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Abstract

Inspired by the doubling construction method for Steiner quadruple systems and also
by a construction of Driessen for 3-designs, we present several recursive constructions
for 3-designs and resolvable 3-designs. The construction methods assume the existence
of resolvable 3-designs and certain appropriate other 3-designs. They prove to be very
useful, as we can construct a large number of new infinite families of 3-designs. Among
others we prove, for instance, that for any integer n > 3, there is a family F, of resolvable
3-designs having parameters 3 — (27.3.27 27 (27~1 —1)(2" — 1) H?:_;(Qj_i.&?” —1)), for
all j > 0. A list of parameters for newly constructed 3-designs is included.
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1 Introduction

All the designs considered in this paper are simple, i.e., no repeated blocks are allowed. A
resolvable t— (v, k, ) design D here means that the blocks of D can be partitioned into parallel
classes, each class consists of v/k pairwise disjoint blocks. For notation and definitions of
t—designs we refer to [5]. Our aim is to present recursive methods for constructing 3-designs
and resolvable 3-designs. Our constructions are inspired by the doubling construction for
Steiner quadruple systems, which goes as far back as Witt (1938) [9] and a construction
of Driessen [4] for 3-designs which can be considered as a generalization of the doubling
construction. The paper is organized as follows. Construction I in section 2 is a general
form of the doubling construction for 3-designs. The method turns out to be useful as
many new families of 3-designs, which are presented in subsection 2.1, are constructed using
this procedure. Constructions of resolvable 3-designs are shown in subsection 2.2, wherein
applications of Construction T and further methods are explored, and many new families of
resolvable 3-designs are displayed. Construction IT in section 3 and Construction 111 in section
4 are methods which provide 3-designs whose number of points is not necessarily divisible by
the block size.

In section 5 we show three special constructions for 3-designs with block sizes 5, 7 and 8.
The paper is closed with an Appendix containing a list of parameters for newly constructed
3-designs.



2 Construction I

The construction in this section is a most natural generalization of the doubling construction
for Steiner quadruple systems.

Let D = (X, B) be a resolvable 3 — (v, k, A) (resp. 2-(v,2,1)) design, for k& > 3 (resp.
k=2).

Let my,...,m, denote the r parallel classes of ID. Define a distance between any two
parallel classes 7; and 7; by d(m;, 7;) = min{|i — j|,r —|i — j|}.

Let D = (X, B) be a copy of D such that XN X = . Let D* = (X, B%) be a 3 — (v, 2k, A)
design.

Define blocks on the point set X U X as follows:

I. blocks of a copy of D* defined on X;
I1. blocks of a copy of D* defined on X:

III. BU B for any pair B € m; and B € 7; with € < d(m;,7;) <5, e=0,1.

Case a: k > 3.

Any 3 points a,b,c € X (resp. a, = X) are contained in A blocks of type I (resp. type
IT) and in (25 4+ 1 — €) A7 of type IIL

Any 3 points a, b, ¢, where a,b € X and ¢ € X, (resp. a, b, c) are contained in (2s+ 1 —

€)A1=5 blocks of type IIL

The defined blocks form a 3-design if and only if A+ (254 1 — €)A% = (254 1 — )\ 1=>

k=2
or equivalently (2s+1—¢) = % In this case we obtain a 3 — (2v, 2k, %) design.

Case b: k= 2.

Here D is the trivial 2 — (2m,2,1) design, and D* is a 3 — (2m, 4, A) design.

Any 3 points a,b,c € X (resp. a, bée )N() are contained in A blocks of type I.

Any 3 points a, b, & where a,b € X and ¢ € X, (resp. a, b, ¢) are contained in (2s+1 —¢)
blocks of type III.

The condition for which the defined blocks form a 3-design is A = (2s+ 1 —¢) < 2m — 1,
and the constructed design has parameters 3 — (4m, 4, A).

It is clear from the construction that the resulting design is resolvable if D* is resolvable.

We summarize the construction in the following theorem.

Theorem 2.1 (i) If there exists a 3 — (2m,4,A) design D* with A < 2m — 1, then there
exists a 3 — (4m, 4, A) design C'.

(ii) Suppose there exists a resolvable 3 — (v, k, \) design D and a 3 — (v,2k, A) design D*

such that gf((f:i)) is an integer < r, where r is the number of parallel classes of D, then
there exists a 3 — (2v,2k, ©) design C' with © = %U_;kz)l

Moreover, if D* is resolvable, then C' is resolvable for both cases (i) and (ii).

Remark 2.1 If D* is chosen to be a 3 — (2m, 4, 1) design in Theorem 2.1 (¢), then we have
the doubling construction for Steiner quadruple systems.

If D> is the trivial design in Theorem 2.1 and ¢ = 0, then we have the construction of
Driessen. It should be noted that the Driessen construction provides at most one 3-design



from a given resolvable 3 — (v, k, A) design, whereas Construction I may yield a large number
of 3-designs from a given one. As an example, take the trivial 3-(12,3,1) design for D and a 3—
(12,6, m2) design for D*, where m € {1,2,...,42}. The numerical condition of Theorem 2.1
is satisfied if 3|m. Thus the resulting design C' with parameters 3 — (24, 6, 10m/3) is obtained
for m = 3,6,9,12,15, 18,21, 24, 27,30, 33, 36,39,42. The last value m = 42 corresponds to
the design in Driessen construction.

2.1 Applications of Construction I

As a first example, take the 3-(15,3,1) design for D and a 3 — (15,6, m20) design for D*,

where m € {1,2,...,11}. The condition that [;f((f:i)) is an integer implies that m is even.

Hence the parameters of the resulting designs C' are 3-(30,6,65), 3-(30,6,130), 3-(30,6,195),
3-(30,6,260) and 3-(30,6,325). These designs are indicated as unknown in the Handbook of
Combinatorial Designs [5], p.57.

Thus we have

Theorem 2.2 There is a 3 — (30,6, mb) design for m = 13,26, 39,52, 65.

In the same vein as Theorem 2.2 we can prove that 3 — (32,8, m7) designs exist for
m = 1,...,35 by taking D as a resolvable 3-(16,4,1) design and D* as a 3 — (16,8, m3)
design with m = 1,...,35. Similarly, when D is a resolvable 3-(20,4,1) design and D* is a
3 —(20,8,m14) design, where m = 1,..., 16, the design C' of parameters 3 — (40, 8, n63) can
be constructed for all m = 2n with n =1,...,8.

Hence we have the following results.

Theorem 2.3 (i) There exists a 3 — (32,8, m7) design for m=1,...,35.
(ii) There exists a 3 — (40,8, n63) design forn=1,...,8.

As another example, take the trivial 3 — (2" + 1,3, 1) design for D, where n is odd. D is
resolvable after a theorem of Baranyai [2]. Take D* as a 3 — (2" 4+ 1,6,10(2" — 2)/3) design
with odd n > 5. D* is obtained from a 4 — (2" 4+ 1,6, 10) design constructed by Bierbrauer
[3]. It is easy to check that [;Jf(f_;i)l =(2s+1—¢) =5 (i.e. €¢=0). Theorem 2.1 then yields
a3— (2"t 4+2,6,5(2" — 1)) design. Thus we have the following result.

Theorem 2.4 There exists a 3 — (2"t +2,6,5(2" — 1)) design for all odd n > 5.

We observe that the construction in Theorem 2.1 can produce infinite families of 3-designs
when using it recursively.
As examples we illustrate the construction of two families of 3-designs with k& = 8.

1. Let D; be a resolvable 3 — (22'207 4,1) design for ¢ > 0. D; is known to exist for all i, see
[5] 1.4.32. Let D be a 3 — (20, 8,28) design. Construction I with the pair (Dg, D) yields a
3—(40,8,63) design Dy. Applying Construction I for the pair (Dy, D7) yields a 3— (80,8, 133)
design D3. Repeat Construction I with the pair (D3, D3) and so on will provide a family of
3-designs having parameters 3 — (2120, 8, 7(2:7220 — 1)) for all integers i > 0. To see this, we

need to verify the divisibility condition for % and to compute A, Since v; = 220,
D) 5 ACTD g —2) ADER=2) _ aA() _ 4AG=1) _ 4A®
AD =1 and A0 = Ty we have DT (o k) = (im®) = (oi=d) = = (o] = 7.

Hence, A() = 7(v; — 4)/4 = 7(217220 — 1) as desired.



2. In the same way, we will obtain a 3 — (2728, 8,7(217228 — 1)) design for all i > 0 when
starting with a resolvable 3 — (28,4, 1) design as Dy and a 3 — (28, 8,42) design as Dj. Here

i A2y -2) A E(k=2) _ 4A()  _ gAl=1) _4pn0)
we have A(D) = (Ui—1—41) and ATl = o0 = ) = = (o] = 7.
Thus we have proved the following result.

Theorem 2.5 For all ¢ > 0 designs with the following parameters exist
1. 3 —(2°20,8,7(217220 — 1)),

2. 3 — (2128,8,7(217228 — 1)).

2.2 Constructions of resolvable 3-designs

In this section we investigate constructions for resolvable 3-designs. As shown in Theorem
2.1 if both D and D* are resolvable, then so is the resulting design C'. Whereas, if D* is
not resolvable, then, in general, C' is not either. In the following, however, we prove that if
v = 3k and D*, which is never resolvable in this case, is chosen in a particular way, then the
resulting design (' is resolvable. This result turns out to be very useful as it can be combined
with Construction I to produce a great quantity of new families of resolvable 3-designs.

At first consider two simple but useful results related to resolvable t-designs with v = 2k.

Theorem 2.6 If there is a resolvable t — (2k, k, ) design, then there is a resolvable t —
(2k, k, (zkk__tt) — A) design.

Proof. Let D be aresolvable t—(2k, k, \) design, then the supplementary design D consisting
of all k-subsets not being a block of D is a 3 — (2k, k, (Qkk__tt) — A) design. D is resolvable,
because if C' is a block of D, then the complement C* is also a block of D, since otherwise
C*, and therefore C', would be both blocks of D, which is impossible. a

The next theorem about resolvable t-designs with v = 2k is derived from a construction

of Alltop [1].

Theorem 2.7 If there exists a (2t + 1) — (2k,k, \) design, then there exists a resolvable
(2t + 1) — (2k, k, X) design.

Proof. Suppose that there is a (2t + 1) — (2k, k, A) design D = (X, B). If D is resolvable,
then the theorem is proved. If not, let D, = (X, By), X, = X — {z}, be the derived design
2t — (2k — 1,k — 1,A) of D at a point 2 € X. Then D* = (X, U {z}, B UB;) is a resolvable
(2t 4+ 1) — (2k, k, \) design, where Bf = {BU{z}, B€ B} and Bf ={X - B, B€ B,}. O

As an illustration of Theorem 2.6 and Theorem 2.7, we present several small parameters
of resolvable 3 — (2k, k, A) designs for & < 10 using known 3-designs given in [5].

Theorem 2.8 There is a resolvable 3-design for the following parameters.
(i) 3—(8,4,n),n=1,...,5;
(ii) 3—(10,5,n3), n=1,...,7;

(iii) 3— (12,6,n2), n=1,...,42;



(iv) 3— (14,7, n5), n=1,...,66;
(v) 3—(16,8,n3), n=1,...,429;
(vi) 3— (18,9, n7), n=1,...,715;
(vii) 3 —(20,10,n4), n=1,...,4862.
As first examples for resolvable 3-designs obtained from Construction I we have

Theorem 2.9 There is a resolvable 3-design for the following parameters:
(i) 3—(24,6,n10), n=1,...,14;
(ii) 3— (32,8, m7), m=1,...,35.

Proof. (i) Take the trivial design 3-(12,3,1) for D and a resolvable 3 — (12,6, m2) design for
D*, where m = 1,...,42. 1t is easily checked that if 3|m, then the resulting design C' has
parameters 3 — (24,6, % 10).

(77) In this case, D is a resolvable Steiner quadruple system 3-(16,4,1) and D* is a resolv-
able 3 — (16,8, m3), m =1,...,35. O

We now consider the case v = 3k of Construction I.
Suppose there is a resolvable 3 — (3k, k, A) design D, k > 3. Take the complementary
design of D for D*. So, D* is a 3 — (3k, 2k, A) design with A = A(23k)/(§) Note that D* is

never resolvable. It is now easy to verify that [;f((f:i)) = 2k — 1, hence Construction I yields

a design C' with parameters 3 — (6k, 2k, ©), where © = A(2k — 1)(3k — 2)/(k — 2).

We show that C'is resolvable. Let D* be a copy of D* defined on X. First of all, note
that D and D* have the same number of blocks. Since 2s +1 — ¢ = 2k — 1, we have ¢ = 0.

Type I
Let A, Aiy, Ay (resp.
Bi,, Bi,, Bi, (resp. By,
D> (resp. of flij in D).
Form 5 parallel classes of C' as follows.

Ail U %L'l Ai2 U 1212'2 Aig U 1212'3 Ail U 1212'2 Ail U 1212'3

Bil Bi2 BZ'3 Ai2 U 1212'3 Ai2 U 14:12'1

B B B Aig U Ail Aig U AZ'2

, Ai,) be 3 blocks of the parallel class 7; (resp. #;). Let
) be the corresponding complementary blocks of A;, in

12;2'1 ) 12;2'2
BiQ 5 Big

i 2 i3

It is clear that parallel classes of type I cover all the blocks of D* and D*.

Type 11
For each pair (¢,7), ©« # j with 1 < d(m;,7;) < s, the nine blocks of the form A U A,
where A € m; and A € 7;, are partitioned into 3 parallel classes as follows.

Ail U 121]‘1 AU AJ‘2 Ail U 121]‘3

Ai2 U 121]‘2 AU 121]‘ Ai2 U 121]‘1

Aig U 121]‘3 A; 121]‘1 Aig U 121]‘2



This shows that C' is resolvable and has parameters 3 — (6k, 2k, ©), where © = A(2k —
1)(3k = 2)/(k — 2).

Now, if we repeat the construction above with ', we obtain a further resolvable 3 —
(12k, 4k, ©(4k—1)(6k—2)/(2k—2)) design. Continuing this procedure will provide a resolvable
3 — (213K, 2k, /\Hé‘;o 0;) design after i steps of recursion, where §; = (2.27k — 1)(3.27k —
2)/(27k — 2).

Thus we have proved the following result.

Theorem 2.10 If a resolvable 3 — (3k,k, \) design with k > 3 exists, then a resolvable
3 — (6k,2k,\(2k — 1)(3k — 2)/(k — 2)) design exists. In particular, there exists a resolvable
3 — (2'3k,2°k,©) design for any i > 1, where © = /\H;‘;o 0; and 0; = (2.27k — 1)(3.27k —
2)/(27k — 2).

Remark 2.2 If k = 2, then we start with the trivial 2-(6,2,1) design D. The complementary
design D* of D is the trivial 3-(6,4,3) design. The same argument in the proof of Theorem
2.10 shows that a resulting 3-(12,4,3) design C'is resolvable. Therefore, the assumption k£ > 3
in Theorem 2.10 is not essential, it is made in order to avoid a zero division in the expression

of 00.

Theorem 2.1 seems to be a crucial and powerful tool for constructing resolvable 3-designs.
First of all, the case v = 2k provides the most known examples of resolvable 3-designs for
infinitely many values of k, for instance Hadamard 3-designs. Furthermore, Theorem 2.6
finally asserts the abundancy of resolvable 3 — (2k, k, A) designs. Up to now very little was
known about resolvable 3-designs with v = 3k. Theorem 2.10 is therefore interesting, because
it can be used to show (for example) that non-trivial resolvable 3-designs with v = 3k exist for
infinitely many values of k. For any given value k > 3, applying Theorem 2.10 to the trivial

resolvable 3 — (3k, k, (3:_—33)) yields an infinite family of resolvable 3-designs with parameters

3 — (23k, 2k, (7)) TT'2h 0;), where 6; = (2.27k — 1)(3.27k — 2)/(27k — 2). Tt should be
mentioned that these designs are non-trivial for all ¢ > 1.

We record this result in the following theorem.

Theorem 2.11 For any integer k > 3 there is a resolvable 3-design with parameters 3 —
(2°8k, 2k, (7)) TTIZh 0)), where 0; = (2.27k — 1)(3.27k — 2)/(27k — 2), for any i > 1.

Kramer and Magliveras [7] have shown the existence of 9 mutually disjoint copies of the
5—(24,8,1) Witt design. The blocks of the 5 — (24, 8, 1) Witt design can be partitioned into
253 parallel classes each having three blocks, see for instance [8]. So we have a resolvable
3 — (24,8,m21) design for m = 1,...,9. Starting Theorem 2.10 with each of these designs
will provide a further family, which is presented in the following theorem.

Theorem 2.12 For any m =1,...,9 and ¢ > 1 , there is a resolvable 3-design with param-
eters 3 — (224,2'8, m21[[\Z(, 6;), where §; = (274 — 1)(3.2773 — 2) /(272 — 2).

Before we discuss the combination of Theorem 2.1 and Theorem 2.10, we consider the
construction of a family of resolvable 3-designs for k = 8 using Construction I.

Let D; be a resolvable 3 — (2124, 4, 3) design, for all integer i > 0. For the existence of D;,
see [6]. Take a resolvable 3 — (24,8,105) design for Df. Starting with the pair (Dg, D§) and
applying Construction I repeatedly as shown above for the family in Theorem 2.5 we obtain
a family of resolvable 3-designs with parameters 3 — (2124,8,21(27224 — 1)). For instance,



Dy (resp. D3) has parameters 3 — (48, 8,231) (resp. 3 — (96, 8,483)). To our knowledge this
family is unknown.
We record the result in the following theorem.

Theorem 2.13 There exists a resolvable 3 — (2'24,8,21(2°7224 — 1)) design for all integer
i >0.

We now show how to combine Theorems 2.1 and 2.10 by presenting a family of resolvable
3-designs for k = 16.

Let D; be a resolvable 3 — (2124,8,21(2°7224 — 1)) design in Theorem 2.10. We start with
Dy as a 3-(24,8,105) design and D{ as a 3 — (24, 16,1050) design, the complement of Dj.
Then the constructed design Dy has parameters 3 — (48,16, 5775) and is resolvable. Applying
Construction I to the pair Dy, D7 yields a further resolvable design D3. Continuing this

way, the constructed design D7 is resolvable and has parameters 3 — (224,16, 7.15(2°224 —
AW E(k—2)

1)(2i_324 —1)). To verify this, we need to check the divisibility condition for T (o= F) and
to compute A, Since A) = % and 200 = 21.(v;_y — 2), we have %uk%% -

A=Y f(k—2 A k(k—2 i) D) (s, _
m - = W = (2k — 1) = 15. Hence, A = 15200 (v; — k) /k(k — 2) =

7.15(207224 — 1)(217324 — 1)) as desired.

We obtain the following result.

Theorem 2.14 For any integer j > 0, there exists a resolvable 3 — (274487 16, 7.15.(2j_248 —
1)(277348 — 1)) design.

The construction of the family in Theorem 2.14 can be recursively carried out with respect
to each given block size 2" , n > 3. In this way we obtain a double infinite family of resolvable
3-designs. In the following, we sketch this procedure.

For each n > 3, set k, =2" and v, ; = 273.27.

Starting with the family of resolvable designs in Theorem 2.13: 3 — (vs ;, ks, A7), where
AT = L(ky = 2) (ks — 1)(2072.3.2° — 1) = L (k3 — 2) (ks — 1)(v3,j_2 — 1), we obtain a family of
resolvable 3-designs in Theorem 2.14: 3 — (v4;, kg, A*Y) with A = L(ky—2) (ks — 1) (v4,j—2 —
1)(v4,j—3—1), for all j > 0, by using Theorem 2.1 and 2.10, which will be called the combined
procedure, or CP for short.

Now starting with the family: 3 — (v4,;, ka4, /\4’j) and applying CP, we obtain a new family
of resolvable designs: 3 — (vs j, ks, A°J), with A7 = $(ks — 2)(ks — 1)(vsj—2 — 1)(vs,j—3 —
1)(vs,j—4 — 1), for all j > 0.

When repeating the application of CP to the new family just constructed, we will obtain
for each n > 3 a family of resolvable 3-designs having parameters 3 — (27.3.2",27, A™J), for
all j >0, where A™/ = (2771 — 1)(2" — 1) [T} (2770.3.2" — 1)).

The divisibility condition of Theorem 2.1 turns out to be A"t17k, (2k,, — 2)/2/\”’j(vn7j_1 —
kn) = 2k, — 1, by using the fact that A\"T19 = A\"04.(2.k, — 1)/(k, — 1) and A\ = (27! —
12" = DTS (vnmi — 1)

We summarize this result in the following theorem.

Theorem 2.15 Let n > 3 be an integer. Then there is a family F, of resolvable 3-designs
having parameters 3 — (29.3.27, 27 (2"=! — 1)(2" — 1) [[', (2771.3.2" — 1)), for all j > 0.



3 Construction II

We have seen that Contruction T provides a class of 3-designs for which the size of blocks
divides the number of points. In this section, we want to extend Construction I so that we
are able to construct designs for which the number of points is not necessarily divisible by
the size of the blocks.

Let Dy = (X, By) be aresolvable 3 — (v, ky, A) design and let Dy = (X, Bs) be a resolvable
3 — (v, ko, () design with 3 < ki < ko such that /\(gj;EZl—f%) = C(](CZ:BEZ;_Z%), i.e. Dy and
Dy have the same number of parallel classes. Let 7y,..., 7, (resp. Iy,...,11,) denote the r
parallel classes of Dy (resp. Dj).

Let D3 = (X,Bs) be a 3 — (v, k1 + ko2, A) design and let D; be a copy of D;, i = 1,2,3,
constructed on the point set X with X N X = ().

Define blocks on the point set X U X as follows:

I. blocks of D3 and f)g;

II. blocks of the form AU B, where A € 7; and B € f[j such that ¢ < d(m;, 7;)

IN

S, €

0,1;

I11. blocks of the form AUB, where A € #; and B € II; such that € < d(m;, ;)

IN

S, €

0,1.

Any 3 points a,b,c € X (resp. abce )N() are contained in, A blocks of type I, (2s +
1 - e)/\é blocks of type IT and (2s 4+ 1 — ¢) 7 blocks of type IIl. Thus they appear in
A4 (2s+1- e)/\,:—2 +(2s+1- e)C,;J—l blocks.

We need to compute the number of blocks containing 3 points of type a, b, ¢, where a, b € X
and ¢ € X the case for three points @, b, ¢ is similar.

Now a and b are contained in /\131_—22 blocks of Dy and ¢ is in exactly one block of each
parallel class of Dy. So a,b,¢ are in (2s+1— 6)/\1:1_—22 blocks of type II. Similarly, a, b, ¢ are
in (2s+1— e)Cé__é blocks of type I1I. Thus a, b, ¢ are in (2s+ 1 — 6)/\1:1_—22 +(2s+1- e)Cé__é
blocks.

These defined blocks will form a 3-design if

v v v—2 v—2
A 2 1 —e)A— 2 1- — = (2 1—e)A 2 1-
F @I A+ s+ 1= = @2sF 1A+ 2s+1-(—;
or 5 5
v — v — v v
A=) — (A— —I1(2 1-
Mg+ g~ O+ s+ 1-0)
There are two cases:
Case A. ) )
v — v — v v
A — (A— —) =0.
k1—2+ck2—2 (k2‘|‘Ck1) 0

This implies A = 0 and the designs D3 and f)g are not needed in the construction. That
means that the blocks of type II and III themselves form a design for 0 < s < [Z]. In this
case, we can construct a 3 — (2v,ky + k2, ©) design with © = 772.(/\131__22 + C;;J;_Qg) for any
m=1,...,r.

Case B.




Here the defined blocks form a design if

v—2 v—2 v v

AJ[A =Q
is a positive integer < r.

The parameters of the constructed design are 3 — (2v, ky + k2, ©), where © = Q(
(53):

We summarize Construction II in the following theorem.

v—2
k1—2 +

Theorem 3.1 Suppose that there exists a resolvable 3 — (v, k1, \) design Dy and a resolvable

3 — (v, ko, ) design Dy with 3 < ky < ky such that /\(( ;Ezl 2%) = C(gj;ﬁ;?%) =r.

(i) IfAk — —I—Ck2 5 — (/\13_24‘(%) = 0, then there is a 3 — (2v,ky + k2, ©) design with
0= (/\“2—|—C 2)foranym:1,...,7‘.

(11) If/\k1 5 —I—Ck2 (/\];J—Q—I—Cﬁ) > 0 and if there is a 3 — (v, k1 + ko, A) design D3 such
that

v—2 v—2

k1—2+ck2—2

A/TA (—+C )] = Q (1)

ka

is a positive integer < r, then there is a 3 — (2v, ki1 + ka,©) design with © = Q( k_2
(25%)-

Remark 3.1 If /\131_—22 + Cé__é

— (A5 +(75) <0, then no design can be constructed.

As a first example of Construction I, take a resolvable 3-(12,4,3) design as D; and the
resolvable 3-(12,6,10) design in Theorem 2.8 as Djy. Take the trivial 3-(12,10,36) design as
Ds. Then Construction IT yields a 3-(24,10,360) design. The latter is indicated as unknown
n [5], p.55.

Theorem 3.2 A 3 — (24,10,360) design exists.

As a second example consider a resolvable 3-(18,6,35) design D; and a resolvable 3-
(18,9,98) design D,. Note that Dy is obtained from Theorem 2.10 by using the trivial 3-
(9,3,1) design and Ds is from Theorem 2.8. We have /\131_—22 __22 - (/\13—2 + C];J—l) =0, and
so there is 3 — (36, 15, m364) design for any m = 1,...,476.

Theorem 3.3 There is a 3 — (36,15, m364) design for any m = 1,...,476.

4  Construction III

In this section we present a further construction of 3-designs having block size not dividing

the number of points.
Let T'= (X, Br) be a resolvable 3 — (v, (, \) design. Let my,..., 7, denote the r parallel

classes of T where r = /\%—}%7—22)1 As before, define a distance between any two parallel
classes m; and w; of T by d(m;, w;) = min{[i — j|,r — i — j[}.

Let T = (X,B5) be a copy of T defined on X with X N X = 0. Let D = (X,Bp) be a
3 — (v, k, A) design, such that w =%k — £ > 3. Let D be a copy of D defined on X.



Further, let W be a 3 — (¢, w, ) design. We also assume that any two blocks of T" have
less than w points in common. This condition guarantees that the resulting design is simple;
if this condition is removed then the constructed design may have repeated blocks.

Define blocks on the point set X U X as follows:

I. blocks of D and D:

II. blocks of the form B U Z, where B € m; and Z is a block of the design W defined on
the points of a block in 7; with ¢ < d(m;,7;) <s, e =0,1;

II1. blocks of the form B U Z, where B € #; and Z is a block of the design W defined on
the points of a block in 7; with ¢ < d(m;,7;) <s, e=0,1.

Let {z,y, z} be three points in X.

e {z,y,z} are on A blocks of type I.

o {x,y,z}areon A blocks of T distributed in A parallel classes 7;. As there are (2s+1—¢)
parallel classes m; satisfying € < d(m;,7;) < s, and there are v/{ blocks in 7;, there
are (2s 4+ 1 — €)My} choices for blocks of type I containing {z,y, 2}, where f; is the
number of blocks of W.

e There are A parallel classes m; having a block containing {z,y,z}. In the copy of W
defined on the points of that block, {z,y,z} are in € blocks Z. Thus there are \§
choices for Z. Further, there are v/¢ blocks B in 7; with € < d(7;,7;) < s, so there are
A0(2s + 1 — €)% blocks of type III containing {z,y, 2}.

Altogether, there are A+ A(2s+ 1 — 6)00% +A2s+1- 6)0% blocks containing {z,y, z}.

Let {z,1,2} be three points with 2,y € X and z € X.

e Two points {z,y} are in /\% blocks of T distributed in /\% parallel classes ;. For
each of these m;, there are (25 4+ 1 — ¢) choices for 7; with ¢ < d(m;,7;) < s, and in
7; there is a unique block containing z, so Z is in 6; blocks 7 of W defined on that
block, where 6y is the number of blocks containing a point in W. Hence, there are

A(2s+ 1 —¢) Z:; blocks of type II containing {z,y, Z}.

e Each of /\Z:g parallel classes 7;, for which {z,y} are on a block B, gives 63 blocks 7
containing {x,y} in the copy of W defined on B, where 6, is the number of blocks
containing a pair of points in W. Further, there is a unique block B containing 2 in
7; with € < d(7;, 7;) < s, so there are (25 + 1 — 6)/\72:3 5 blocks of type III containing

{o,y, 2}

Therefore, {z,y, Z} are in A1 (2s+ 1 —¢) Z:; +(2s+1- 6)/\72:3 5 blocks.

The blocks so constructed will form a 3-design if

A—I—/\(Qs—l—1—6)00%—|—A(25—|—1—6)0% - /\01(254—1—6);_2
v—2
—|—(28—|—1—6)/\£_202 (2)
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or equivalently,

v—2 (5 £=2

MM (e + =g~ ¢

=+ 1)]=2s+1—¢)

w — 2
is an integer < r. And the resulting design has parameters 3 — (2v, k, ®), where

l—1
O=(2s+1- e)wZ:;(;wzl)) )

We summarize Construction IIT in the following theorem.

Theorem 4.1 Suppose that there exists a resolvable 3 — (v,{, ) design T and a 3 — (v, k, A)
design D with w =%k — (>3, k <2, and |ANB| < w —1 for any two distinct blocks A and
B of T'. Suppose that there is a 3 — (¢, w,0) design W such that

() =2 (3)

2(<w_1) ‘|‘w_2)—z(®+1)]29

2
is an integer < r, where r is the number of parallel classes of T. Then there exists a 3 —
£—1
(20, k,©) design C, where © = QAY=2 (% + 22,

As an application of Theorem 4.1 we have the following Corollary.

v

l

AJAG[

Corollary 4.2 If there exists a 3 — (4n,7, A) design for n = 4,8 (mod 12) such that 5(n —
DA and A < 5(n — 1)(4n2_1)/3, then there exvists a 3 — (8n, 7, A22=L) design.

Proof. Take a resolvable 3 — (4n,4,1) design as T" and the trivial 3 — (4,3, 1) design as W
for Theorem 4.1. a

An example derived from Theorem 4.1 is as follows. Let T' be the resolvable 3-(24,8,21)
design, which is the Witt system 5-(24,8,1), and let D be a 3— (24, 15, m5.7.13) design, which
is the complementary design of a 3 — (24,9, m84) design with m € {1,...,101}. Let take W
to be the trivial 3-(8,7,5) design. It follows that Q = Sm is an integer if m = 2n. In this case
Theorem 4.1 yields a 3 — (48,15, 25.7.11.13) design. It is known that a 3 — (24,9, m84) exists
for all even values of m, see [5], p.55, so we have the following theorem.

Theorem 4.3 There is a 3 — (48,15,15.7.11.13) design for n =1,...,50.

5 Special Constructions for k¥ =5,7,8

In this section we present three special constructions for 3-designs with block sizes 5,7,8.

5.1 A construction for £ =5

Let D = (X, B) be a 3—(2n,5,\) design. And let D = (X, B) be a copy of D with XN X = 0.
Let T be the resolvable 2— (2n, 2, 1) design defined on X. Let Ty, ..., T2, denote the 2n—1
parallel classes of T'. Define blocks for a 3— (4n,5, A) design on the point set X UX as follows:

11



I. blocks of D (resp. blocks of D);

II. blocks of the form {a,b, ¢, d, e} (vesp.{a,b,é,d,e}), where {a,b} € Ty, {b,c} € T,
{c,a} €T}, {d, e} € Ty and ( € {h,i,7}.

Any three points a,b,c € X (resp. a,b,¢ € X) are contained in A blocks of type I and 3n
blocks of type II. ) o )
Any three points a,b,d with a,b € X and d € X, (resp. a, b, d) are contained in

e 3(2n — 2) blocks of type {a,b,c, d,é}: there are (2n — 2) choices for ¢ and for each such
c there are 3 possibilities for € such that {d,e} € {T},T;,T}};

e (3n — 3) blocks of type {é,d, & a,b}: if {a,b} € Ty, then there are (2n — 1) choices for
¢, exactly one of them gives {é, d} € T, and hence there are (2n — 2) possible choices
for é; from the remaining (2n — 2) possible choices for ¢ we have {¢, d} € T; # Tp, and
¢ has to be chosen such that {¢,¢} € T}, so there are (n — 1) choices for the pair {¢, &}
as a block in T},.

In summary, there are 3(2n—2)+(3n—3) = 9(n— 1) blocks containing a, b, d. The blocks
so defined will form a 3-design if and only if A4+3n = 9(n—1), or equivalently A = 6n—9. The
design constructed will have parameters 3 — (4n,5,9(n — 1)). Hence, we have the following
theorem.

Theorem 5.1 If there is a 3 — (2n,5,6n — 9) design, then there is a 3 — (4n,5,9(n — 1))
design.

Examples 5.1 As an application, Theorem 5.1 shows the existence of a 3-(36,5,72) and a
3-(44,5,90) design since a 3-(18,5,45) and a 3-(22,5,57) design exist.

Remark 5.1 In the Driessen construction [4], p.87, D is the trivial 3— (2n, 5, (*"; %)) design.
In this case, the only value n for which a 3-design can be constructed is n = 5, and the design
obtained has parameters 3-(20,5,36).

5.2 A construction for £k =7

Let D = (X,B) bea3—(3n,7,))design. And let D = (X, B) be a copy of D with XN X = (.
Let T be the resolvable 3 — (3n,3,1) design defined on X. Denote by Ti,..., T, the parallel
classes of T', where r = (*";"!). Define blocks for a 3— (6n,7, A) design on the point set XUX
as follows:

I. blocks of D (resp. blocks of D);

II. sets of the form {a, b, ¢, d, ¢, f, §} (resp.{a, IN),Né, d,e, [r9}); where {a,b,c} € Tiy, {b,c,d} €
227 {C d a} 6 139 {d7a7b} € Ti47 and {é7 f7g} € T] and ] € {i17i27i37i4}-

Any three points a,b,c € X (resp. a,b,¢ € X) are contained in
e )\ blocks of type I;

e 4n(3n — 3) blocks of form {a,b,c,d,é, f,}: there are (3n — 3) possible choices for d
and each such a choice determines 4 parallel classes T, Ti,, Tj,, and Tj,, the points
é, f, g have to be chosen such that they form a block of TZ , J=1,2,3,4, s0 there are
4n(3n — 3) blocks containing {a, b, c};

12



e n(3n — 3) blocks of form {g,f,e,d a,b,c}: if {a,b,c} € T;, then some 3 points of
{7, f,é. d} must be a block in T so there are n possible choices for those three points,
the fourth point can be Chosen in (3n — 3) ways; thus there are n(3n — 3) blocks
containing {a,b,c}.

Hence there are A+4n(3n—3)+n(3n—3) = A4+ 5n(3n — 3) blocks of type I and II containing
a,b, c.
Any three points a, b, é with a,b € X and é € X are contained in

e 6(3n —2)(n — 1) blocks of form {a,b,c,d,eé, f,4}: there are (3n2_2) possible choices for
a pair {c,d}, each choice determines 4 parallel classes, and two points f, g have to
be chosen so that {é, f, g} is a block in one of these 4 parallel classes, thus there are
4 choices for {¢, f, §}; altogether we have 4(**>*) = 6(3n — 2)(n — 1) blocks of form
{a,b,c,d, &, f,§} containing a, b, &

e 4(3n—2)(n—1) blocks of form {g, f,é,d,a,b,c}: for each of (3n —2) choices for ¢ # a, b
denote by T; the parallel class containing {a, b, c} as a block; there is exactly one block
of Tj containing € and also two other points, say d, f;: the last point § can be chosen
in (3n — 3) different ways, this gives (3n — 2)(3n — 3) blocks; on the other hand, for
any of (3n — 2) choices for ¢, there are (n — 1) blocks of the form {d, f, g} in Tj, so this
gives (n — 1)(3n — 2) blocks; altogether there are (3n —2)(3n —3) + (n —1)(3n - 2) =
4(n —1)(3n — 2) blocks of form {g, f, &, d,a,b,c} containing a, b, &.

The blocks constructed on X U X will form a design if any 3 points of the form «,b, ¢ and
a,b, € are contained in the same number of blocks, i.e. if the condition A4+5n(3n—3) = 6(n—
1)(3n—2)+4(n—1)(3n—2) is satisfied. Hence A = 5(n—1)(3n—4). So, any three points of the
constructed design are contained in A = 6(n—1)(3n—2)+4(n—1)(3n—2) = 10(n—1)(3n—2)
blocks. Therefore we have the following theorem.

Theorem 5.2 If there is a3—(3n,7,5(n—1)(3n—4)) design, then there is a 3—(6n,7,10(n—
1)(3n — 2)) design for all n > 0.

As examples we see that if a 3-(21,7,510) (resp. 3-(30,7,1170)) design exists then there
exists a 3-(42,7,1140) (resp. 3-(60,7,2520)) design.

5.8 A construction for £ =8

In the same vein as the construction for k = 7, we may also construct designs for £ = 8 when
using the trivial 3 — (3n, 3, 1) design.

Let D = (X, B) be a 3—(3n,8,\) design. Let D = (X, B) be a copy of D with XN X = (.
Again, let T be the resolvable 3 — (3n,3,1) design defined on X. Denote by Ty,...,T, the
parallel classes of T', where r = (Sn ). Define blocks for a 3 — (61,8, A) design on the point
set X U X as follows:

I. blocks of D (resp. blocks of D);

II. blocks of the form {a,b,c,d, e, f,§,h} (resp.{a, b, ¢, d,e,f,g,h}) having the property
that if {f, §, h} € T; then there are three points {x y, 2} CHa,b,c,d, e} with {z,y,z} €
T;.

Any three points a,b,c € X (resp. a,b,¢ € X) are contained in
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e )\ blocks of type I;

. 10n(3n2_3) blocks of form {a, b, ¢,d, e, f, §, h}: there are (3n2_3) possible choices for a pair
{d, e} and each choice determines 10 parallel classes T;,, j = 1,...,10, each of these

classes contains exactly one 3-subset of {a,b,c,d,e}; points f,d,h have to be chosen
such that they form a block of T} , this yields 10n(3n2_3) blocks containing {a,b, c};

. n(3”2_3) blocks of form {h,§, f,é,d,a,b,c}: if {a,b,c} € T;, then some 3 points of
{/Nz7 g, f. ¢, J} must be as a block in j}, so there are n possible choices for those 3 points,
the other two points of {h, g, f,é,d} can be chosen (3n2_3) ways; this yields n(3n2_3)

blocks containing {a,b,c}.

Hence there are A+ 10n(*", %) + n(*"[®) = A+ 11n(*";"”) blocks of type I and II containing

a,b,c.
Any three points a, b, f with a,b € X and f € X are contained in

° 10(3713—2) blocks of form {a,b,c,d, e, f.3q. INz} there are (Sn?:?) possible choices for a triple
{c,d, e}; five points {a, b, c,d, e} determine 10 parallel classes, T;,, j = 1,...,10, each
of these classes contains exactly one 3-subset of {a, b, ¢,d,e}; and points g, h have to be
chosen so that {f, g, h} is a block of T;,, so there are 10 choices for {f,4,h}, this gives
10(*";%) blocks containing a, b I

. 5(3”_2) blocks of form {h, §, f, &, d,a,b,c}: for each of (3n — 2) choices for ¢ # a,b let

T; be the parallel class containing {a, b, c} as a block; there is exactly one block of T;
containing f and also two other points, say d, & the other two points § and i can be
chosen in (*";°) different ways, this yields (3n —2)(°";®) = 3(*";"%) blocks containing
a,b, f; on the other hand, for any of (3n — 2) choices for ¢, there are (n — 1) blocks
of form {#,7, 2} in T;, where {%,9,2} C {h,§,é,d}, and there are (3n — 4) possible
choices for another point of {h,§, &, d}, this yields (3n — 2)(n — 1)(3n — 4) = 2(°"%7%)
blocks containing a, b, f; altogether there are 3% +2(°%%) = 5(*"?) blocks of form
{h,§, f,é d, a,b,c} containing a,b, f.

The blocks constructed on X U X will form a design if any 3 points of the form a,b, ¢ and
a,b, f are contained in the same number of blocks, i.e. if the condition A + 11n(3n2_3) =
10(*%?) +5(°"?) is satisfied. Hence A = (2n — 5)(3n — 3)(3n — 4).

So, any three points of the design constructed are contained in A = 10(3n e 5(3n %) =

15(3n3 %) blocks. Therefore we have the following theorem.

Theorem 5.3 If there is a 3 — (3n,8,(2n — 5)(3n — 3)(3n — 4)) design, then there is a
3 — (6n,8, 15(3”3_2)) design for all n > 0.

Examples 5.2 There is a 3-(36,8,8400) (resp. 3-(48,8,23100)) design since there is a 3-
(18,8,1470) (resp. 3-(24,8,4620)) design.

6 Appendix

The following table contains a list of parameters for 3-designs constructed from the recursive
methods of the paper.
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Parameters Comments | Theorems
1. | 3—(30,6,m5), m = 13,26, 39, 52,65 Thm. 2.2
2. | 3—(40,8,m63), m=1,...,8 Thm. 2.3
3. 3 (2" 42,6,5(2" - 1))7 oddn >5 Thm. 2.4
4. 3-(220,8 7(22 220-1)),i>0 Thm. 2.5
5.3 —(2028,8,7(207228 = 1)),i > 0 Thm. 2.5
6. | 3—(24,6,m10), m 17 o 14 resolvable | Thm. 2.9
7. (32 8,m7), m ,35 resolvable | Thm. 2.9
8. | 3= (213k, 2%k, (O 33> HZ 10,),
0] = (2.27k — 1)(3.27k — 2)/(2% — 2) i>1 resolvable | Thm. 2.11
9. | 3— (224,28, m21 [T'Z46;), m = 1,...,9,i > 1,
0; = (274 — 1)(3.27F3 — 2)/(2]’+3 - 2) resolvable | Thm. 2.12
10. | 3 —(2°24,8,21(217224 — 1)), i > 0 resolvable | Thm. 2.13
11. | 3 —(2748,16,7.15.(207248 — 1)(277348 — 1)), > 0 resolvable | Thm. 2.14
12. | 3—(27.3.27,27 (271 — 1)(2" — 1) [T72,) (2770.3.27 — 1)),
7 >0, for any n > 3 resolvable | Thm. 2.15
13. | 3-(24,10,360) Thm. 3.2
14. | 3— (36,15, m364), m = 1,...,476 Thm. 3.3
15. | 3— (48,15, m5.7.11.13), m = 1,...,50 Thm. 4.3

Remark 6.1 Families 10 and 11 in the table are special cases of family 12 with n = 3 and
4.
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