolvable $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design with $N=\lambda \frac{\left(q^{2}+q-1\right)\left(q^{2}+q-2\right)}{(q-1)(q-2)}$ resolution classes, each class is a symmetric $2-\left(q^{2}+q+1, q+1,1\right)$ design. Assume that there is also a 4 $\left(q+1, \frac{q+1}{2}, \mu\right)$ design. Then there is a 3-resolvable $5-\left(q^{2}+q+2, \frac{q(q+1)}{2}+1, \Lambda^{*}\right)$ design with N resolution classes; each class is a $3-\left(q^{2}+q+2, \frac{q(q+1)}{2}+1, \delta^{*}\right)$ design, where Λ^{*} and δ^{*} are as follows.
(i) For $q=3$,

$$
\begin{aligned}
\Lambda^{*} & =\frac{2 \lambda q}{(q-2)}(2 q-1)(2 q-3)=90 \\
\delta^{*} & =q(2 q-1)=15
\end{aligned}
$$

(ii) For $q=5$,

$$
\begin{aligned}
\Lambda^{*} & =\frac{3 \lambda q}{2(q-2)}(3 q-1)(3 q-2)(q-1)=\lambda 1820 \\
\delta^{*} & =\frac{q(q-1)}{2}(3 q-1)=140
\end{aligned}
$$

(iii) For $q \geq 7$,

$$
\begin{aligned}
\Lambda^{*} & =\frac{\lambda \mu q}{(q-3)(q-5)}(q+2)\left(q^{2}+q-4\right)\left(q^{2}+q-6\right) \\
\delta^{*} & =\frac{4 q(q-1)\left(q^{2}-4\right)}{(q-3)(q-5)} \mu
\end{aligned}
$$

Further, if the $4-\left(q+1, \frac{q+1}{2}, \mu\right)$ design is 2-resolvable with L resolution classes, then the $5-\left(q^{2}+q+2, \frac{q(q+1)}{2}+1, \Lambda^{*}\right)$ design is 3-resolvable with $N L$ resolution classes and each class is a $3-\left(q^{2}+q+2, \frac{q(q+1)}{2}+1, \frac{\delta^{*}}{L}\right)$ design.

In 1978, Magliveras conjectured that there will exist a large set of projective planes of order q for $q \geq 3$, provided q is the order of a projective plane. This conjecture is
still an unsettled problem, except for $q=3$, [8]. The main assumption of Theorems 4.1 and 5.2 is the existence of a 2-resolvable $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design as the outer design, whose resolution classes are projective planes of order q. In particular, if we take the complete $4-\left(q^{2}+q+1, q+1,\binom{q^{2}+q-3}{q-3}\right)$ design as the outer design, then the assumption is equivalent to the existence of a large set of projective planes of order q. To further clarify Theorems 4.1 and 5.2 we focus on this special case.

Consider case (i) with $q=3$ of Theorem 5.2. The outer design becomes the 4 $(13,4,1)$ design, which can be partitioned into $N=55$ symmetric $2-(13,4,1)$ designs by [6] and [8]. Applying Theorem 4.1 with the $2-(4,2,1)$ inner design yields a 2 resolvable $4-(13,6,90)$ design with $N=55$ resolution classes, where each class is a $2-(13,6,15)$ design. By Theorem 5.2, this 4-design is extendable to a 3-resolvable $5-(14,7,90)$ design with the same number of resolution classes and each class is a $3-(14,7,15)$ design. Note that both $4-(13,6,90)$ and $5-(14,7,90)$ designs are not simple, since the complete $4-\left(13,6, \lambda_{\max }\right)$ and $5-\left(14,7, \lambda_{\max }\right)$ design will have $\lambda_{\max }=$ 36. However, they are also non-trivial, since 90 is not a multiple of 36 . It should be remarked that the designs in both resolutions are simple. This is an interesting fact that we want to record in the following corollary.

Corollary 5.3

(i) There is a non-trivial 2-resolvable 4- $(13,6,90)$ design with repeated blocks having $N=55$ resolution classes, where each class is a simple 2-(13, 6,15$)$ design.
(ii) There is a non-trivial 3-resolvable 5-(14, 7, 90) design with repeated blocks having $N=55$ resolution classes, where each class is a simple $3-(14,7,15)$ design.

Case (ii) with $q=5$ displays another feature of Theorem 5.2. Assume that there is a partition of a $4-(31,6, \lambda)$ outer design into projective planes of order 5 . If $\lambda=\lambda_{\max }=117 \times 3$, the constructed design will have parameters $5-(32,16,16380 \times 39)$. Note that the index of this 5 -design is much less than that of its corresponding complete $5-(32,16,334305 \times 39)$ design. By contrast, if $\lambda=\lambda_{\min }=3$, the index of the corresponding 5 - $\left(32,16, \Lambda^{*}\right)$ constructed design would be drastically reduced to $\Lambda^{*}=140 \times 39$. Further, since the $3-(6,3,1)$ inner design is 2 -resolvable with $L=2$ resolution classes, the number of 3-resolution classes of the constructed design is $N L=\frac{\lambda}{3} 406$.

For some small values of q, for example $q=7,9,11$, we may use the large sets $L S_{5}(2,4,8), L S_{14}(2,5,10), L S_{42}(2,6,12)$ for the inner designs. Thus, if there would exist a partition of $4-\left(q^{2}+q+1, q+1, \lambda\right)$ design into projective planes of order $q=7,9,11$, then Theorems 5.2 would yield 3 -resolvable 5 -designs having parameters $5-(58,29, \lambda 63 \times 325), 5-(92,46, \lambda 198 \times 903), 5-\left(134,67, \frac{\lambda}{3} 2002 \times 2016\right)$ with $N L=$ $\lambda 495, \lambda 1958, \frac{\lambda}{3} 23842$ resolution classes, respectively.

6 An infinite series of 3-resolvable 5-designs derived from the 5-(14, 7,90) design

In this short excursus we will focus on the 3-resolvable 5 -(14, 7,90$)$ design in Corollary 5.3 and explain how to create an infinite series of 3-resolvable 5 -designs from this single design. For the reader's convenience we include here a result in a recent paper by the author [19].

Corollary 6.1 (Corollary 3.4 [19]) Suppose that there exists an s-resolvable $t-(v, k, \lambda)$ design with N resolution classes such that $z=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}$, where u, n are positive integers. If there exists an $L S[n](k-2, k-1, v-1)$, then there exists an s-resolvable $t-\left(v+m(v-k+1), k, z\binom{v-t+m(v-k+1)}{k-t}\right)$ design with N resolution classes for any $m \geq 0$.

Observe the main fact of Corollary 6.1: it states that one can construct an infinite series of s-resolvable t-designs from a single t-design and a single large set. Now we will apply this recursive construction to the $5-(14,7,90)$ design in Corollary 5.3. As the design is 3 -resolvable with 55 resolution classes, it is especially 3 -resolvable with $N=5$ resolution classes. The expression $z=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}$ becomes $z=\frac{5}{2}$, which implies that $n=2$. Further, since an $L S[2](5,6,13)$ exists [9], there exists a 3 -resolvable 5-(14+8m,7,10(9+8m)(1+m)) design having $N=5$ resolution classes for any $m \geq 0$ by Corollary 6.1. This design is obviously nonsimple, since the 5 $\left(14+8 m, 7, \lambda_{\max }\right)$ design will have $\lambda_{\max }=4(9+8 m)(1+m)$, however it is nontrivial, since $10(9+8 m)(1+m)$ is not a multiple of $\lambda_{\max }$. We record the result in the following theorem.

Theorem 6.2 There exists a 3-resolvable nonsimple and nontrivial $5-(14+8 m, 7,10(9+$ $8 m)(1+m)$) design having $N=5$ resolution classes for any $m \geq 0$.

Moreover, it should be noted that there are at least two non-isomorphic series of 3-resolvable 5 - $(14+8 m, 7,10(9+8 m)(1+m))$ designs in Theorem 6.2 due to the existence of two non-isomorphic large sets $L S[55](2,4,13)$ as proven by Kolotoğlu and Magliveras [8].

7 Conclusion

The paper presents a method for constructing 2-resolvable t-designs for $t=3,4$ based on the assumption that there exists a partition of a t-design into Steiner 2designs. The case $t=4$ corresponds to partitioning a 4 -design into projective planes. Especially, if the order of the projective planes is odd, it also enables to construct 3resolvable 5-designs with a largest possible block size. In general, the method appears to be very effective, as it yields infinitely many 2-resolvable 3-designs with a large variety of blocks sizes. A study of simplicity of the constructed designs remains a challenging problem.

References

[1] S. Ajoodani-Namini, Extending large sets of t-designs, J. Combin. Theory A $\mathbf{7 6}$ 139-144 (1996).
[2] W. O. Alltop, An infinite class of 5-designs, J. Combin. Theory A 12, 390-395 (1972).
[3] W. O. Alltop, Extending t-designs, J. Combin. Theory A 18, 177-186 (1975).
[4] R. D. Baker, Partitioning the planes of $A G_{2 m}(2)$ into 2-designs, Discrete Math. 15 205-211 (1976).
[5] J. Bierbrauer, Some friends of Alltop's designs 4- $\left(2^{f}+1,5,5\right)$, J. Combin. Math. Combin. Comput. 36 43-53 (2001).
[6] L. G. Chouinard, Partitions of the 4-subsets of a 13 -set into disjoint projective planes, Discrete Math. 45, 396-407 (1983).
[7] G. B. Khosrovshahi and R. Laue, t-designs with $t \geq 3$, The CRC Handbook of Combinatorial Designs, Ed. C. J. Colbourn \& J. H. Dinitz, 2nd Edition, CRC Press pp. 79-101 (2007).
[8] E. Kolotoğlu and S. S. Magliveras, On large sets of projective planes of order 3 and 4, Discrete Math. 313, 2247-2252 (2013).
[9] D.L. Kreher and S.P. Radziszowski, The existence of simple 6-($14,7,4$) designs, J. Combin. Theory Ser. A 43, 237-243 (1986).
[10] R. Laue, S. S. Magliveras, and A. Wassermann, New large sets of t-designs, J. Combin. Des. 9, 40-59 (2001).
[11] R. Laue, G. R. Omidi, B. Tayfeh-Rezaie, and A. Wassermann, New large sets of t-designs with prescribed groups of automorphisms, J. Combin. Des. 15 210-220 (2007).
[12] L. Teirlinck, On large sets of disjoint quadruple systems, Ars Combin. 17, 173176 (1984).
[13] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t, Discrete Math. 65, 301-311 (1987).
[14] L. Teirlinck, Locally trivial t-designs and t-designs without repeated blocks, Discrete Math. 77, 345-356 (1989).
[15] L. Teirlinck, Some new 2-resolvable Steiner quadruple systems, Des. Codes Cryptogr. 4 5-10 (1994).
[16] Tran van Trung, A recursive construction for simple t-designs using resolutions, Des. Codes Cryptogr. 86, 1185-1200 (2018).
[17] Tran van Trung, Recursive construction for s-resolvable t-designs, Des. Codes Cryptogr. 87, 2835-2845 (2019).
[18] Tran van Trung, On simple 3-designs having 2-resolutions, Discrete Math. 343, 111963 (2020).
[19] Tran van Trung, An extending theorem for s-resolvable t-designs, Des. Codes Cryptogr. 89, 589-597 (2021).

