Recursive Constructions for 3-Designs and Resolvable 3-Designs

Tran van Trung
Institute for Experimental Mathematics, University of Essen
Ellernstrasse 29, 45326 Essen, Germany
trung@exp-math.uni-essen.de

Dedicated to S. S. Shrikhande.

Abstract

Inspired by the doubling construction method for Steiner quadruple systems and also by a construction of Driessen for 3-designs, we present several recursive constructions for 3-designs and resolvable 3-designs. The construction methods assume the existence of resolvable 3-designs and certain appropriate other 3-designs. They prove to be very useful, as we can construct a large number of new infinite families of 3-designs. Among others we prove, for instance, that for any integer $n \geq 3$, there is a family \mathcal{F}_n of resolvable 3-designs having parameters $3 - (2^j.3.2^n, 2^n, (2^{n-1} - 1)(2^n - 1)\prod_{i=2}^{n-1}(2^{j-i}.3.2^n - 1))$, for all $j \geq 0$. A list of parameters for newly constructed 3-designs is included.

AMS classification: 05

Keywords: recursive construction, 3-designs, resolvable 3-designs

1 Introduction

All the designs considered in this paper are simple, i.e., no repeated blocks are allowed. A resolvable $t-(v,k,\lambda)$ design D here means that the blocks of D can be partitioned into parallel classes, each class consists of v/k pairwise disjoint blocks. For notation and definitions of t-designs we refer to [5]. Our aim is to present recursive methods for constructing 3-designs and resolvable 3-designs. Our constructions are inspired by the doubling construction for Steiner quadruple systems, which goes as far back as Witt (1938) [9] and a construction of Driessen [4] for 3-designs which can be considered as a generalization of the doubling construction. The paper is organized as follows. Construction I in section 2 is a general form of the doubling construction for 3-designs. The method turns out to be useful as many new families of 3-designs, which are presented in subsection 2.1, are constructed using this procedure. Constructions of resolvable 3-designs are shown in subsection 2.2, wherein applications of Construction I and further methods are explored, and many new families of resolvable 3-designs are displayed. Construction II in section 3 and Construction III in section 4 are methods which provide 3-designs whose number of points is not necessarily divisible by the block size.

In section 5 we show three special constructions for 3-designs with block sizes 5, 7 and 8. The paper is closed with an Appendix containing a list of parameters for newly constructed 3-designs.

2 Construction I

The construction in this section is a most natural generalization of the doubling construction for Steiner quadruple systems.

Let $D=(X,\mathcal{B})$ be a resolvable $3-(v,k,\lambda)$ (resp. 2-(v,2,1)) design, for $k\geq 3$ (resp. k=2).

Let π_1, \ldots, π_r denote the r parallel classes of D. Define a distance between any two parallel classes π_i and π_j by $d(\pi_i, \pi_j) = \min\{|i-j|, r-|i-j|\}.$

Let $\tilde{D} = (\tilde{X}, \tilde{\mathcal{B}})$ be a copy of D such that $X \cap \tilde{X} = \emptyset$. Let $D^* = (X, \mathcal{B}^*)$ be a $3 - (v, 2k, \Lambda)$ design.

Define blocks on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of a copy of D^* defined on X;
- II. blocks of a copy of D^* defined on \tilde{X} ;
- III. $B \cup \tilde{B}$ for any pair $B \in \pi_i$ and $\tilde{B} \in \tilde{\pi_j}$ with $\epsilon \leq d(\pi_i, \pi_j) \leq s$, $\epsilon = 0, 1$.

Case a: $k \geq 3$.

Any 3 points $a, b, c \in X$ (resp. $\tilde{a}, \tilde{b}, \tilde{c} \in \tilde{X}$) are contained in Λ blocks of type I (resp. type II) and in $(2s + 1 - \epsilon)\lambda \frac{v}{b}$ of type III.

Any 3 points a,b,\tilde{c} , where $a,b\in X$ and $\tilde{c}\in \tilde{X}$, (resp. \tilde{a},\tilde{b},c) are contained in $(2s+1-\epsilon)\lambda\frac{v-2}{k-2}$ blocks of type III.

The defined blocks form a 3-design if and only if $\Lambda + (2s+1-\epsilon)\lambda \frac{v}{k} = (2s+1-\epsilon)\lambda \frac{v-2}{k-2}$ or equivalently $(2s+1-\epsilon) = \frac{\Lambda k(k-2)}{2\lambda(v-k)}$. In this case we obtain a $3-(2v,2k,\frac{\Lambda k(v-2)}{2(v-k)})$ design.

Case b: k = 2.

Here D is the trivial 2-(2m,2,1) design, and D^* is a $3-(2m,4,\Lambda)$ design.

Any 3 points $a, b, c \in X$ (resp. $\tilde{a}, \tilde{b}, \tilde{c} \in \tilde{X}$) are contained in Λ blocks of type I.

Any 3 points a, b, \tilde{c} , where $a, b \in X$ and $\tilde{c} \in \tilde{X}$, (resp. \tilde{a}, \tilde{b}, c) are contained in $(2s + 1 - \epsilon)$ blocks of type III.

The condition for which the defined blocks form a 3-design is $\Lambda = (2s + 1 - \epsilon) \leq 2m - 1$, and the constructed design has parameters $3 - (4m, 4, \Lambda)$.

It is clear from the construction that the resulting design is resolvable if D^* is resolvable. We summarize the construction in the following theorem.

- **Theorem 2.1** (i) If there exists a $3 (2m, 4, \Lambda)$ design D^* with $\Lambda \leq 2m 1$, then there exists a $3 (4m, 4, \Lambda)$ design C.
 - (ii) Suppose there exists a resolvable $3-(v,k,\lambda)$ design D and a $3-(v,2k,\Lambda)$ design D^* such that $\frac{\Lambda k(k-2)}{2\lambda(v-k)}$ is an integer $\leq r$, where r is the number of parallel classes of D, then there exists a $3-(2v,2k,\Theta)$ design C with $\Theta=\frac{\Lambda k(v-2)}{2(v-k)}$.

Moreover, if D^* is resolvable, then C is resolvable for both cases (i) and (ii).

Remark 2.1 If D^* is chosen to be a 3 - (2m, 4, 1) design in Theorem 2.1 (i), then we have the doubling construction for Steiner quadruple systems.

If D^* is the trivial design in Theorem 2.1 and $\epsilon = 0$, then we have the construction of Driessen. It should be noted that the Driessen construction provides at most one 3-design

from a given resolvable $3-(v,k,\lambda)$ design, whereas Construction I may yield a large number of 3-designs from a given one. As an example, take the trivial 3-(12,3,1) design for D and a 3-(12,6,m2) design for D^* , where $m\in\{1,2,\ldots,42\}$. The numerical condition of Theorem 2.1 is satisfied if 3|m. Thus the resulting design C with parameters 3-(24,6,10m/3) is obtained for m=3,6,9,12,15,18,21,24,27,30,33,36,39,42. The last value m=42 corresponds to the design in Driessen construction.

2.1 Applications of Construction I

As a first example, take the 3-(15,3,1) design for D and a 3-(15,6,m20) design for D^* , where $m \in \{1,2,\ldots,11\}$. The condition that $\frac{\Lambda k(k-2)}{2\lambda(v-k)}$ is an integer implies that m is even. Hence the parameters of the resulting designs C are 3-(30,6,65), 3-(30,6,130), 3-(30,6,195), 3-(30,6,260) and 3-(30,6,325). These designs are indicated as unknown in the Handbook of Combinatorial Designs [5], p.57.

Thus we have

Theorem 2.2 There is a 3 - (30, 6, m5) design for m = 13, 26, 39, 52, 65.

In the same vein as Theorem 2.2 we can prove that 3 - (32, 8, m7) designs exist for m = 1, ..., 35 by taking D as a resolvable 3-(16,4,1) design and D^* as a 3 - (16,8,m3) design with m = 1, ..., 35. Similarly, when D is a resolvable 3-(20,4,1) design and D^* is a 3 - (20,8,m14) design, where m = 1, ..., 16, the design C of parameters 3 - (40,8,n63) can be constructed for all m = 2n with n = 1, ..., 8.

Hence we have the following results.

Theorem 2.3 (i) There exists a 3 - (32, 8, m7) design for m = 1, ..., 35.

(ii) There exists a 3 - (40, 8, n63) design for n = 1, ..., 8.

As another example, take the trivial $3-(2^n+1,3,1)$ design for D, where n is odd. D is resolvable after a theorem of Baranyai [2]. Take D^* as a $3-(2^n+1,6,10(2^n-2)/3)$ design with odd $n \geq 5$. D^* is obtained from a $4-(2^n+1,6,10)$ design constructed by Bierbrauer [3]. It is easy to check that $\frac{\Delta k(k-2)}{2\lambda(v-k)}=(2s+1-\epsilon)=5$ (i.e. $\epsilon=0$). Theorem 2.1 then yields a $3-(2^{n+1}+2,6,5(2^n-1))$ design. Thus we have the following result.

Theorem 2.4 There exists a $3 - (2^{n+1} + 2, 6, 5(2^n - 1))$ design for all odd $n \ge 5$.

We observe that the construction in Theorem 2.1 can produce infinite families of 3-designs when using it recursively.

As examples we illustrate the construction of two families of 3-designs with k=8.

1. Let D_i be a resolvable $3-(2^i20,4,1)$ design for $i\geq 0$. D_i is known to exist for all i, see [5] I.4.32. Let D_0^* be a 3-(20,8,28) design. Construction I with the pair (D_0,D_0^*) yields a 3-(40,8,63) design D_1^* . Applying Construction I for the pair (D_1,D_1^*) yields a 3-(80,8,133) design D_2^* . Repeat Construction I with the pair (D_2,D_2^*) and so on will provide a family of 3-designs having parameters $3-(2^i20,8,7(2^{i-2}20-1))$ for all integers $i\geq 0$. To see this, we need to verify the divisibility condition for $\frac{\Lambda^{(i)}k(k-2)}{2\lambda^{(i)}(v_i-k)}$ and to compute $\Lambda^{(i)}$. Since $v_i=2^i20$, $\lambda^{(i)}=1$ and $\Lambda^{(i)}=\frac{\Lambda^{(i-1)}k(v_{i-1}-2)}{2(v_{i-1}-k)}$, we have $\frac{\Lambda^{(i)}k(k-2)}{2\lambda^{(i)}(v_i-k)}=\frac{4\Lambda^{(i)}}{(v_i-4)}=\frac{4\Lambda^{(i-1)}}{(v_{i-1}-4)}=\ldots=\frac{4\Lambda^{(0)}}{(v_0-4)}=7$. Hence, $\Lambda^{(i)}=7(v_i-4)/4=7(2^{i-2}20-1)$ as desired.

2. In the same way, we will obtain a $3 - (2^i 28, 8, 7(2^{i-2}28 - 1))$ design for all $i \ge 0$ when starting with a resolvable 3 - (28, 4, 1) design as D_0 and a 3 - (28, 8, 42) design as D_0^* . Here we have $\Lambda^{(i)} = \frac{\Lambda^{(i-1)} 2(v_{i-1}-2)}{(v_{i-1}-4)}$ and $\frac{\Lambda^{(i)} k(k-2)}{2\lambda^{(i)}(v_i-k)} = \frac{4\Lambda^{(i)}}{(v_i-4)} = \frac{4\Lambda^{(i-1)}}{(v_{i-1}-4)} = \cdots = \frac{4\Lambda^{(0)}}{(v_0-4)} = 7$. Thus we have proved the following result.

Theorem 2.5 For all i > 0 designs with the following parameters exist

- 1. $3 (2^{i}20, 8, 7(2^{i-2}20 1)),$
- 2. $3 (2^{i}28, 8, 7(2^{i-2}28 1))$.

2.2 Constructions of resolvable 3-designs

In this section we investigate constructions for resolvable 3-designs. As shown in Theorem 2.1 if both D and D^* are resolvable, then so is the resulting design C. Whereas, if D^* is not resolvable, then, in general, C is not either. In the following, however, we prove that if v=3k and D^* , which is never resolvable in this case, is chosen in a particular way, then the resulting design C is resolvable. This result turns out to be very useful as it can be combined with Construction I to produce a great quantity of new families of resolvable 3-designs.

At first consider two simple but useful results related to resolvable t-designs with v=2k.

Theorem 2.6 If there is a resolvable $t - (2k, k, \lambda)$ design, then there is a resolvable $t - (2k, k, \binom{2k-t}{k-t} - \lambda)$ design.

Proof. Let D be a resolvable $t-(2k,k,\lambda)$ design, then the supplementary design \bar{D} consisting of all k-subsets not being a block of D is a $3-(2k,k,\binom{2k-t}{k-t}-\lambda)$ design. \bar{D} is resolvable, because if \bar{C} is a block of \bar{D} , then the complement \bar{C}^* is also a block of \bar{D} , since otherwise \bar{C}^* , and therefore \bar{C} , would be both blocks of D, which is impossible.

The next theorem about resolvable t-designs with v = 2k is derived from a construction of Alltop [1].

Theorem 2.7 If there exists a $(2t + 1) - (2k, k, \lambda)$ design, then there exists a resolvable $(2t + 1) - (2k, k, \lambda)$ design.

Proof. Suppose that there is a $(2t+1)-(2k,k,\lambda)$ design $D=(X,\mathcal{B})$. If D is resolvable, then the theorem is proved. If not, let $D_z=(X_z,\mathcal{B}_1), X_z=X-\{z\}$, be the derived design $2t-(2k-1,k-1,\lambda)$ of D at a point $z\in X$. Then $D^*=(X_z\cup\{z\},\mathcal{B}_1^+\cup\mathcal{B}_1^*)$ is a resolvable $(2t+1)-(2k,k,\lambda)$ design, where $\mathcal{B}_1^+=\{B\cup\{z\}, B\in\mathcal{B}_1\}$ and $\mathcal{B}_1^*=\{X-B, B\in\mathcal{B}_1\}$. \square

As an illustration of Theorem 2.6 and Theorem 2.7, we present several small parameters of resolvable $3 - (2k, k, \lambda)$ designs for $k \leq 10$ using known 3-designs given in [5].

Theorem 2.8 There is a resolvable 3-design for the following parameters.

- (i) $3 (8, 4, n), n = 1, \dots, 5;$
- (ii) $3 (10, 5, n3), n = 1, \ldots, 7;$
- (iii) $3 (12, 6, n2), n = 1, \dots, 42;$

- (iv) $3 (14, 7, n5), n = 1, \dots, 66;$
- (v) $3 (16, 8, n3), n = 1, \dots, 429;$
- (vi) $3 (18, 9, n7), n = 1, \dots, 715;$
- (vii) $3 (20, 10, n4), n = 1, \dots, 4862.$

As first examples for resolvable 3-designs obtained from Construction I we have

Theorem 2.9 There is a resolvable 3-design for the following parameters:

- (i) $3 (24, 6, n10), n = 1, \dots, 14;$
- (ii) $3 (32, 8, m7), m = 1, \dots, 35.$

Proof. (i) Take the trivial design 3-(12,3,1) for D and a resolvable 3-(12,6,m2) design for D^* , where $m=1,\ldots,42$. It is easily checked that if 3|m, then the resulting design C has parameters $3-(24,6,\frac{m}{3}10)$.

(ii) In this case, D is a resolvable Steiner quadruple system 3-(16,4,1) and D^* is a resolvable $3 - (16, 8, m3), m = 1, \ldots, 35$.

We now consider the case v = 3k of Construction I.

Suppose there is a resolvable $3-(3k,k,\lambda)$ design $D, k \geq 3$. Take the complementary design of D for D^* . So, D^* is a $3-(3k,2k,\Lambda)$ design with $\Lambda=\lambda\binom{2k}{3}/\binom{k}{3}$. Note that D^* is never resolvable. It is now easy to verify that $\frac{\Lambda k(k-2)}{2\lambda(v-k)}=2k-1$, hence Construction I yields a design C with parameters $3-(6k,2k,\Theta)$, where $\Theta=\lambda(2k-1)(3k-2)/(k-2)$.

We show that C is resolvable. Let \tilde{D}^* be a copy of D^* defined on \tilde{X} . First of all, note that D and D^* have the same number of blocks. Since $2s + 1 - \epsilon = 2k - 1$, we have $\epsilon = 0$.

Type I

Let $A_{i_1}, A_{i_2}, A_{i_3}$ (resp. $\tilde{A}_{i_1}, \tilde{A}_{i_2}, \tilde{A}_{i_3}$) be 3 blocks of the parallel class π_i (resp. $\tilde{\pi}_i$). Let $B_{i_1}, B_{i_2}, B_{i_3}$ (resp. $\tilde{B}_{i_1}, \tilde{B}_{i_2}, \tilde{B}_{i_3}$) be the corresponding complementary blocks of A_{i_j} in D^* (resp. of \tilde{A}_{i_j} in \tilde{D}^*).

Form 5 parallel classes of C as follows.

It is clear that parallel classes of type I cover all the blocks of D^* and \tilde{D}^* .

Type II

For each pair (i,j), $i \neq j$ with $1 \leq d(\pi_i, \pi_j) \leq s$, the nine blocks of the form $A \cup \tilde{A}$, where $A \in \pi_i$ and $\tilde{A} \in \tilde{\pi}_j$, are partitioned into 3 parallel classes as follows.

$$\begin{array}{lll} A_{i_1} \cup \tilde{A}_{j_1} & & A_{i_1} \cup \tilde{A}_{j_2} & & A_{i_1} \cup \tilde{A}_{j_3} \\ A_{i_2} \cup \tilde{A}_{j_2} & & A_{i_2} \cup \tilde{A}_{j_3} & & A_{i_2} \cup \tilde{A}_{j_1} \\ A_{i_3} \cup \tilde{A}_{j_3} & & A_{i_3} \cup \tilde{A}_{j_1} & & A_{i_3} \cup \tilde{A}_{j_2} \end{array}$$

This shows that C is resolvable and has parameters $3 - (6k, 2k, \Theta)$, where $\Theta = \lambda(2k - 1)(3k - 2)/(k - 2)$.

Now, if we repeat the construction above with C, we obtain a further resolvable $3 - (12k, 4k, \Theta(4k-1)(6k-2)/(2k-2))$ design. Continuing this procedure will provide a resolvable $3 - (2^i 3k, 2^i k, \lambda \prod_{j=0}^{i-1} \theta_j)$ design after i steps of recursion, where $\theta_j = (2.2^j k - 1)(3.2^j k - 2)/(2^j k - 2)$.

Thus we have proved the following result.

Theorem 2.10 If a resolvable $3 - (3k, k, \lambda)$ design with $k \geq 3$ exists, then a resolvable $3 - (6k, 2k, \lambda(2k-1)(3k-2)/(k-2))$ design exists. In particular, there exists a resolvable $3 - (2^i 3k, 2^i k, \Theta)$ design for any $i \geq 1$, where $\Theta = \lambda \prod_{j=0}^{i-1} \theta_j$ and $\theta_j = (2 \cdot 2^j k - 1)(3 \cdot 2^j k - 2)/(2^j k - 2)$.

Remark 2.2 If k=2, then we start with the trivial 2-(6,2,1) design D. The complementary design D^* of D is the trivial 3-(6,4,3) design. The same argument in the proof of Theorem 2.10 shows that a resulting 3-(12,4,3) design C is resolvable. Therefore, the assumption $k \geq 3$ in Theorem 2.10 is not essential, it is made in order to avoid a zero division in the expression of θ_0 .

Theorem 2.1 seems to be a crucial and powerful tool for constructing resolvable 3-designs. First of all, the case v=2k provides the most known examples of resolvable 3-designs for infinitely many values of k, for instance Hadamard 3-designs. Furthermore, Theorem 2.6 finally asserts the abundancy of resolvable $3-(2k,k,\lambda)$ designs. Up to now very little was known about resolvable 3-designs with v=3k. Theorem 2.10 is therefore interesting, because it can be used to show (for example) that non-trivial resolvable 3-designs with v=3k exist for infinitely many values of k. For any given value $k \geq 3$, applying Theorem 2.10 to the trivial resolvable $3-(3k,k,\binom{3k-3}{k-3})$ yields an infinite family of resolvable 3-designs with parameters $3-(2^i3k,2^ik,\binom{3k-3}{k-3})\prod_{j=0}^{i-1}\theta_j)$, where $\theta_j=(2.2^jk-1)(3.2^jk-2)/(2^jk-2)$. It should be mentioned that these designs are non-trivial for all $i\geq 1$.

We record this result in the following theorem.

Theorem 2.11 For any integer $k \geq 3$ there is a resolvable 3-design with parameters $3 - (2^i 3k, 2^i k, \binom{3k-3}{k-3}) \prod_{j=0}^{i-1} \theta_j)$, where $\theta_j = (2.2^j k - 1)(3.2^j k - 2)/(2^j k - 2)$, for any $i \geq 1$.

Kramer and Magliveras [7] have shown the existence of 9 mutually disjoint copies of the 5-(24,8,1) Witt design. The blocks of the 5-(24,8,1) Witt design can be partitioned into 253 parallel classes each having three blocks, see for instance [8]. So we have a resolvable 3-(24,8,m21) design for $m=1,\ldots,9$. Starting Theorem 2.10 with each of these designs will provide a further family, which is presented in the following theorem.

Theorem 2.12 For any m = 1, ..., 9 and $i \ge 1$, there is a resolvable 3-design with parameters $3 - (2^i 24, 2^i 8, m21 \prod_{j=0}^{i-1} \theta_j)$, where $\theta_j = (2^{j+4} - 1)(3 \cdot 2^{j+3} - 2)/(2^{j+3} - 2)$.

Before we discuss the combination of Theorem 2.1 and Theorem 2.10, we consider the construction of a family of resolvable 3-designs for k = 8 using Construction I.

Let D_i be a resolvable $3 - (2^i 24, 4, 3)$ design, for all integer $i \ge 0$. For the existence of D_i , see [6]. Take a resolvable 3 - (24, 8, 105) design for D_0^* . Starting with the pair (D_0, D_0^*) and applying Construction I repeatedly as shown above for the family in Theorem 2.5 we obtain a family of resolvable 3-designs with parameters $3 - (2^i 24, 8, 21(2^{i-2}24 - 1))$. For instance,

 D_1^* (resp. D_2^*) has parameters 3 - (48, 8, 231) (resp. 3 - (96, 8, 483)). To our knowledge this family is unknown.

We record the result in the following theorem.

Theorem 2.13 There exists a resolvable $3 - (2^i 24, 8, 21(2^{i-2} 24 - 1))$ design for all integer i > 0.

We now show how to combine Theorems 2.1 and 2.10 by presenting a family of resolvable 3-designs for k = 16.

Let D_i be a resolvable $3-(2^i24,8,21(2^{i-2}24-1))$ design in Theorem 2.10. We start with D_0 as a 3-(24,8,105) design and D_0^* as a 3-(24,16,1050) design, the complement of D_0 . Then the constructed design D_1^* has parameters 3-(48,16,5775) and is resolvable. Applying Construction I to the pair D_1 , D_1^* yields a further resolvable design D_2^* . Continuing this way, the constructed design D_i^* is resolvable and has parameters $3-(2^i24,16,7.15(2^{i-2}24-1)(2^{i-3}24-1))$. To verify this, we need to check the divisibility condition for $\frac{\Lambda^{(i)}k(k-2)}{2\lambda^{(i)}(v_i-k)}$ and to compute $\Lambda^{(i)}$. Since $\Lambda^{(i)} = \frac{\Lambda^{(i-1)}k(v_{i-1}-2)}{2(v_{i-1}-k)}$ and $2\lambda^{(i)} = 21.(v_{i-1}-2)$, we have $\frac{\Lambda^{(i)}k(k-2)}{2\lambda^{(i)}(v_i-k)} = \frac{\Lambda^{(i-1)}k(k-2)}{2\lambda^{(i)}(v_{i-1}-k)} = \cdots = \frac{\Lambda^{(0)}k(k-2)}{2\lambda^{(0)}(v_0-k)} = (2k-1) = 15$. Hence, $\Lambda^{(i)} = 15.2\lambda^{(i)}(v_i-k)/k(k-2) = 7.15(2^{i-2}24-1)(2^{i-3}24-1)$ as desired.

We obtain the following result.

Theorem 2.14 For any integer $j \ge 0$, there exists a resolvable $3 - (2^{j}48, 16, 7.15.(2^{j-2}48 - 1)(2^{j-3}48 - 1))$ design.

The construction of the family in Theorem 2.14 can be recursively carried out with respect to each given block size 2^n , $n \ge 3$. In this way we obtain a double infinite family of resolvable 3-designs. In the following, we sketch this procedure.

For each $n \geq 3$, set $k_n = 2^n$ and $v_{n,j} = 2^j 3 \cdot 2^n$.

Starting with the family of resolvable designs in Theorem 2.13: $3 - (v_{3,j}, k_3, \lambda^{3,j})$, where $\lambda^{3,j} = \frac{1}{2}(k_3 - 2)(k_3 - 1)(2^{j-2} \cdot 3 \cdot 2^3 - 1) = \frac{1}{2}(k_3 - 2)(k_3 - 1)(v_{3,j-2} - 1)$, we obtain a family of resolvable 3-designs in Theorem 2.14: $3 - (v_{4,j}, k_4, \lambda^{4,j})$ with $\lambda^{4,j} = \frac{1}{2}(k_4 - 2)(k_4 - 1)(v_{4,j-2} - 1)(v_{4,j-3} - 1)$, for all $j \geq 0$, by using Theorem 2.1 and 2.10, which will be called the combined procedure, or CP for short.

Now starting with the family: $3 - (v_{4,j}, k_4, \lambda^{4,j})$ and applying CP, we obtain a new family of resolvable designs: $3 - (v_{5,j}, k_5, \lambda^{5,j})$, with $\lambda^{5,j} = \frac{1}{2}(k_5 - 2)(k_5 - 1)(v_{5,j-2} - 1)(v_{5,j-3} - 1)(v_{5,j-4} - 1)$, for all $j \ge 0$.

When repeating the application of CP to the new family just constructed, we will obtain for each $n \geq 3$ a family of resolvable 3-designs having parameters $3 - (2^j.3.2^n, 2^n, \lambda^{n,j})$, for all $j \geq 0$, where $\lambda^{n,j} = (2^{n-1} - 1)(2^n - 1)\prod_{i=2}^{n-1}(2^{j-i}.3.2^n - 1)$.

The divisibility condition of Theorem 2.1 turns out to be $\lambda^{n+1,j}k_n(2k_n-2)/2\lambda^{n,j}(v_{n,j-1}-k_n)=2k_n-1$, by using the fact that $\lambda^{n+1,0}=\lambda^{n,0}.4.(2.k_n-1)/(k_n-1)$ and $\lambda^{n,j}=(2^{n-1}-1)(2^n-1)\prod_{i=2}^{n-1}(v_{n,j-i}-1))$.

We summarize this result in the following theorem.

Theorem 2.15 Let $n \geq 3$ be an integer. Then there is a family \mathcal{F}_n of resolvable 3-designs having parameters $3 - (2^j.3.2^n, 2^n, (2^{n-1} - 1)(2^n - 1) \prod_{i=2}^{n-1} (2^{j-i}.3.2^n - 1))$, for all $j \geq 0$.

3 Construction II

We have seen that Contruction I provides a class of 3-designs for which the size of blocks divides the number of points. In this section, we want to extend Construction I so that we are able to construct designs for which the number of points is not necessarily divisible by the size of the blocks.

Let $D_1 = (X, \mathcal{B}_1)$ be a resolvable $3 - (v, k_1, \lambda)$ design and let $D_2 = (X, \mathcal{B}_2)$ be a resolvable $3 - (v, k_2, \zeta)$ design with $3 \le k_1 < k_2$ such that $\lambda \frac{(v-1)(v-2)}{(k_1-1)(k_1-2)} = \zeta \frac{(v-1)(v-2)}{(k_2-1)(k_2-2)}$, i.e. D_1 and D_2 have the same number of parallel classes. Let π_1, \ldots, π_r (resp. Π_1, \ldots, Π_r) denote the r parallel classes of D_1 (resp. D_2).

Let $D_3 = (X, \mathcal{B}_3)$ be a $3 - (v, k_1 + k_2, \Lambda)$ design and let \tilde{D}_i be a copy of D_i , i = 1, 2, 3, constructed on the point set \tilde{X} with $X \cap \tilde{X} = \emptyset$.

Define blocks on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D_3 and \tilde{D}_3 ;
- II. blocks of the form $A \cup \tilde{B}$, where $A \in \pi_i$ and $\tilde{B} \in \tilde{\Pi}_j$ such that $\epsilon \leq d(\pi_i, \pi_j) \leq s$, $\epsilon = 0, 1$;
- III. blocks of the form $\tilde{A} \cup B$, where $\tilde{A} \in \tilde{\pi}_i$ and $B \in \Pi_j$ such that $\epsilon \leq d(\pi_i, \pi_j) \leq s, \epsilon = 0, 1$.

Any 3 points $a,b,c\in X$ (resp. $\tilde{a},\tilde{b},\tilde{c}\in \tilde{X}$) are contained in, Λ blocks of type I, $(2s+1-\epsilon)\lambda\frac{v}{k_2}$ blocks of type II and $(2s+1-\epsilon)\zeta\frac{v}{k_1}$ blocks of type III. Thus they appear in $\Lambda+(2s+1-\epsilon)\lambda\frac{v}{k_2}+(2s+1-\epsilon)\zeta\frac{v}{k_1}$ blocks.

We need to compute the number of blocks containing 3 points of type a, b, \tilde{c} , where $a, b \in X$ and $\tilde{c} \in \tilde{X}$; the case for three points \tilde{a}, \tilde{b}, c is similar.

Now a and b are contained in $\lambda \frac{v-2}{k_1-2}$ blocks of D_1 and \tilde{c} is in exactly one block of each parallel class of \tilde{D}_2 . So a,b,\tilde{c} are in $(2s+1-\epsilon)\lambda \frac{v-2}{k_1-2}$ blocks of type II. Similarly, a,b,\tilde{c} are in $(2s+1-\epsilon)\zeta \frac{v-2}{k_2-2}$ blocks of type III. Thus a,b,\tilde{c} are in $(2s+1-\epsilon)\lambda \frac{v-2}{k_1-2}+(2s+1-\epsilon)\zeta \frac{v-2}{k_2-2}$ blocks.

These defined blocks will form a 3-design if

$$\Lambda + (2s+1-\epsilon)\lambda \frac{v}{k_2} + (2s+1-\epsilon)\zeta \frac{v}{k_1} = (2s+1-\epsilon)\lambda \frac{v-2}{k_1-2} + (2s+1-\epsilon)\zeta \frac{v-2}{k_2-2}$$

or

$$\Lambda = \left[\lambda \frac{v-2}{k_1 - 2} + \zeta \frac{v-2}{k_2 - 2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1})\right] (2s + 1 - \epsilon)$$

There are two cases:

Case A.

$$\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) = 0.$$

This implies $\Lambda=0$ and the designs D_3 and \tilde{D}_3 are not needed in the construction. That means that the blocks of type II and III themselves form a design for $0 \le s \le \lfloor \frac{r}{2} \rfloor$. In this case, we can construct a $3-(2v,k_1+k_2,\Theta)$ design with $\Theta=m.(\lambda\frac{v-2}{k_1-2}+\zeta\frac{v-2}{k_2-2})$ for any $m=1,\ldots,r$.

Case B.

$$\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) > 0.$$

Here the defined blocks form a design if

$$\Lambda / [\lambda \frac{v - 2}{k_1 - 2} + \zeta \frac{v - 2}{k_2 - 2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1})] = \Omega$$

is a positive integer $\leq r$.

The parameters of the constructed design are $3 - (2v, k_1 + k_2, \Theta)$, where $\Theta = \Omega(\lambda \frac{v-2}{k_1-2} +$ $(\zeta \frac{v-2}{k_2-2})$. We summarize Construction II in the following theorem.

Theorem 3.1 Suppose that there exists a resolvable $3 - (v, k_1, \lambda)$ design D_1 and a resolvable $3 - (v, k_2, \zeta)$ design D_2 with $3 \le k_1 < k_2$ such that $\lambda \frac{(v-1)(v-2)}{(k_1-1)(k_1-2)} = \zeta \frac{(v-1)(v-2)}{(k_2-1)(k_2-2)} = r$.

- If $\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) = 0$, then there is a $3 (2v, k_1 + k_2, \Theta)$ design with $\Theta = m(\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2})$ for any $m = 1, \ldots, r$.
- (ii) If $\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) > 0$ and if there is a $3 (v, k_1 + k_2, \Lambda)$ design D_3 such that

$$\Lambda/[\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1})] = \Omega$$
 (1)

is a positive integer $\leq r$, then there is a $3 - (2v, k_1 + k_2, \Theta)$ design with $\Theta = \Omega(\lambda \frac{v-2}{k_1-2} + k_2)$ $\left(\frac{v-2}{k_2-2}\right)$.

Remark 3.1 If $\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) < 0$, then no design can be constructed.

As a first example of Construction II, take a resolvable 3-(12,4,3) design as D_1 and the resolvable 3-(12,6,10) design in Theorem 2.8 as D_2 . Take the trivial 3-(12,10,36) design as D_3 . Then Construction II yields a 3-(24,10,360) design. The latter is indicated as unknown in [5], p.55.

Theorem 3.2 A = (24, 10, 360) design exists.

As a second example consider a resolvable 3-(18,6,35) design D_1 and a resolvable 3-(18,9,98) design D_2 . Note that D_1 is obtained from Theorem 2.10 by using the trivial 3-(9,3,1) design and D_2 is from Theorem 2.8. We have $\lambda \frac{v-2}{k_1-2} + \zeta \frac{v-2}{k_2-2} - (\lambda \frac{v}{k_2} + \zeta \frac{v}{k_1}) = 0$, and so there is 3 - (36, 15, m364) design for any $m = 1, \ldots, 476$.

Theorem 3.3 There is a 3 - (36, 15, m364) design for any m = 1, ..., 476.

4 Construction III

In this section we present a further construction of 3-designs having block size not dividing the number of points.

Let $T = (X, \mathcal{B}_T)$ be a resolvable $3 - (v, \ell, \lambda)$ design. Let π_1, \ldots, π_r denote the r parallel classes of T where $r = \lambda \frac{(v-1)(v-2)}{(l-1)(l-2)}$. As before, define a distance between any two parallel classes π_i and π_j of T by $d(\pi_i, \pi_j) = \min\{|i-j|, r-|i-j|\}.$

Let $\tilde{T} = (\tilde{X}, \tilde{\mathcal{B}}_{\tilde{T}})$ be a copy of T defined on \tilde{X} with $X \cap \tilde{X} = \emptyset$. Let $D = (X, \mathcal{B}_D)$ be a $3-(v,k,\Lambda)$ design, such that $w=k-\ell\geq 3$. Let \tilde{D} be a copy of D defined on \tilde{X} .

Further, let W be a $3 - (\ell, w, \theta)$ design. We also assume that any two blocks of T have less than w points in common. This condition guarantees that the resulting design is simple; if this condition is removed then the constructed design may have repeated blocks.

Define blocks on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D and \tilde{D} ;
- II. blocks of the form $B \cup \tilde{Z}$, where $B \in \pi_i$ and \tilde{Z} is a block of the design W defined on the points of a block in $\tilde{\pi_j}$ with $\epsilon \leq d(\pi_i, \pi_j) \leq s$, $\epsilon = 0, 1$;
- III. blocks of the form $\tilde{B} \cup Z$, where $\tilde{B} \in \tilde{\pi_i}$ and Z is a block of the design W defined on the points of a block in π_j with $\epsilon \leq d(\pi_i, \pi_j) \leq s$, $\epsilon = 0, 1$.

Let $\{x, y, z\}$ be three points in X.

- $\{x, y, z\}$ are on Λ blocks of type I.
- $\{x,y,z\}$ are on λ blocks of T distributed in λ parallel classes π_i . As there are $(2s+1-\epsilon)$ parallel classes π_j satisfying $\epsilon \leq d(\pi_i,\pi_j) \leq s$, and there are v/ℓ blocks in $\tilde{\pi}_j$, there are $(2s+1-\epsilon)\lambda\theta_0\frac{v}{\ell}$ choices for blocks of type II containing $\{x,y,z\}$, where θ_0 is the number of blocks of W.
- There are λ parallel classes π_i having a block containing $\{x,y,z\}$. In the copy of W defined on the points of that block, $\{x,y,z\}$ are in θ blocks Z. Thus there are $\lambda\theta$ choices for Z. Further, there are v/ℓ blocks \tilde{B} in $\tilde{\pi}_j$ with $\epsilon \leq d(\tilde{\pi}_i,\tilde{\pi}_j) \leq s$, so there are $\lambda\theta(2s+1-\epsilon)\frac{v}{\ell}$ blocks of type III containing $\{x,y,z\}$.

Altogether, there are $\Lambda + \lambda(2s+1-\epsilon)\theta_0\frac{v}{\ell} + \lambda(2s+1-\epsilon)\theta\frac{v}{\ell}$ blocks containing $\{x,y,z\}$.

Let $\{x, y, \tilde{z}\}$ be three points with $x, y \in X$ and $\tilde{z} \in \tilde{X}$.

- Two points $\{x,y\}$ are in $\lambda \frac{v-2}{\ell-2}$ blocks of T distributed in $\lambda \frac{v-2}{\ell-2}$ parallel classes π_i . For each of these π_i , there are $(2s+1-\epsilon)$ choices for $\tilde{\pi}_j$ with $\epsilon \leq d(\pi_i,\pi_j) \leq s$, and in $\tilde{\pi}_j$ there is a unique block containing \tilde{z} , so \tilde{z} is in θ_1 blocks \tilde{Z} of W defined on that block, where θ_1 is the number of blocks containing a point in W. Hence, there are $\lambda \theta_1(2s+1-\epsilon)\frac{v-2}{\ell-2}$ blocks of type II containing $\{x,y,\tilde{z}\}$.
- Each of $\lambda \frac{v-2}{\ell-2}$ parallel classes π_i , for which $\{x,y\}$ are on a block B, gives θ_2 blocks Z containing $\{x,y\}$ in the copy of W defined on B, where θ_2 is the number of blocks containing a pair of points in W. Further, there is a unique block \tilde{B} containing \tilde{z} in $\tilde{\pi}_j$ with $\epsilon \leq d(\tilde{\pi}_i,\tilde{\pi}_j) \leq s$, so there are $(2s+1-\epsilon)\lambda \frac{v-2}{\ell-2}\theta_2$ blocks of type III containing $\{x,y,\tilde{z}\}$.

Therefore, $\{x,y,\tilde{z}\}$ are in $\lambda\theta_1(2s+1-\epsilon)\frac{v-2}{\ell-2}+(2s+1-\epsilon)\lambda\frac{v-2}{\ell-2}\theta_2$ blocks. The blocks so constructed will form a 3-design if

$$\Lambda + \lambda (2s + 1 - \epsilon) \theta_0 \frac{v}{\ell} + \lambda (2s + 1 - \epsilon) \theta \frac{v}{\ell} = \lambda \theta_1 (2s + 1 - \epsilon) \frac{v - 2}{\ell - 2} + (2s + 1 - \epsilon) \lambda \frac{v - 2}{\ell - 2} \theta_2$$
(2)

or equivalently,

$$\Lambda/\lambda\theta\left[\frac{v-2}{\ell-2}\left(\frac{\binom{\ell-1}{2}}{\binom{w-1}{2}} + \frac{\ell-2}{w-2}\right) - \frac{v}{\ell}\left(\frac{\binom{\ell}{3}}{\binom{w}{3}} + 1\right)\right] = (2s+1-\epsilon)$$

is an integer $\leq r$. And the resulting design has parameters $3-(2v,k,\Theta)$, where

$$\Theta = (2s + 1 - \epsilon)\lambda \theta \frac{v - 2}{\ell - 2} \left(\frac{\binom{\ell - 1}{2}}{\binom{w - 1}{2}} + \frac{\ell - 2}{w - 2} \right).$$

We summarize Construction III in the following theorem.

Theorem 4.1 Suppose that there exists a resolvable $3-(v,\ell,\lambda)$ design T and a $3-(v,k,\Lambda)$ design D with $w=k-\ell\geq 3,\ k\leq 2\ell,\ and\ |A\cap B|\leq w-1$ for any two distinct blocks A and B of T. Suppose that there is a $3-(\ell,w,\theta)$ design W such that

$$\Lambda/\lambda\theta[\frac{v-2}{\ell-2}(\frac{\binom{\ell-1}{2}}{\binom{w-1}{2}} + \frac{\ell-2}{w-2}) - \frac{v}{\ell}(\frac{\binom{\ell}{3}}{\binom{w}{3}} + 1)] = \Omega$$

is an integer $\leq r$, where r is the number of parallel classes of T. Then there exists a $3-(2v,k,\Theta)$ design C, where $\Theta=\Omega\lambda\theta\frac{v-2}{\ell-2}(\frac{\binom{\ell-1}{2}}{\binom{w-1}{\ell-2}}+\frac{\ell-2}{w-2})$.

As an application of Theorem 4.1 we have the following Corollary.

Corollary 4.2 If there exists a $3 - (4n, 7, \Lambda)$ design for $n \equiv 4, 8 \pmod{12}$ such that $5(n-1)|\Lambda$ and $\Lambda \leq 5(n-1)\binom{4n-1}{2}/3$, then there exists a $3 - (8n, 7, \Lambda \frac{2n-1}{n-1})$ design.

Proof. Take a resolvable 3-(4n,4,1) design as T and the trivial 3-(4,3,1) design as W for Theorem 4.1.

An example derived from Theorem 4.1 is as follows. Let T be the resolvable 3-(24,8,21) design, which is the Witt system 5-(24,8,1), and let D be a 3-(24,15,m5.7.13) design, which is the complementary design of a 3-(24,9,m84) design with $m \in \{1,\ldots,101\}$. Let take W to be the trivial 3-(8,7,5) design. It follows that $\Omega = \frac{5}{2}m$ is an integer if m = 2n. In this case Theorem 4.1 yields a 3-(48,15,n5.7.11.13) design. It is known that a 3-(24,9,m84) exists for all even values of m, see [5], p.55, so we have the following theorem.

Theorem 4.3 There is a 3 - (48, 15, n5.7.11.13) design for n = 1, ..., 50.

5 Special Constructions for k = 5, 7, 8

In this section we present three special constructions for 3-designs with block sizes 5,7,8.

5.1 A construction for k = 5

Let $D = (X, \mathcal{B})$ be a $3 - (2n, 5, \lambda)$ design. And let $\tilde{D} = (\tilde{X}, \tilde{\mathcal{B}})$ be a copy of D with $X \cap \tilde{X} = \emptyset$. Let T be the resolvable 2 - (2n, 2, 1) design defined on X. Let T_1, \ldots, T_{2n-1} denote the 2n-1 parallel classes of T. Define blocks for a $3 - (4n, 5, \Lambda)$ design on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D (resp. blocks of \tilde{D});
- II. blocks of the form $\{a, b, c, \tilde{d}, \tilde{e}\}$ (resp. $\{\tilde{a}, \tilde{b}, \tilde{c}, d, e\}$), where $\{a, b\} \in T_h$, $\{b, c\} \in T_i$, $\{c, a\} \in T_j$, $\{\tilde{d}, \tilde{e}\} \in \tilde{T}_\ell$ and $\ell \in \{h, i, j\}$.

Any three points $a, b, c \in X$ (resp. $\tilde{a}, \tilde{b}, \tilde{c} \in \tilde{X}$) are contained in λ blocks of type I and 3n blocks of type II.

Any three points a, b, \tilde{d} with $a, b \in X$ and $\tilde{d} \in \tilde{X}$, (resp. \tilde{a}, \tilde{b}, d) are contained in

- 3(2n-2) blocks of type $\{a,b,c,\tilde{d},\tilde{e}\}$: there are (2n-2) choices for c and for each such c there are 3 possibilities for \tilde{e} such that $\{\tilde{d},\tilde{e}\}\in\{\tilde{T}_h,\tilde{T}_i,\tilde{T}_j\}$;
- (3n-3) blocks of type $\{\tilde{e},\tilde{d},\tilde{c},a,b\}$: if $\{a,b\}\in T_h$, then there are (2n-1) choices for \tilde{c} , exactly one of them gives $\{\tilde{c},\tilde{d}\}\in \tilde{T}_h$ and hence there are (2n-2) possible choices for \tilde{e} ; from the remaining (2n-2) possible choices for \tilde{c} we have $\{\tilde{c},\tilde{d}\}\in \tilde{T}_i\neq \tilde{T}_h$ and \tilde{e} has to be chosen such that $\{\tilde{c},\tilde{e}\}\in \tilde{T}_h$, so there are (n-1) choices for the pair $\{\tilde{c},\tilde{e}\}$ as a block in \tilde{T}_h .

In summary, there are 3(2n-2)+(3n-3)=9(n-1) blocks containing a,b,\tilde{d} . The blocks so defined will form a 3-design if and only if $\lambda+3n=9(n-1)$, or equivalently $\lambda=6n-9$. The design constructed will have parameters 3-(4n,5,9(n-1)). Hence, we have the following theorem.

Theorem 5.1 If there is a 3 - (2n, 5, 6n - 9) design, then there is a 3 - (4n, 5, 9(n - 1)) design.

Examples 5.1 As an application, Theorem 5.1 shows the existence of a 3-(36,5,72) and a 3-(44,5,90) design since a 3-(18,5,45) and a 3-(22,5,57) design exist.

Remark 5.1 In the Driessen construction [4], p.87, D is the trivial $3 - (2n, 5, \binom{2n-3}{2})$ design. In this case, the only value n for which a 3-design can be constructed is n = 5, and the design obtained has parameters 3 - (20,5,36).

5.2 A construction for k = 7

Let $D = (X, \mathcal{B})$ be a $3 - (3n, 7, \lambda)$ design. And let $\tilde{D} = (\tilde{X}, \tilde{\mathcal{B}})$ be a copy of D with $X \cap \tilde{X} = \emptyset$. Let T be the resolvable 3 - (3n, 3, 1) design defined on X. Denote by T_1, \ldots, T_r the parallel classes of T, where $r = \binom{3n-1}{2}$. Define blocks for a $3 - (6n, 7, \Lambda)$ design on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D (resp. blocks of \tilde{D});
- $$\begin{split} \text{II. sets of the form } \{a,b,c,d,\tilde{e},\tilde{f},\tilde{g}\} \text{ (resp.} \{\tilde{a},\tilde{b},\tilde{c},\tilde{d},e,f,g\}), \text{ where } \{a,b,c\} \in T_{i_1}, \{b,c,d\} \in T_{i_2}, \ \{c,d,a\} \in T_{i_3}, \ \{d,a,b\} \in T_{i_4}, \ \text{and} \ \ \{\tilde{e},\tilde{f},\tilde{g}\} \in \tilde{T}_j \ \text{and} \ \ j \in \{i_1,i_2,i_3,i_4\}. \end{split}$$

Any three points $a, b, c \in X$ (resp. $\tilde{a}, \tilde{b}, \tilde{c} \in \tilde{X}$) are contained in

- λ blocks of type I;
- 4n(3n-3) blocks of form $\{a,b,c,d,\tilde{e},\tilde{f},\tilde{g}\}$: there are (3n-3) possible choices for d and each such a choice determines 4 parallel classes T_{i_1} , T_{i_2} , T_{i_3} , and T_{i_4} , the points $\tilde{e},\tilde{f},\tilde{g}$ have to be chosen such that they form a block of \tilde{T}_{i_j} , j=1,2,3,4, so there are 4n(3n-3) blocks containing $\{a,b,c\}$;

• n(3n-3) blocks of form $\{\tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$: if $\{a, b, c\} \in T_j$, then some 3 points of $\{\tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}\}$ must be a block in \tilde{T}_j , so there are n possible choices for those three points, the fourth point can be chosen in (3n-3) ways; thus there are n(3n-3) blocks containing $\{a, b, c\}$.

Hence there are $\lambda + 4n(3n-3) + n(3n-3) = \lambda + 5n(3n-3)$ blocks of type I and II containing a, b, c.

Any three points a, b, \tilde{e} with $a, b \in X$ and $\tilde{e} \in \tilde{X}$ are contained in

- 6(3n-2)(n-1) blocks of form $\{a,b,c,d,\tilde{e},\tilde{f},\tilde{g}\}$: there are $\binom{3n-2}{2}$ possible choices for a pair $\{c,d\}$, each choice determines 4 parallel classes, and two points \tilde{f},\tilde{g} have to be chosen so that $\{\tilde{e},\tilde{f},\tilde{g}\}$ is a block in one of these 4 parallel classes, thus there are 4 choices for $\{\tilde{e},\tilde{f},\tilde{g}\}$; altogether we have $4\binom{3n-2}{2}=6(3n-2)(n-1)$ blocks of form $\{a,b,c,d,\tilde{e},\tilde{f},\tilde{g}\}$ containing a,b,\tilde{e} ;
- 4(3n-2)(n-1) blocks of form $\{\tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$: for each of (3n-2) choices for $c \neq a, b$ denote by T_j the parallel class containing $\{a, b, c\}$ as a block; there is exactly one block of \tilde{T}_j containing \tilde{e} and also two other points, say \tilde{d}, \tilde{f} ; the last point \tilde{g} can be chosen in (3n-3) different ways, this gives (3n-2)(3n-3) blocks; on the other hand, for any of (3n-2) choices for c, there are (n-1) blocks of the form $\{\tilde{d}, \tilde{f}, \tilde{g}\}$ in \tilde{T}_j , so this gives (n-1)(3n-2) blocks; altogether there are (3n-2)(3n-3)+(n-1)(3n-2)=4(n-1)(3n-2) blocks of form $\{\tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$ containing a, b, \tilde{e} .

The blocks constructed on $X \cup \tilde{X}$ will form a design if any 3 points of the form a,b,c and a,b,\tilde{e} are contained in the same number of blocks, i.e. if the condition $\lambda + 5n(3n-3) = 6(n-1)(3n-2) + 4(n-1)(3n-2)$ is satisfied. Hence $\lambda = 5(n-1)(3n-4)$. So, any three points of the constructed design are contained in $\Lambda = 6(n-1)(3n-2) + 4(n-1)(3n-2) = 10(n-1)(3n-2)$ blocks. Therefore we have the following theorem.

Theorem 5.2 If there is a 3-(3n,7,5(n-1)(3n-4)) design, then there is a 3-(6n,7,10(n-1)(3n-2)) design for all $n \ge 0$.

As examples we see that if a 3-(21,7,510) (resp. 3-(30,7,1170)) design exists then there exists a 3-(42,7,1140) (resp. 3-(60,7,2520)) design.

5.3 A construction for k = 8

In the same vein as the construction for k = 7, we may also construct designs for k = 8 when using the trivial 3 - (3n, 3, 1) design.

Let $D = (X, \mathcal{B})$ be a $3 - (3n, 8, \lambda)$ design. Let $\tilde{D} = (\tilde{X}, \tilde{\mathcal{B}})$ be a copy of D with $X \cap \tilde{X} = \emptyset$. Again, let T be the resolvable 3 - (3n, 3, 1) design defined on X. Denote by T_1, \ldots, T_r the parallel classes of T, where $r = \binom{3n-1}{2}$. Define blocks for a $3 - (6n, 8, \Lambda)$ design on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D (resp. blocks of \tilde{D});
- II. blocks of the form $\{a,b,c,d,e,\tilde{f},\tilde{g},\tilde{h}\}$ (resp. $\{\tilde{a},\tilde{b},\tilde{c},\tilde{d},\tilde{e},f,g,h\}$), having the property that if $\{\tilde{f},\tilde{g},\tilde{h}\}\in\tilde{T}_i$ then there are three points $\{x,y,z\}\subseteq\{a,b,c,d,e\}$ with $\{x,y,z\}\in T_i$.

Any three points $a,b,c\in X$ (resp. $\tilde{a},\tilde{b},\tilde{c}\in \tilde{X}$) are contained in

- λ blocks of type I;
- $10n\binom{3n-3}{2}$ blocks of form $\{a,b,c,d,e,\tilde{f},\tilde{g},\tilde{h}\}$: there are $\binom{3n-3}{2}$ possible choices for a pair $\{d,e\}$ and each choice determines 10 parallel classes $T_{i_j},\ j=1,\ldots,10$, each of these classes contains exactly one 3-subset of $\{a,b,c,d,e\}$; points $\tilde{f},\tilde{g},\tilde{h}$ have to be chosen such that they form a block of \tilde{T}_{i_j} , this yields $10n\binom{3n-3}{2}$ blocks containing $\{a,b,c\}$;
- $n\binom{3n-3}{2}$ blocks of form $\{\tilde{h}, \tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$: if $\{a, b, c\} \in T_i$, then some 3 points of $\{\tilde{h}, \tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}\}$ must be as a block in \tilde{T}_i , so there are n possible choices for those 3 points, the other two points of $\{\tilde{h}, \tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}\}$ can be chosen $\binom{3n-3}{2}$ ways; this yields $n\binom{3n-3}{2}$ blocks containing $\{a, b, c\}$.

Hence there are $\lambda + 10n\binom{3n-3}{2} + n\binom{3n-3}{2} = \lambda + 11n\binom{3n-3}{2}$ blocks of type I and II containing a,b,c.

Any three points a, b, \tilde{f} with $a, b \in X$ and $\tilde{f} \in \tilde{X}$ are contained in

- $10\binom{3n-2}{3}$ blocks of form $\{a,b,c,d,e,\tilde{f},\tilde{g},\tilde{h}\}$: there are $\binom{3n-2}{3}$ possible choices for a triple $\{c,d,e\}$; five points $\{a,b,c,d,e\}$ determine 10 parallel classes, $T_{i_j},\ j=1,\ldots,10$, each of these classes contains exactly one 3-subset of $\{a,b,c,d,e\}$; and points \tilde{g},\tilde{h} have to be chosen so that $\{\tilde{f},\tilde{g},\tilde{h}\}$ is a block of T_{i_j} , so there are 10 choices for $\{\tilde{f},\tilde{g},\tilde{h}\}$, this gives $10\binom{3n-2}{3}$ blocks containing a,b,\tilde{f} ;
- $5\binom{3n-2}{3}$ blocks of form $\{\tilde{h}, \tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$: for each of (3n-2) choices for $c \neq a, b$ let T_i be the parallel class containing $\{a, b, c\}$ as a block; there is exactly one block of \tilde{T}_i containing \tilde{f} and also two other points, say \tilde{d} , \tilde{e} ; the other two points \tilde{g} and \tilde{h} can be chosen in $\binom{3n-3}{2}$ different ways, this yields $(3n-2)\binom{3n-3}{2} = 3\binom{3n-2}{3}$ blocks containing a, b, \tilde{f} ; on the other hand, for any of (3n-2) choices for c, there are (n-1) blocks of form $\{\tilde{x}, \tilde{y}, \tilde{z}\}$ in \tilde{T}_i , where $\{\tilde{x}, \tilde{y}, \tilde{z}\} \subseteq \{\tilde{h}, \tilde{g}, \tilde{e}, \tilde{d}\}$, and there are (3n-4) possible choices for another point of $\{\tilde{h}, \tilde{g}, \tilde{e}, \tilde{d}\}$, this yields $(3n-2)(n-1)(3n-4) = 2\binom{3n-2}{3}$ blocks containing a, b, \tilde{f} ; altogether there are $3\binom{3n-2}{3} + 2\binom{3n-2}{3} = 5\binom{3n-2}{3}$ blocks of form $\{\tilde{h}, \tilde{g}, \tilde{f}, \tilde{e}, \tilde{d}, a, b, c\}$ containing a, b, \tilde{f} .

The blocks constructed on $X \cup \tilde{X}$ will form a design if any 3 points of the form a, b, c and a, b, \tilde{f} are contained in the same number of blocks, i.e. if the condition $\lambda + 11n\binom{3n-3}{2} = 10\binom{3n-2}{3} + 5\binom{3n-2}{3}$ is satisfied. Hence $\lambda = (2n-5)(3n-3)(3n-4)$.

So, any three points of the design constructed are contained in $\Lambda = 10\binom{3n-2}{3} + 5\binom{3n-2}{3} = 15\binom{3n-2}{3}$ blocks. Therefore we have the following theorem.

Theorem 5.3 If there is a 3 - (3n, 8, (2n - 5)(3n - 3)(3n - 4)) design, then there is a $3 - (6n, 8, 15\binom{3n-2}{3})$ design for all $n \ge 0$.

Examples 5.2 There is a 3-(36,8,8400) (resp. 3-(48,8,23100)) design since there is a 3-(18,8,1470) (resp. 3-(24,8,4620)) design.

6 Appendix

The following table contains a list of parameters for 3-designs constructed from the recursive methods of the paper.

	Parameters	Comments	Theorems
1.	3 - (30, 6, m5), m = 13, 26, 39, 52, 65		Thm. 2.2
2.	3 - (40, 8, m63), m = 13, 20, 33, 32, 33 $3 - (40, 8, m63), m = 1, \dots, 8$		Thm. 2.2
3.	$3 - (2^{n+1} + 2, 6, 5(2^n - 1)), \text{ odd } n \ge 5$		Thm. 2.4
4.	$3 - (2^{i}20, 8, 7(2^{i-2}20 - 1)), \text{ odd } n \ge 0$		Thm. 2.4 Thm. 2.5
5.	$3 - (2^{i}28, 8, 7(2^{i-2}28 - 1)), i \ge 0$ $3 - (2^{i}28, 8, 7(2^{i-2}28 - 1)), i \ge 0$		Thm. 2.5
6.	$3 - (24, 6, m10), m = 1, \dots, 14$	resolvable	Thm. 2.9
7.	$3 - (32, 8, m7), m = 1, \dots, 35$	resolvable	Thm. 2.9
8.			
	$\theta_j = (2.2^j k - 1)(3.2^j k - 2)/(2^j k - 2), i \ge 1$	resolvable	Thm. 2.11
9.	$3 - (2^{i}24, 2^{i}8, m21 \prod_{j=0}^{i-1} \theta_j), m = 1, \dots, 9, i \ge 1,$		
	$\theta_j = (2^{j+4} - 1)(3 \cdot 2^{j+3} - 2)/(2^{j+3} - 2)$	resolvable	Thm. 2.12
10.	$3 - (2^{i}24, 8, 21(2^{i-2}24 - 1)), i \ge 0$	resolvable	Thm. 2.13
11.	$3 - (2^{j}48, 16, 7.15.(2^{j-2}48 - 1)(2^{j-3}48 - 1)), j \ge 0$	resolvable	Thm. 2.14
12.	$3 - (2^{j} \cdot 3 \cdot 2^{n}, 2^{n}, (2^{n-1} - 1)(2^{n} - 1) \prod_{i=2}^{n-1} (2^{j-i} \cdot 3 \cdot 2^{n} - 1)),$		
	$j \geq 0$, for any $n \geq 3$	$\operatorname{resolvable}$	Thm. 2.15
13.	3-(24,10,360)		Thm. 3.2
14.	$3 - (36, 15, m364), m = 1, \dots, 476$		Thm. 3.3
15.	$3 - (48, 15, m5.7.11.13), m = 1, \dots, 50$		Thm. 4.3

Remark 6.1 Families 10 and 11 in the table are special cases of family 12 with n=3 and 4.

Acknowledgement

The author would like to thank the referee for many valuable comments and suggestions.

References

- [1] W. O. Alltop, Extending t-designs, J. Combin. Theory A 12, 177–186 (1975).
- [2] Z. Baranyai, On the factorization of the complete uniform hypergraph, Proc. Erdős-Colloquium Keszthely 1973, p.91–108, North-Holland, Amsterdam.
- [3] J. BIERBRAUER, A new family of 4-designs, Graphs Comb. 11, 209-211 (1995).
- [4] L. H. M. E. Driessen, t-designs, $t \geq 3$, Technical Report, Department of Mathematics, Technische Hogeschool Eindhoven, The Netherlands, 1978.
- [5] C. J. COLBOURN AND J. H. DINITZ, Eds. *The CRC Handbook of Combinatorial Designs*, CRC Press (1996).
- [6] D. JUNGNICKEL AND S. A. VANSTONE, On resolvable designs $S_3(3;4,v)$, J. Combin. Theory A 43, 334–337 (1986).
- [7] E. S. Kramer and S. S. Magliveras, Some mutually disjoint Steiner systems, *J. Combin. Theory A* 17, 39–43 (1974).
- [8] E. S. Kramer, S. S. Magliveras and D. M. Mesner, Some resolutions of S(5,8,24), J. Combin. Theory A 29, 166–173 (1980).
- [9] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Hamburg 12, 265-275 (1938).