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Abstract

In 1963, Shrikhande and Raghavarao [5] published a recursive construction for designs that
starts with a resolvable design (the “master design”) and then uses a second design (“the in-
dexing design”) to take certain unions of blocks in each parallel class of the master design.
Several variations of this construction have been studied by different authors. We revisit this
construction, concentrating on the case where the master design is a resolvable BIBD and the
indexing design is a 3-design. We show that this construction yields a 3-design under certain
circumstances. The resulting 3-designs have block size k = v/2 and they are resolvable. We also
construct some previously unknown simple designs by this method.

1 Introduction

We begin with a few definitions. Suppose that v, b, r and k are positive integers such that 2 ≤ k < v.
A (v, b, r, k)-incomplete block design (or (v, b, r, k)-IBD) is a pair (X,B), where X is a set of v points
and B is a collection (i.e., a multiset) of b subsets of X (called blocks), such that

1. every block contains exactly k points, and

2. every point is contained in exactly r blocks.

It follows that bk = vr in a (v, b, r, k)-IBD. Here are a few definitions relating to additional properties
that IBDs might satisfy.

• Suppose k | v. A parallel class in a (v, b, r, k)-IBD (X,B) is a set of v/k disjoint blocks. (X,B)
is resolvable if B can be partitioned into r parallel classes.
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• A (v, b, r, k)-IBD (X,B) is simple if B does not contain any repeated blocks, i.e., B is a set.

• A (v, b, r, k)-IBD (X,B) is trivial if B consists of all
(
v
k

)
possible k-subsets of points.

A (v, b, r, k, λ)-balanced incomplete block design (or a (v, b, r, k, λ)-BIBD) is a (v, b, r, k)-IBD
in which every pair of points occurs in exactly λ blocks. It is necessarily the case that λ =
r(k − 1)/(v − 1). Sometimes the notation (v, k, λ)-BIBD is used, since the parameters r and b can
be computed from v, k and λ (specifically, r = λ(v − 1)/(k − 1) and b = vr/k).

Suppose that λ, t, k, and v are positive integers such that t ≤ k < v. A t-(v, k, λ)-design is a
pair (X,B), where X is a set of v points and B is a collection (i.e., a multiset) of k-subsets of X
(called blocks), such that every subset of t points occurs in exactly λ blocks. It is well-known that
a subset of j ≤ t− 1 points occurs in λj blocks in B, where

λj =
λ
(
v−j
t−j
)(

k−j
t−j
) . (1)

If we define b = λ0 and r = λ1, then a t-(v, k, λ)-design is a (v, b, r, k)-IBD. A 2-(v, k, λ)-design
is the same thing as a (v, k, λ)-BIBD. Also, a 1-(v, k, r)-design is equivalent to a (v, vr/k, r, k)-IBD.
A resolvable 2-(v, 2, 1)-design is equivalent to a one-factorization of the complete graph Kv. The
parallel classes in this design are called one-factors.

1.1 Related Work

There are some examples of related work, which we mention now. There is an unpublished con-
struction due to Lonz and Vanstone of 3-(v, 4, 3)-designs from resolvable 2-(v, 2, 1)-designs (see [3]).
They take all possible unions of two blocks from a parallel class of a 2-(v, 2, 1)-design; this imme-
diately yields a 3-(v, 4, 3)-design. In [4], this method was extended to show the existence of simple
3-(v, 4, 3)-designs. Recently, this approach was generalized by Jimbo, Kunihara, Laue and Sawa in
[2]. The master design is a resolvable 3-(v, k, λ)-design and the indexing design is a 3-design on
v/k points. The construction [2] can also be applied when the master design is a one-factorization
(this is a trivial 2-design that can be viewed as a degenerate 3-design with λ = 0).

We employ the same construction as in [2], except the master design is a resolvable 2-design
instead of a 3-design. We still end up with a 3-design provided that the other ingredient in the
construction is a 3-design on v/k points with block size v/(2k). All of our constructions, as well as
the other constructions mentioned above, can be considered to be applications of the Shrikhande-
Raghavarao construction.

1.2 Organization of the Paper

In Section 2, we present the main construction and discuss when this construction will yield (re-
solvable) 3-designs. Section 3 presents conditions that guarantee that the main construction will
yield a nontrivial design. In Section 4, we investigate the simplicity of the constructed designs. We
give some conditions that will guarantee that the constructed designs are simple. We also look at
several specific constructed 3-designs and show by computer that they are simple even though we
cannot prove theoretically that they are. Simple 3-designs for these parameters were not previously
known to exist. Finally, Section 5 is a brief conclusion.
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2 The Construction

We begin by describing a construction of Shrikhande and Raghavarao published in 1963 [5].

Construction 1. We need two ingredients for the construction:

1. Let (X,B) be a resolvable (v, b, r, k)-IBD and let Π1, . . . ,Πr denote the parallel classes in the
resolution of (X,B). There are w = v/k blocks in each parallel class. Let the blocks in Πi be
named Bj

i , 1 ≤ j ≤ w. We will call (X,B) the master design.

2. Suppose (Y, C) is a (w, b′, r′, k′)-IBD, where Y = {1, . . . , w}. We will call (Y, C) the indexing
design.

Now, for each i, 1 ≤ i ≤ r, and for each C ∈ C, define

Di,C =
⋃
j∈C

Bj
i .

That is, for every block C of the indexing design and for every parallel class Πi of the master design,
we construct a block Di,C by taking the union of the blocks in Πi indexed by C. Finally, let

D = {Di,C : 1 ≤ i ≤ r, C ∈ C}.

(X,D) is the constructed design.

We will study the design (X,D) obtained from Construction 1. The following easily proven
result was first shown in [5].

Theorem 2.1. Suppose that (X,B) is a resolvable (v, b, r, k)-IBD, and suppose (Y, C) is a (w, b′, r′, k′)-
IBD, where w = v/k. Let (X,D) be defined as in Construction 1. Then the constructed design
(X,D) is a (v, b′′, r′′, k′′)-IBD, where

b′′ = rb′,

r′′ = rr′, and

k′′ = kk′.

If the two input designs are BIBDs, then so is the constructed design. The following result is
also from [5].

Theorem 2.2. Suppose that (X,B) is a resolvable (v, k, λ)-BIBD, and suppose (Y, C) is a (w, k′, λ′2)-
BIBD, where w = v/k. Let (X,D) be defined as in Construction 1. Then the constructed design
(X,D) is a (v, b′′, r′′, k′′, λ′′)-BIBD, where b′′, r′′ and k′′ are the same as in Theorem 2.1, and

λ′′ = λr′ + (r − λ)λ′2.

We are interested in determining conditions which guarantee that the constructed design is a
3-design. For this analysis, we will assume that the indexing design (Y, C) is a 3-(w, k′, λ′)-design,
which requires k′ ≥ 3.

Let x, y, z ∈ X be three distinct points and suppose these points occur in α blocks of the master
design (X,B). There are 3(λ− α) parallel classes in which exactly two points of {x, y, z} occur in
a block, and r − α− 3(λ− α) parallel classes in which x, y, and z occur in different blocks.

For a set of three points x, y, z ∈ X, let λx,y,z denote the number of blocks in the constructed
design D that contain x, y and z. The following lemma is obtained by simple counting.

3



Lemma 2.3. Suppose that (X,B) is a resolvable (v, k, λ)-BIBD and (Y, C) is a 3-(w, k′, λ′)-design
where w = v/k. Let (X,D) be defined as in Construction 1. Suppose that three points x, y, z occur
in exactly α blocks in B. Then,

λx,y,z = αr′ + 3 (λ− α)λ′2 + (r − α− 3(λ− α))λ′. (2)

Theorem 2.4. Suppose that (X,B) is a resolvable (v, k, λ)-BIBD and (Y, C) is a 3-(w, k′, λ′)-design
where w = v/k. Let (X,D) be defined as in Construction 1. Then (X,D) is a 3-design if and only
if one of the following conditions is satisfied:

1. (X,B) is a 3-design,

2. k = 2, or

3. k′ = v/(2k).

Proof. Since k′ > 2, if we substitute (1) into (2), we see that

λx,y,z = λ′
(

3λ
w − 2

k′ − 2
+ r − 3λ

)
+ λ′α

(
(w − 1)(w − 2)

(k′ − 1)(k′ − 2)
− 3

w − 2

k′ − 2
+ 2

)
. (3)

Therefore λx,y,z is of the form c1 + αc2, for constants c1 and c2. Clearly, the design (X,D) is a
3-design if and only if α is a constant or c2 = 0. There are three possible cases that can occur:

1. If α > 0 is a constant, this implies that the master design (X,B) is a 3-design. In this
situation (X,D) will be a 3-design for any choice of k′ > 2.

2. If α = 0, then it must be the case that k = 2 (here, the master design can be thought of as a
“degenerate” 3-design). Again, (X,D) will be a 3-design for any choice of k′ > 2.

3. We now use (3) to derive the conditions that yield c2 = 0. Because k′ > 2, we have

(w − 1)(w − 2)

(k′ − 1)(k′ − 2)
− 3

w − 2

k′ − 2
+ 2 = 0

⇐⇒ (w − 1)(w − 2)− 3(w − 2)(k′ − 1) + 2(k′ − 1)(k′ − 2) = 0

⇐⇒ w2 − 3wk′ + 2(k′)2 = 0

⇐⇒ (w − k′)(w − 2k′) = 0.

That is, c2 = 0 when k′ = v/k or k′ = v/(2k). Note that if k′ = v/k, then (X,D) is not a
3-design since each block in B would consist of all the points of X. So (X,D) is a 3-design if
and only if k′ = v/(2k), in which case 2k | v.

The first case in Theorem 2.4, where the master design is a 3-design, is the case that was studied
in [2]. The second case, where k = 2, was also studied in [2]. We will study the third case in more
detail. First, we record the designs that are constructed in this case.

Corollary 2.5. Suppose the following designs exist:

1. a resolvable (v, b, r, k, λ)-BIBD, and
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2. a 3-(w,w/2, λ′) design, where w = v/k > 4 is even.

Then there exists a 3-(v, v/2, µ) design, where

µ = λ′
(

3λw

w − 4
+ r

)
(4)

Proof. The value of µ can be obtained from (3), where the coefficient of α is equal to 0. We have

µ = λ′
(

3λ
w − 2
w
2 − 2

+ r − 3λ

)
= λ′

(
3λw

w − 4
+ r

)
.

Theorem 2.4 requires that k′ > 2. It is also useful to consider the variant where k′ = 2; in this
case, we can take (Y, C) to be a (trivial) 2-(w, 2, 1)-design. As in Lemma 2.3, suppose that three
points x, y, z occur in exactly α blocks in B. From (2) with λ′ = 0, we have that

λx,y,z = α(w − 1) + 3 (λ− α) = α(w − 4) + 3λ. (5)

If α is not constant, it is clear that λx,y,z will be constant if and only if w = 4. In this case, the
indexing design is a 2-(4, 2, 1)-design, which is a one-factorization of K4. Therefore, we have the
following variant of Corollary 2.5.

Corollary 2.6. Suppose there is a resolvable (v, b, r, k, λ)-BIBD, where v/k = 4. Then there is a
3-(v, v/2, 3λ)-design.

2.1 Resolvability of the Constructed Designs

In this section, we consider when the constructed design will be resolvable. This question is easy
to answer; we state the following simple result without proof.

Lemma 2.7. The constructed design (X,D) in Construction 1 is resolvable whenever the indexing
design (Y, C) is resolvable.

However, if we look at Corollaries 2.5 and 2.6, we can proceed in a slightly different manner.
Both of these corollaries yield 3-designs with block size v/2. A result of Tran [6, Theorem 2.7]
shows that a resolvable 3-(v, v/2, µ)-design exists whenever a 3-(v, v/2, µ)-design exists. Thus we
have the following extensions of Corollaries 2.5 and 2.6.

Corollary 2.8. Suppose the following designs exist:

1. a resolvable (v, b, r, k, λ)-BIBD, and

2. a 3-(w,w/2, λ′) design, where w = v/k > 4 is even.

Then there exists a resolvable 3-(v, v/2, µ) design, where

µ = λ′
(

3λw

w − 4
+ r

)
.

Corollary 2.9. Suppose there is a resolvable (v, b, r, k, λ)-BIBD where v/k = 4. Then there is a
resolvable 3-(v, v/2, 3λ)-design.
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3 Nontriviality of the Constructed Designs

It is easy to see that Construction 1 will often produce nontrivial designs. Here is a small example
to illustrate.

Example 3.1. Suppose we start with the trivial (18, 816, 136, 3)-IBD consisting of all the 3-subsets
of an 18-set. This design is resolvable into r = 136 parallel classes by Baranyi’s Theorem. Apply
Construction 1 where the indexing design is a (6, 20, 10, 3)-IBD consisting of all the 3-subsets of
a 6-set. The constructed design contains 2720 blocks. However, a trivial IBD with 18 points and
block size 9 contains

(
18
9

)
= 48620 blocks. Therefore the constructed design is nontrivial.

More generally, we will show that the constructed design will be nontrivial whenever the master
design and indexing design are both simple designs. This is because a trivial design with block
size v/2 contains

(
v
v/2

)
blocks, and the number of blocks in the constructed design will turn out

to be smaller than that. Suppose 2k divides v and v/k > 4. We apply Construction 1 with the
master design being a simple design. The number of blocks in the master design is at most

(
v
k

)
and

therefore r ≤
(
v−1
k−1
)
. Since the indexing design is simple, it follows that the number of blocks in the

constructed design is at most

r

( v
k
v
2k

)
≤
(
v − 1

k − 1

)( v
k
v
2k

)
.

If we can prove the inequality (
v − 1

k − 1

)( v
k
v
2k

)
<

(
v
v
2

)
, (6)

then we will have shown that the constructed design is nontrivial. To do this, we will make use of
the well-known inequalities (

v − 1

k − 1

)
<
(v
k

)k−1
(7)

and
4n

2
√
n
<

(
2n

n

)
<

4n√
πn

. (8)

From (7) and (8), it is clear that (6) will hold provided that we can prove that the following
inequality holds: (v

k

)k−1 4v/2k√
π(v/2k)

<
4v/2

2
√
v/2

. (9)

After some simplification, it is easy to see that (9) is equivalent to(v
k

)k−1
< 2v(k−1)/k

√
π

4k
. (10)

The inequality (10) can be rewritten as(
2v/k

v
k

)k−1
>

√
4k

π
. (11)

Since v/k ≥ 4, the left side of (11) is at least 4k−1. Since k ≥ 2, it is easy to see that 4k−1 ≥ 2k.

Finally it is obvious that 2k >
√

4k
π . Therefore (11) holds, and we have proven the following.
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Theorem 3.1. Suppose that 2k divides v and v/k ≥ 4. Suppose we apply Construction 1 where
the master and indexing designs are both simple designs. Then the constructed design is nontrivial.

4 Simple Designs

In certain situations, Corollaries 2.5 and 2.6 yield simple designs. This is the theme we pursue in
this section.

Suppose (X,B) is a resolvable (v, b, r, k)-IBD and let w = v/k. Suppose the assumed resolution
of (X,B) consists of r parallel classes Π1, . . . ,Πr, where Πi = {B1

i , . . . , B
w
i } for 1 ≤ i ≤ r. Let

1 ≤ α ≤ w − 1 be an integer. We say that two parallel classes Πi and Πj satisfy the α-partial
replacement property (or PRP) if there exist two parallel classes Π∗i and Π∗j of blocks in B such
that

Π∗i ∪Π∗j = Πi ∪Πj and |Π∗i ∩Πi| = α. (12)

We say that the resolution of (X,B) is α-PRP-free if there do not exist two parallel classes in
{Π1, . . . ,Πr} that satisfy α-PRP. Further, we say that the resolution of (X,B) is PRP-free if there
do not exist two parallel classes in {Π1, . . . ,Πr} that satisfy α-PRP for any positive integer α < w.

As an example of a resolvable BIBD that is not PRP-free, consider a one-factorization of K4n

that contains a sub-one-factorization of K2n. Each one-factor of a K4n has 2n edges and each one-
factor of a K2n contains n edges. There are 2n− 1 one-factors of the K4n that contain a one-factor
of the K2n. The n edges in any one-factor of K2n may be swapped with the n edges in any other
one-factor of K2n. Therefore, the two corresponding one-factors in the one-factorization of K4n

satisfy n-PRP.

Lemma 4.1. If a (v, b, r, k)-IBD has a unique resolution, then it is PRP-free.

Proof. Let w = v/k. Suppose there are two parallel classes Πi and Πj that satisfy α-PRP for some
α, where 1 ≤ α ≤ w − 1. Let Π∗i and Π∗j be the two parallel classes that satisfy (12). If we replace
Πi and Πj by Π∗i and Π∗j , then we obtain a second resolution of the given design.

Theorem 4.2. Suppose we apply Construction 1 with the master design having a resolution that
is k′-PRP-free, where the indexing design has block size k′. Then the constructed design is simple.
Furthermore, in the case where the indexing design is trivial, the constructed design is simple if
and only if the resolution of the master design is k′-PRP-free.

Proof. Suppose that (X,D) is not simple; then Di,C = Di′,C′ where (i, C) 6= (i′, C ′). If i = i′ and
Di,C = Di′,C′ , then C = C ′. Therefore, we can assume i 6= i′. If we define

Π∗i = {Bj
i : j ∈ C} ∪ {Bj

i′ : j 6∈ C ′}

and
Π∗i′ = {Bj

i′ : j ∈ C ′} ∪ {Bj
i : j 6∈ C},

then we see that the parallel classes Πi and Πi′ in (X,B) satisfy k′-PRP.
Now, assume that the indexing design is trivial and there are two parallel classes Πi and Πi′ in

the resolution of (X,B) that satisfy k′-PRP. So there exist Π∗i and Π∗i′ such that

Π∗i ∪Π∗i′ = Πi ∪Πi′ and |Π∗i ∩Πi| = k′.
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Let C = {j : Bj
i ∈ Π∗i ∩Πi} and C ′ = {j : Bj

i′ ∈ Π∗i′ ∩Πi′}. Note that C and C ′ are both blocks in
the indexing design, because the indexing design is trivial. Then it is easy to see that Di,C = Di′,C′ ,
so the constructed design is not simple.

We give a well-known class of BIBDs having unique resolutions.

Lemma 4.3. For all prime powers q and for all integers m ≥ 2, there exists a PRP-free resolvable(
qm, qm−1, (qm−1 − 1)/(q − 1)

)
-BIBD.

Proof. The hyperplanes of the m-dimensional affine geometry AG(m, q) over Fq yield a resolvable(
qm, qm−1, (qm−1 − 1)/(q − 1)

)
-BIBD where each parallel class consists of q blocks. Furthermore,

any two blocks from different parallel classes intersect in exactly qm−2 points. From this fact, it
is easily seen that this design has a unique resolution. Hence, from Lemma 4.1, the resolution is
PRP-free.

Remark. Any affine resolvable BIBD has a unique resolution and therefore is PRP-free.

Corollary 4.4. Suppose q = 2n > 4 and there exists a 3-(q, q/2, λ′) design. Then there exists a
simple 3-(qm, qm−1, µ) design, where

µ = λ′
(
qm − 4

q − 4

)
.

Proof. We apply Theorem 4.2, starting with the resolvable
(
qm, qm−1, (qm−1 − 1)/(q − 1)

)
-BIBD

from Lemma 4.3. This design has r = (qm − 1)/(q − 1) and w = q. Corollary 2.5 establishes that
the constructed design will be a 3-(qm, qm−1, µ)-design, where

µ = λ′
(

3λw

w − 4
+ r

)
= λ′

(
3(qm−1 − 1)

q − 1
× q

q − 4
+
qm − 1

q − 1

)
= λ′

(
3(qm − q) + (qm − 1)(q − 4)

(q − 1)(q − 4)

)
= λ′

(
qm+1 − qm − 4q + 4

(q − 1)(q − 4)

)
= λ′

(
qm − 4

q − 4

)
.

Finally, Theorem 4.2 shows that the constructed design is simple.

As an example, suppose we take q = 8 and m = 2. Here, the master design is the affine plane
of order 8, i.e., a resolvable (64, 72, 9, 8, 1)-BIBD. If the indexing design is a 3-(8, 4, 1)-design, then
the constructed 3-(64, 32, 15)-design is simple. If the indexing design is the trivial 3-(8, 4, 5)-design,
then the constructed 3-(64, 32, 75)-design is again simple.

It also turns out that many 3-designs constructed from Corollary 2.8 are simple, even if we
cannot prove theoretically that they are. In fact, we have checked several designs by computer
and verified computationally that they are simple 3-designs. These designs all arise from trivial
indexing designs. They are listed in Table 1 and details are provided in the rest of this section.
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Table 1: Simple 3-designs constructed from Corollaries 2.5 and 2.6

master design w constructed design

2-(24, 4, 3) 6 3-(24, 12, 50)
2-(24, 6, 5) 4 3-(24, 12, 15)
2-(24, 3, 2) 8 3-(24, 12, 175)
2-(28, 7, 6) 4 3-(28, 14, 18)
2-(30, 5, 4) 6 3-(30, 15, 65)
2-(30, 3, 2) 10 3-(30, 15, 819)
2-(32, 8, 7) 4 3-(32, 16, 21)
2-(36, 9, 8) 4 3-(36, 18, 24)

4.1 A Simple 3-(24, 12, 15)-design

We construct a simple 3-(24, 12, 15)-design on point set X = {0, 1, . . . , 22,∞}. The cyclic group
Z23 acts on the design. Z23 permutes the points {0, 1, . . . , 22} (cyclically) and fixes the point ∞.

We start with a resolvable (24, 6, 5)-BIBD having a cyclic automorphism of order 23 (see [1, p.
408]). The four base blocks of the BIBD form a parallel class:

{∞, 0, 1, 7, 15, 20}, {2, 3, 4, 5, 10, 14}, {6, 11, 13, 17, 19, 22}, {8, 9, 12, 16, 18, 21}.

Here are the six base blocks of the constructed 3-(24, 12, 15) design:

B1 = {∞, 0, 1, 7, 15, 20, 2, 3, 4, 5, 10, 14}
B2 = {∞, 0, 1, 7, 15, 20, 6, 11, 13, 17, 19, 22}
B3 = {∞, 0, 1, 7, 15, 20, 8, 9, 12, 16, 18, 21}
B4 = {2, 3, 4, 5, 10, 14, 6, 11, 13, 17, 19, 22}
B5 = {2, 3, 4, 5, 10, 14, 8, 9, 12, 16, 18, 21}
B6 = {6, 11, 13, 17, 19, 22, 8, 9, 12, 16, 18, 21}.

The other blocks are obtained by developing the base blocks through Z23.
The next line gives data about intersection numbers of the design:

69, 0, 46, 0, 506, 2208, 3864, 2208, 506, 0, 46, 0, 0.

There are 13 numbers corresponding to 13 possible intersection numbers, namely 0, 1, 2, . . . , 12.
For example, 69 pairs of blocks have zero intersection; they form the parallel classes of the design.
The second value equals 0, which says that there are no pairs of blocks intersecting in 1 point. The
third value equals 46 pairs, which says that there are 46 pairs of blocks intersecting in 2 points,
etc. The data show that any two blocks of the design intersect in at most 10 points, so the design
is simple.

4.2 A Simple 3-(28, 14, 18)-design

We construct a simple 3-(28, 14, 18)-design on point set X = {0, 1, . . . , 26,∞}. The cyclic group
Z27 acts on the design. Z27 permutes the points {0, 1, . . . , 26} (cyclically) and fixes the point ∞.
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We start with a resolvable (28, 7, 6)-BIBD having a cyclic automorphism of order 27 (see [1, p.
408]). The four base blocks of the BIBD form a parallel class:

{∞, 0, 5, 14, 15, 24, 25}, {1, 10, 17, 20, 22, 23, 26}, {2, 6, 8, 9, 13, 19, 21}, {3, 4, 7, 11, 12, 16, 18}.

Here are the six base blocks of the constructed 3-(28, 14, 18) design:

B1 = {∞, 0, 5, 14, 15, 24, 25, 1, 10, 17, 20, 22, 23, 26}
B2 = {∞, 0, 5, 14, 15, 24, 25, 2, 6, 8, 9, 13, 19, 21}
B3 = {∞, 0, 5, 14, 15, 24, 25, 3, 4, 7, 11, 12, 16, 18}
B4 = {1, 10, 17, 20, 22, 23, 26, 2, 6, 8, 9, 13, 19, 21}
B5 = {1, 10, 17, 20, 22, 23, 26, 3, 4, 7, 11, 12, 16, 18}
B6 = {2, 6, 8, 9, 13, 19, 21, 3, 4, 7, 11, 12, 16, 18}.

The other blocks are obtained by developing the base blocks through Z27.
The next line gives the intersection numbers of the design:

81, 0, 0, 0, 54, 1080, 3132, 4428, 3132, 1080, 54, 0, 0, 0, 0.

This data shows that the design is simple.

4.3 A Simple 3-(30, 15, 65)-design

We construct a simple 3-(30, 15, 65)-design on point set X = {0, 1, . . . , 28,∞}. The cyclic group
Z29 acts on the design. Z29 permutes the points {0, 1, . . . , 28} (cyclically) and fixes the point ∞.

We start with a resolvable (30, 5, 4)-BIBD having a cyclic automorphism of order 29 (see [1, p.
408]). The six base blocks of the BIBD form a parallel class:

{∞, 4, 8, 17, 18}, {0, 1, 7, 24, 27}, {2, 12, 15, 16, 23},
{9, 11, 13, 21, 26}, {3, 14, 20, 22, 25}, {5, 6, 10, 19, 28}.

Here are the 20 base blocks of the constructed 3-(30, 15, 65) design:

B1 = {∞, 4, 8, 17, 18, 0, 1, 7, 24, 27, 2, 12, 15, 16, 23}
B2 = {∞, 4, 8, 17, 18, 0, 1, 7, 24, 27, 9, 11, 13, 21, 26}
B3 = {∞, 4, 8, 17, 18, 0, 1, 7, 24, 27, 3, 14, 20, 22, 25}
B4 = {∞, 4, 8, 17, 18, 0, 1, 7, 24, 27, 5, 6, 10, 19, 28}
B5 = {∞, 4, 8, 17, 18, 2, 12, 15, 16, 23, 9, 11, 13, 21, 26}
B6 = {∞, 4, 8, 17, 18, 2, 12, 15, 16, 23, 3, 14, 20, 22, 25}
B7 = {∞, 4, 8, 17, 18, 2, 12, 15, 16, 23, 5, 6, 10, 19, 28}
B8 = {∞, 4, 8, 17, 18, 9, 11, 13, 21, 26, 3, 14, 20, 22, 25}
B9 = {∞, 4, 8, 17, 18, 9, 11, 13, 21, 26, 5, 6, 10, 19, 28}
B10 = {∞, 4, 8, 17, 18, 3, 14, 20, 22, 25, 5, 6, 10, 19, 28}
B11 = {0, 1, 7, 24, 27, 2, 12, 15, 16, 23, 9, 11, 13, 21, 26}
B12 = {0, 1, 7, 24, 27, 2, 12, 15, 16, 23, 3, 14, 20, 22, 25}
B13 = {0, 1, 7, 24, 27, 2, 12, 15, 16, 23, 5, 6, 10, 19, 28}
B14 = {0, 1, 7, 24, 27, 9, 11, 13, 21, 26, 3, 14, 20, 22, 25}
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B15 = {0, 1, 7, 24, 27, 9, 11, 13, 21, 26, 5, 6, 10, 19, 28}
B16 = {0, 1, 7, 24, 27, 3, 14, 20, 22, 25, 5, 6, 10, 19, 28}
B17 = {2, 12, 15, 16, 23, 9, 11, 13, 21, 26, 3, 14, 20, 22, 25}
B18 = {2, 12, 15, 16, 23, 9, 11, 13, 21, 26, 5, 6, 10, 19, 28}
B19 = {2, 12, 15, 16, 23, 3, 14, 20, 22, 25, 5, 6, 10, 19, 28}
B20 = {9, 11, 13, 21, 26, 3, 14, 20, 22, 25, 5, 6, 10, 19, 28}.

The other blocks are obtained by developing the base blocks through Z29.
The next line gives the intersection numbers of the design:

290, 0, 0, 58, 1044, 10382, 24940, 47386, 47386, 24940, 10382, 1044, 58, 0, 0, 0.

This data shows that the design is simple.

4.4 A Simple 3-(24, 12, 50)-design

A 3-(24, 12, 50)-design constructed from a resolvable (24, 4, 3)-BIBD having a cyclic automorphism
of order 23 (see [1, p. 407]). The six base blocks of the BIBD form a parallel class:

{∞, 0, 7, 10}, {1, 8, 12, 22}, {2, 5, 6, 11}, {3, 9, 14, 18}, {4, 16, 17, 19}, {13, 15, 20, 21}.

The intersection numbers of the 3-(24, 12, 50)-design (from 0 to 12 respectively) are

230, 0, 0, 1242, 9982, 23414, 36064, 23414, 9982, 1242, 0, 0, 0.

4.5 A Simple 3-(24, 12, 175)-design

A 3-(24, 12, 175)-design constructed from a resolvable (24, 3, 2)-BIBD having a cyclic automorphism
of order 23 (see [1, p. 407]). The eight base blocks of the BIBD form a parallel class:

{∞, 16, 20}, {0, 7, 21}, {1, 3, 11}, {4, 5, 18}, {6, 12, 17}, {2, 10, 13}, {8, 9, 14}, {15, 19, 22}.

The intersection numbers of the 3-(24, 12, 175)-design (from 0 to 12 respectively) are:

805, 46, 1380, 30314, 99958, 289432, 452180, 289432, 99958, 30314, 1380, 46, 0.

4.6 A Simple 3-(30, 15, 819)-design

A 3-(30, 15, 819)-design constructed from a resolvable (30, 3, 2)-BIBD having a cyclic automorphism
of order 29 (see [1, p. 407]). The ten base blocks of the BIBD form a parallel class:

{∞, 2, 22}, {0, 1, 19}, {6, 8, 27}, {9, 15, 16}, {7, 10, 14},
{11, 25, 28}, {12, 18, 23}, {13, 21, 26}, {4, 20, 24}, {3, 5, 17}.

The intersection numbers of the 3-(30, 15, 819) are

3654, 0, 928, 115594, 242730, 1356272, 4482530, 7150008,
7150008, 4482530, 1356272, 242730, 115594, 928, 0, 0.
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4.7 A Simple 3-(32, 16, 21)-design

A 3-(32, 16, 21)-design constructed from a resolvable (32, 8, 7)-BIBD having a cyclic automorphism
of order 31 (see [1, p. 408]). The four base blocks of the BIBD form a parallel class:

{∞, 0, 1, 5, 16, 18, 25, 28}, {3, 9, 17, 19, 20, 21, 24, 26},
{2, 6, 7, 12, 14, 15, 23, 27}, {4, 8, 10, 11, 13, 22, 29, 30)}.

The intersection numbers of the 3-(32, 16, 21)-design are

93, 0, 0, 0, 0, 372, 930, 4836, 4836, 4836, 930, 372, 0, 0, 0, 0, 0.

4.8 A Simple 3-(36, 18, 24)-design

A 3-(36, 18, 24)-design constructed from a resolvable (36, 9, 8)-BIBD having a cyclic automorphism
of order 35 (see [1, p. 408]). The four base blocks of the BIBD form a parallel class:

{∞, 1, 10, 11, 13, 15, 25, 26, 29}, {0, 9, 16, 17, 18, 19, 22, 24, 30},
{3, 4, 6, 12, 21, 23, 27, 31, 34}, {2, 5, 7, 8, 14, 20, 28, 32, 33}.

The intersection numbers of the 3-(36, 18, 24)-design are

105, 0, 0, 0, 0, 70, 280, 2100, 4970, 7000, 4970, 2100, 280, 70, 0, 0, 0, 0, 0.

5 Conclusion

There are probably many other possible applications of the constructions in this paper to obtain
(new) simple 3-designs. It would be very nice to find additional easily checked conditions that
would guarantee that a constructed 3-design is simple.
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