
On tight bounds for binary frameproof codes

Chuan Guo1, Douglas R. Stinson∗2, and Tran van Trung3

1,2David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3G1, Canada

3Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29,
45326 Essen, Germany

Abstract

In this paper, we study w-frameproof codes, which are equivalent to {1, w}-separating hash
families. Our main results concern binary codes, which are defined over an alphabet of two
symbols. For all w ≥ 3, and for w + 1 ≤ N ≤ 3w, we show that an SHF(N ;n, 2, {1, w}) exists
only if n ≤ N , and an SHF(N ;N, 2, {1, w}) must be a permutation matrix of degree N .

1 Introduction

Let Q be a finite set of size q and let N be a positive integer. A subset C ⊆ QN with |C| = n is
called C an (N,n, q) code. The elements of C are called codewords. Each codeword x ∈ C is of
the form x = (x1, . . . , xN ), where xi ∈ Q, 1 ≤ i ≤ N . For any subset of codewords P ⊆ C, the set
of descendants of P , denoted desc(P ), is defined by

desc(P ) = {x ∈ QN : xi ∈ {ai : a ∈ P}, 1 ≤ i ≤ N}.

Let C be an (N,n, q) code and let w ≥ 2 be an integer. C is called a w-frameproof code (w− FPC)
if for all P ⊆ C with |P | ≤ w, we have that desc(P ) ∩ C = P . Frameproof codes with were
first introduced by Boneh and Shaw [3], for use in fingerprinting of digital data to prevent a small
of coalition of legitimate users from constructing a copy of fingerprint of another user not in the
coalition. Frameproof codes and their applications have been studied extensively, see for instance,
[3], [6], [4], [8], [9], [7], [2], [5]. One of the basic problems is the studying of upper bounds on the
cardinality of frameproof codes. Many strong bounds have been obtained in the papers [8], [7], [2],
[11] for the case q ≥ w.

Much less is known about upper bounds for frameproof codes when q < w. Our goal in the
present paper is to study upper bounds for binary frameproof codes, i.e., codes for q = 2.

It turns out that frameproof codes are a special type of separating hash families (SHF). Let h
be a function from a set X to a set Y and let C1, C2, . . . , Ct ⊆ X be t pairwise disjoint subsets.
We say that h separates C1, C2, . . . , Ct if h(C1), h(C2), . . . , h(Ct) are pairwise disjoint. Let |X| = n
and |Y | = q. We call a set H of N functions from X to Y an (N ;n, q, {w1, . . . , wt})-separating hash
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family, denoted by SHF(N ;n, q, {w1, . . . , wt}), if for all pairwise disjoint subsets C1, . . . , Ct ⊆ X
with |Ci| = wi, for i = 1, . . . , t, there exists at least one function h ∈ H that separates C1, C2, . . . , Ct.
The multiset {w1, w2, . . . , wt} is the type of the separating hash family. Frameproof codes and
separating hash families have the following connection. An (N,n, q) w-frameproof codes exists if
and only if an SHF(N ;n, q, {1, w}) exists. We include a lemma in section 2 proving this statement.
As it is more convenient to work with separating hash families, we will prove the results in this
paper in terms of separating hash families.

It is often useful to present an SHF(N ;n, q, {w1, . . . , wt}) as an N ×n matrix on q symbols, say
A. The rows of A correspond to the hash functions in the family, the columns correspond to the
elements in the domain X, and the entry in row f and column x is f(x). We call A the matrix
representation of the hash family. The matrix A has the following property. For given disjoint sets
of columns C1, C2, . . . , Ct with |Ci| = wi, 1 ≤ i ≤ t, there exists at least one row f of A such that

{A(f, x) : x ∈ Ci} ∩ {A(f, x) : x ∈ Cj} = ∅,

for all i 6= j, i.e. row f separates the column sets C1, C2, . . . , Ct. Now if we write the codewords of
an (N,n, q) w-frameproof code column-wise as an N × n matrix A, i.e. each codeword is a column
of A, then A is the matrix representation of an SHF(N ;n, q, {1, w}). The problem of determining
an upper bound on the cardinality of an (N,n, q) w-frameproof code becomes the problem of
determining an upper bound on the number of columns of A for given N , q, and w.

For the case when q ≥ w, several strong results have been obtained for w-frameproof codes.
For example, when N ≤ w, it has been shown that n ≤ w(q− 1), see [8], [2]. When N > w, strong
upper bounds are obtained in [8], [2], [1], [11]. Here are these bounds.

Theorem 1.1 ([8]). In an (N,n, q) w-frameproof code, the following bound holds:

n ≤ w(qd
N
w
e − 1).

Theorem 1.2 ([2]). Let N , q, w and d be positive integers such that N = wd + 1, w ≥ 2 and
q ≥ w. Suppose there is an (N,n, q) w-frameproof code. Then n ≤ qd+1 +O(qd).

Theorem 1.3 ([11]). Let d, q, w be positive integers such that q ≥ w ≥ 2. Suppose there exists an
(N,n, q) w-frameproof code with N = wd+ 1. Then n ≤ qd+1.

It should be mentioned that the bound of Theorem 1.3 is tight. Note also that when N = w
the bound n ≤ w(q − 1) is tight as well.

1.1 Outline of the paper

In Section 2, we consider the cases when w ≥ 3, w + 1 ≤ N ≤ 2w + 1. In Section 3, we consider
the cases when w ≥ 4, 2w + 2 ≤ N ≤ 3w. Section 4 handles the cases w = 3, N = 8 and 9, which
were omitted from the previous section. Section 5 briefly discusses the case w = 2, and Section 6
is a conclusion.

2 Bounds for binary FPC with w + 1 ≤ N ≤ 2w + 1

For the sake of completeness we include the following simple lemma.
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Lemma 2.1. An (N,n, q) w-frameproof code is equivalent to an SHF(N ;n, q, {1, w}).

Proof. Let A be an N × n matrix having entries from a set of q symbols. Let {c} and P be any
given disjoint subsets of columns of A with |{c}| = 1 and |P | ≤ w, where w is an integer such that
w ≥ 2. We may view A as an (N,n, q) code whose codewords are the columns. Assume that A is an
(N,n, q) w-frameproof code. This is equivalent to say desc(P ) ∩ A = P . Further, desc(P ) ∩ A = P
is equivalent to the statement that there is a row i that separates {c} and P . The latter says that
A is the matrix representation of an SHF(N ;n, q, {1, w}).

By using Lemma 2.1 we will prove the results in terms of separating hash families.
When q < w, the statement of Theorem 1.3 is no longer valid. The following construction gives

a counter example to Theorem 1.3 when q < w. Let N , q, w be positive integers such that q ≥ 2.
Let {0, 1, . . . , q − 1} be the symbol set. Define an N ×N(q − 1) matrix A as follows.

A =

N(q−1)︷ ︸︸ ︷
1 · · · q − 1 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · q − 1 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 0 1 · · · q − 1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · q − 1



︷
︸︸

︷

N

The matrix A has the property that for any given column c there exists a row r such that the entry
A(r, c) is unique. Hence A is the matrix representation of an SHF(N ;N(q− 1), q, {1, w}) for w ≥ 1.
Note that this construction can be found in Blackburn [2] using another description, as q-ary codes
of length N whose all codewords have weight exactly 1. If we choose, for example, w = N − 1 and
q <

√
w, then we have N(q − 1) = (w + 1)(q − 1) > (q2 + 1)(q − 1) > q2. Thus A is a counter

example to Theorem 1.3, that would yield n ≤ q2 for this case.
Finding a tight bound for w-frameproof codes with q < w seems to be a challenging problem.

In the following we focus on the case q = 2 and prove certain tight bounds for binary w-frameproof
codes when their length N is moderate compared to w.

For any given frameproof code, we may derive new ones from it by simply permuting the entries
in each row separately, i.e. a permutation of the elements 1, . . . , q. Such codes can be considered to
be in the same equivalence class, and hence we would like to limit ourselves to considering a fixed
representative. In the binary case, we say that an SHF(N ;n, 2, 1, w) is in standard form if every
row has at most n/2 entries of 1.

We now record a simple fact about the binomial coefficients.

Lemma 2.2. Let w, n be positive integers such that w + 1 ≤ n. Then for i = 1, 2, . . . , n− w − 1,
we have i

(
n−i
w

)
> (i+ 1)

(
n−i−1

w

)
if and only if (i+ 1)(w + 1) > n+ 1. In particular, we have(

n− 1

w

)
> 2

(
n− 2

w

)
> 3

(
n− 3

w

)
> · · · > j

(
n− j
w

)
. (2.1)

for j ≤ n− w whenever n ≤ 2w.
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Proof.

i

(
n− i
w

)
> (i+ 1)

(
n− i− 1

w

)
⇔ i(n− i)!

(n− i− w)! · w!
>

(i+ 1)(n− i− 1)!

(n− i− w − 1)! · w!

⇔ i(n− i)
(n− i− w)

> i+ 1

⇔ ni− i2 > ni+ n− i2 − i− iw − w
⇔ i+ iw + w > n

⇔ (i+ 1)(w + 1) > n+ 1

Note that Equation 2.1 holds if and only if i
(
n−i
w

)
> (i+1)

(
n−i−1

w

)
holds for i = 1, which corresponds

to 2(w + 1) > n+ 1 or equivalently n ≤ 2w.

We introduce some definitions. Let A be the representation matrix of an SHF(N ;n, 2, {1, w}).
A row r of A is said to be of type i if r contains exactly i entries 1. Two rows r1 and r2 of A are
said to be overlapped if they share a column in which both rows have an entry 1. If rows r1 and r2
are not overlapped, we say that they are disjoint.

For an arbitrary SHF(N ;n, 2, 1, w) A, it is clear that both 0 and 1 have to occur in each row of
A, otherwise that row would not contribute to the separation of any pair (C1, C2). Hence we may
assume that A contains no row of type 0 in standard form, by simply removing any such row and
replacing them with an arbitrary row of type 1.

The following observation will be used throughout this paper.

Lemma 2.3. Let A be an SHF(N ;n, 2, 1, w). Suppose row r of A is of type i ≤ n/2. If i < w,
then row r separates exactly i

(
n−i
w

)
column pairs (C1, C2). If i ≥ w, then row r separates exactly

i
(
n−i
w

)
+
(
i
w

)
(n− i) column pairs (C1, C2).

We will now prove a bound for binary frameproof codes.

Theorem 2.4. Let w, N be positive integers such that w ≥ 3 and w + 1 ≤ N ≤ 2w + 1. Suppose
there exists an SHF(N ;n, 2, {1, w}). Then n ≤ N.

Proof. Suppose, by contradiction, that there exists an SHF(N ;n, 2, {1, w}) with n = N + 1. Let A
be its N × (N + 1) matrix representation on the symbol set {0, 1}. Let T be the total number of
pairs of disjoint column sets (C1, C2) of A with |C1| = 1 and |C2| = w that need to be separated.
Then we have T :=

(
n
w

)
(n− w) = n

(
n−1
w

)
.

Consider the following three cases regarding the number of columns of A.

(i) n = N + 1 ≤ 2w (i.e. N ≤ 2w − 1).

Using Lemma 2.2 we see that(
n− 1

w

)
> 2

(
n− 2

w

)
> 3

(
n− 3

w

)
> · · · > (w − 1)

(
n− (w − 1)

w

)
.

The term j
(
n−j
w

)
in these inequalities corresponds to the number of column pairs (C1, C2)

separated by a row of type j. Hence a row of type 1 separates the largest number of column
pairs (C1, C2), namely

(
n−1
w

)
=
(
N
w

)
. Moreover, since A has N rows, the maximal number

of column pairs (C1, C2) that can be separated by all the rows of A is therefore N
(
N
w

)
=

(n− 1)
(
n−1
w

)
. This is a contradiction, since (n− 1)

(
n−1
w

)
< T.
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(ii) n = N + 1 = 2w + 1 (i.e. N = 2w).

Observe that we have(
n− 1

w

)
=

(
N

w

)
=

(
2w

w

)
= 2

(
2w − 1

w

)
= 2

(
n− 2

w

)
in this case. This observation together with Lemma 2.2 give rise to the following inequalities
about the number of column pairs (C1, C2) separated by a row of type j, where j = 1, . . . , w.(

n− 1

w

)
= 2

(
n− 2

w

)
> 3

(
n− 3

w

)
> · · · > (w − 1)

(
n− (w − 1)

w

)
> w

(
n− w
w

)
+ n− w.

The last inequality can be easily checked, while all other inequalities follow from Lemma 2.2
Note that the last term of the inequalities corresponds to the case of a row of type w. Again,
this implies that a row of A can separate at most

(
n−1
w

)
=
(
N
w

)
column pairs (C1, C2). Thus

all N rows of A can separate at most N
(
N
w

)
= 2w

(
2w
w

)
column pairs (C1, C2), whereas the

total number of column pairs (C1, C2) that need to be separated is T =
(
N+1
w

)
(N + 1−w) =

(2w + 1)
(
2w
w

)
, a contradiction.

(iii) n = N + 1 = 2w + 2 (i.e. N = 2w + 1).

In this case we have the following inequalities

2

(
2w

w

)
>

(
2w + 1

w

)
> 3

(
2w − 1

w

)
> · · · > (w−1)

(
w + 3

w

)
> w

(
w + 2

w

)
+(w+2) > 2(w+1)2.

The last two inequalities can be easily checked, while the other inequalities follow from Lemma
2.2. Here the first term of the inequalities corresponds to a row of type 2; the second term to
a row of type 1; the third term to a row of type 3, etc., the last term corresponds to a row of
type bn/2c = (w + 1).

Recall that the total number of column pairs (C1, C2) is T =
(
n
w

)
(n−w) =

(
2w+2
w

)
(w+2). We

show that if each row of A separates a maximal number of column pairs (C1, C2), then all the
N = 2w + 1 rows of A fail to separate all T column pairs (C1, C2). In fact, this corresponds
to the first term of the above inequalities. This is the case for which each row of A is of type
2. So each row will separate 2

(
2w
w

)
column pairs (C1, C2). Hence all N = 2w + 1 rows of A

will separate at most

Z := 2(2w + 1)

(
2w

w

)
column pairs (C1, C2) of A. Now using the equality

(
n
m

)
= n

n−m
(
n−1
m

)
we see that

T =

(
2w + 2

w

)
(w + 2) =

(2w + 2)

(w + 2)

(2w + 1)

(w + 1)
(w + 2)

(
2w

w

)
= 2(2w + 1)

(
2w

w

)
= Z.

However, if each row of A is of type 2, then there must exist two overlapped rows, say r1 and
r2. These rows r1 and r2 will then separate

(
2w−1
w

)
common column pairs (C1, C2). This leads

to a contradiction, since all the rows of A will separate less than T column pairs (C1, C2).
This completes the proof.
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Recall that a binary N × N matrix A is called a permutation matrix of degree N if A has
precisely one entry equal to 1 in each row and each column, and 0s elsewhere. It is obvious that
any permutation matrix of degree N is the representation matrix of an SHF(N ;N, 2{1, w}) for any
w ≤ N − 1. Hence, the bound of Theorem 2.4 is tight. In the following, we prove a stronger
result which states that permutation matrices are the only solutions for an SHF(N ;N, 2, {1, w})
with w + 1 ≤ N ≤ 2w + 1 and w ≥ 3.

Theorem 2.5. Let w, N be positive integers such that w ≥ 3 and w + 1 ≤ N ≤ 2w + 1. Suppose
there exists an SHF(N ;n, 2, {1, w}) with n = N . Then its representation matrix in standard form
is a permutation matrix of degree N .

Proof. Let A be the representation matrix of an SHF(N ;N, 2, {1, w}) in standard form with w+1 ≤
N ≤ 2w + 1 and w ≥ 3. Consider two cases.

(i) n = N ≤ 2w.

Recall that the total number of column pairs (C1, C2) of A that need to be separated is
T =

(
N
w

)
(N − w). By Lemma 2.2 each row of A can separate at most

(
N−1
w

)
column pairs

(C1, C2), and this case occurs when each row is of type 1. Thus the largest number of separated
column pairs (C1, C2) obtained by N rows of A is N

(
N−1
w

)
=
(
N
w

)
(N − w). This number is

achieved if and only if the unique entries 1 of the rows belong to the different columns, i.e.,
A is a permutation matrix of degree N .

(ii) n = N = 2w + 1.

In this case we have T =
(
2w+1
w

)
(w + 1). A row r of A can separate at most

(
2w
w

)
column

pairs (C1, C2). This number corresponds to r being of either type 1 or type 2. Further, the
maximum number of possible separated column pairs (C1, C2) which may be achieved by all
the rows of A is (2w + 1)

(
2w
w

)
. To achieve the maximum number (2w + 1)

(
2w
w

)
of separated

column pairs, any two rows of A have to separate disjoint sets of column pairs (C1, C2). This
implies that any two rows of A are disjoint. This is equivalent to saying that each column of
A contains exactly one entry 1, otherwise if two rows r1 and r2 are overlapped, then these two
rows separate a common non-empty subset of column pairs (C1, C2), which is a contradiction.
Therefore, A is a permutation matrix of degree 2w + 1.

3 Bounds for binary FPC with w ≥ 4 and 2w + 2 ≤ N ≤ 3w

In this section, we present a result that allows characterization of SHF(N ;N, 2, 1, w) for w ≥ 4
and N ≤ 3w. In particular, we prove that all such separating hash families in standard form are
permutation matrices. This type of result allows us to prove bounds similar to Theorem 2.4 by
using the following theorem.

Theorem 3.1. Let w ≥ 3, N ≥ w + 1 and suppose that all SHF(N ;N, 2, {1, w}) in standard form
are permutation matrices. If SHF(N ;n, 2, {1, w}) exists, then n ≤ N .
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Proof. Suppose not, then there exists some SHF(N ;N+1, 2, {1, w}), say A. Let B be the submatrix
formed by the first N columns of A. We may assume w.l.o.g. that B is in standard form (we may
need to permute 0s and 1s in each row of A to achieve this). Then B is a permutation matrix. Thus
each row of A has at most two entries of 1.

Since N ≥ w + 1 ≥ 4, we have that N/2 ≥ 2. Let C be the submatrix formed by the last N
columns of A. Each row of C has at most two entries of 1 as well, so C is in standard form, and
hence it is a permutation matrix. This implies the first and last columns of A are identical, which
is a contradiction since ({1}, {N + 1}) cannot be separated.

We may use Theorem 3.1 to give a second proof of Theorem 2.4 using Theorem 2.5. In light of
this result, it is also important to consider the question “when are permutation matrices the only
representatives of SHF(N ;N, 2, 1, w) in standard form?” We give an affirmative answer for w ≥ 4
and N ≤ 3w through a series of lemmas below.

Lemma 3.2. Let w ≥ 3 and let A be the representation matrix of an SHF(N ;N, 2, {1, w}). Suppose
that all SHF(N − 1;N − 1, 2, {1, w}) in standard form are permutation matrices. If A contains a
row of type 1, then A is a permutation matrix.

Proof. We can write A in the form

A =


1 0 . . . 0

B


Let B be the (N − 1)× (N − 1) matrix obtained from A by removing the first row and the first

column of A. Then B is the representation matrix of an SHF(N − 1;N − 1, 2, {1, w}). We may
assume w.l.o.g. that B is in standard form, and hence it is a permutation matrix.

By permuting the columns of A, if necessary, we may assume that B is the identity matrix.
Consider column pairs (Cx = {x}, C1,y,z = {1, y, z}) with x, y, z = {2, . . . , N} and x 6= y 6= z 6= x.
Since B is the identity matrix, a row that separates (Cx, C1,y,z) must have entry 0 in columns 1, y, z
and entry 1 in column x. Thus row x is the unique row separating (Cx, C1,y,z). It follows that A is
a permutation matrix.

Lemma 3.3. Let w ≥ 4, N ≤ 3w, and let A be the representation matrix of an SHF(N ;N, 2, {1, w}).
Suppose the first row of A is of type i0 ≤ w with A(1, 1) = 1. Let B be the submatrix by deleting the
first row and first column of A. Then B is an SHF(N − 1;N − 1, 2, {1, w}).

Proof. If A contains a row of type 1 then Lemma 3.2 applies. For the remainder of this proof, we
assume that A contains no row of type 1.

Suppose B is not an SHF(N − 1;N − 1, 2, {1, w}), then there exists some column set pair
(C1 = {x}, C2) with |C2| = w that cannot be separated by B. If x corresponds to a column of A
that has an entry of 0 in the first row then C2 contains a column of A that has an entry of 0 in
the first row since i0 − 1 < w. But then A also cannot separate (C1, C2); a contradiction. Thus x
contains a 1 in the first row, and all columns of C2 correspond to columns of A with 0’s in the first
row (otherwise A still cannot separate (C1, C2)).

Permute the columns of A so that x corresponds to column 2 and columns in C2 correspond to
columns 3, . . . , w + 2. The matrix A is now

7



A =

 1 1 0 · · · 0


For 1 ≤ i ≤ w, let Ci = {3, . . . , w + 2} \ {i + 2}. The column set pair ({2}, Ci ∪ {1}) must be
separated by A. By permuting 0’s and 1’s if necessary, there is some row ri 6= 1 with entry 1 in
column 2 and entry 0 in columns of Ci. Since Ci ∪ Cj = {3, . . . , w + 2} for i 6= j and B does not
separate ({2}, {3, . . . , w + 2}), we have that ri 6= rj for i 6= j. Moreover, entry i of ri must also be
a 1. Let R1 = {r1, . . . , rw}, and by permuting the rows of A we have

A =



1 1 0 0 0 · · · 0

0 1 1 0 0 · · · 0
0 1 0 1 0 · · · 0
...

...
. . .

...
0 1 0 0 0 · · · 1
∗ ∗ ∗ ∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ ∗ ∗ ∗ · · · ∗


Next, consider C ′i = {2, . . . , w + 2} \ {i+ 2} for i = 1, . . . , w. The column set pair ({i+ 2}, C ′i)

must be separated by A with some row r′i 6= 1 and r′i /∈ R1. By permuting the 0’s and 1’s if
necessary, r′i has entry 1 in column (i + 2) and entry 0 in columns in C ′i. Moreover, r′i 6= r′j for
i 6= j. Now let R2 = {r′1, . . . , r′w}, and by permuting the rows of A we have

A =



1 1 0 0 0 · · · 0

0 1 1 0 0 · · · 0
0 1 0 1 0 · · · 0
...

...
. . .

...
0 1 0 0 0 · · · 1

∗ 0 1 0 0 · · · 0
∗ 0 0 1 0 · · · 0
...

...
. . .

...
∗ 0 0 0 0 · · · 1

∗ ∗ ∗ ∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ ∗ ∗ ∗ · · · ∗


We now do the following addition of rows in steps, starting with R3 = ∅:

Step 1
Let a be the column 1 entry of r′1. If a = 1, consider the column pair ({3}, {1, . . . , w+1}\{3}),
which must be separated by some row r′′1 6= 1 of A. Note that r′′1 /∈ R1 and r′′1 /∈ R2. Add r′′1
to R3.

If a = 0, consider the column pairs ({3}, C ′′1,j = {2, 4, 5, w + j + 2}) for j = 1, . . . , N −w − 2.
Since w ≥ 4, we have that A separates ({3}, C ′′1,j). If r′1 separates every such pair then r′1 is
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a type 1 row; a contradiction to A having no type 1 rows. Thus there is some j such that
another row of A, call it again r′′1 , that separates ({3}, C ′′1,j). Note that r′′1 6= 1, r′′1 /∈ R1 and
r′′2 /∈ R2. Add r′′1 to R3.

Step 2
Let a be the column 1 entry of r′2. If a = 1, consider the column pair ({4}, {1, . . . , w+1}\{4}),
which must be separated by some row r′′2 6= 1 of A. Note that r′′2 /∈ R1 ∪R2 and r′′2 6= r′′1 . Add
r′′2 to R3.

If a = 0, consider the column pairs ({4}, C ′′2,j = {2, 3, 5, w + j + 2}) for j = 1, . . . , N −w − 2.
Similar to Step 1, there exists some j for which another row of A, call it again r′′2 , that
separates ({4}, C ′′2,j). Again r′′2 /∈ R1 ∪R2 and r′′2 6= r′′1 . Add r′′2 to R3.

Steps i = 3, . . . , w − 1
Let a be the column 1 entry of r′i. If a = 1, consider the column pair ({i+ 2}, {1, . . . , w+ 1}\
{i + 2}), which must be separated by some row r′′i 6= 1 of A. Note that r′′i /∈ R1 ∪ R2 ∪ R3.
Add r′′i to R3.

If a = 0, consider the column pairs ({i + 2}, C ′′i,j = {2, 3, . . . , i + 1, w + j + 2}) for j =
1, . . . , N − w − 2. Since |C ′′i,j | = i + 1 ≤ w, some row of A separates ({i + 2}, C ′′i,j). Similar
to Step 1, there exists some j for which another row of A, call it again r′′i , that separates
({i+ 2}, C ′′i,j). Again r′′i /∈ R1 ∪R2 ∪R3. Add r′′i to R3.

Step w
Consider the column set pair ({1}, {2, . . . , w + 1}), which must be separated by some row r
of A. Clearly r /∈ R1 ∪R2 ∪R3. Add r to R3.

At the end of Step w, we have added w distinct rows to R3, so A has at least |R1∪R2∪R3|+1 =
w + w + w + 1 = 3w + 1 rows. This contradicts N ≤ 3w, so Lemma 3.3 holds.

Lemma 3.4. Let w ≥ 4, w + 1 ≤ N ≤ 3w, and let A be the representation matrix of an
SHF(N ;N, 2, {1, w}). Suppose that some row of A is of type at most w and all SHF(N − 1;N −
1, 2, {1, w}) in standard form are permutation matrices. Then A is a permutation matrix.

Proof. If A contains a row of type 1, we can use Lemma 3.2 to show that A is a permutation matrix.
For the remainder of this proof, we may assume that A contains no row of type 1. Assume w.l.o.g.
that the first row of A is of type i0 where 2 ≤ i0 ≤ w.

Suppose to the contrary that A is not a permutation matrix. By permuting the columns of A
if necessary, we may assume that row 1 is 1i00N−i0 . Let B be the (N − 1)× (N − 1) submatrix of
A by deleting the first row and first column of A.

By Lemma 3.3, we have that B is an SHF(N −1;N −1, 2, {1, w}), and hence it is a permutation
matrix. For row x of A, x = 2, . . . , N , let cx be the unique column of A that contains a 1 in
row x. Consider the column set pair (Cx = {cx}, C ′x = C ′′x ∪ {1}) where C ′′x is some set of w − 1
columns not containing cx whose entries on row 1 contains at least one 0. This is possible since
N ≥ w+ 2 ≥ i0 + 2. The only row that can separate this column set pair is row x, which forces its

9



first entry to be a 0. Thus we have shown that

A =


1 1

0
... B
0

 .

Now consider (C1 = {1}, C2 = {2, 3}), which cannot be separated by A; a contradiction.

Theorem 3.5. Let w, N be positive integers such that w ≥ 4 and 2w+2 ≤ N ≤ 3w. Suppose there
exists an SHF(N ;N, 2, {1, w}). Then its representation matrix in standard form is a permutation
matrix of degree N .

Proof. The proof is by induction on N = 2w + 1, . . . , 3w. The base case N = 2w + 1 is given by
Theorem 2.5. Suppose that N > 2w + 1 and all SHF(N − 1;N − 1, 2, {1, w}) in standard form
are permutation matrices. By Lemma 3.4, we only need to show that some row of type at most w
exists.

Let A be an SHF(N ;N, 2, {1, w}) in standard form. Fix some i where w + 1 ≤ i ≤ N/2. The
average number of column pairs separated by a row is

α =
(N − w)

(
N
w

)
N

=

(
N − 1

w

)
.

Let βi be the number of column pairs separated by a row of type i, then

βi = i

(
N − i
w

)
+ (N − i)

(
i

w

)
≤ N

(
N − i
w

)
column pairs. Since i ≥ w + 1, we have

α =

(
N − 1

w

)
=

(N − 1)(N − 2) · · · (N − w)

(N − w − 1)(N − w − 2) · · · (N − 2w)

(
N − w − 1

w

)
≥ (N − 1)(N − 2) · · · (N − w)

(N − w − 1)(N − w − 2) · · · (N − 2w)

(
N − i
w

)
≥
(

N − 1

N − w − 1

)w (N − i
w

)
≥
(

3w + 1− 1

3w + 1− w − 1

)w (N − i
w

)
=

(
3

2

)w (N − i
w

)
.

For w ≥ 8, one can check that
(
3
2

)w
> 3w ≥ N , so α > βi. It is straightforward to compute α

and βi for 4 ≤ w ≤ 7 and confirm that α > βi for all relevant values of i. Since α > βi for every
i ≥ w + 1 and A contains no row of type N/2 + 1 or higher, there must exist some row of type at
most w.

10



Finally, we give a bound similar to Theorem 2.4.

Theorem 3.6. Let w, N be positive integers such that w ≥ 4 and 2w + 2 ≤ N ≤ 3w. Suppose
there exists an SHF(N ;n, 2, {1, w}). Then n ≤ N.

Proof. By Theorem 3.5, all SHF(N ;N, 2, {1, w}) in standard form are permutation matrices, hence
the proof follows from Theorem 3.1.

4 Binary FPC with w = 3 and N = 8, 9

In this section we treat the cases w = 3 when N = 2w + 2 = 8 and N = 3w = 9. We show that
Theorem 3.5 and Theorem 3.6 proven in the previous section remain valid for w = 3. The reason
for a separate discussion of the case w = 3 is that the proof for case w ≥ 4 cannot be used for
w = 3.

4.1 The case w = 3 and N = 8

We first consider the case of N = 8. Before we prove our main result, we prove several useful
lemmas of a general nature.

Given two rows of an SHF, we define the overlap of the two rows to be the number of columns
in which both rows contain a 1.

Lemma 4.1. Let A be the representation matrix of an SHF(N ;n, 2, {1, w}). Let ri be a row of type
i and let rj be a row of type j of A. Suppose that ri and rj have overlap equal to s. Then the
number of column pairs (C1, C2) that are separated by both of ri and rj is

θ = s

(
n− i− j + s

w

)
+ (n− i− j + s)

(
s

w

)
+ (i− s)

(
j − s
w

)
+ (j − s)

(
i− s
w

)
. (4.2)

Proof. For k, ` ∈ {0, 1}, let f(k, `) denote the set of columns in which ri has the entry k and rj has
the entry `. Then |f(1, 1)| = s, |f(1, 0)| = i− s, |f(0, 1)| = j − s, and |f(0, 0)| = n− i− j + s. We
have repeated column pairs (C1, C2) in the following four situations:

1. C1 ⊆ f(1, 1), C2 ⊆ f(0, 0),

2. C1 ⊆ f(0, 0), C2 ⊆ f(1, 1),

3. C1 ⊆ f(1, 0), C2 ⊆ f(0, 1), and

4. C1 ⊆ f(0, 1), C2 ⊆ f(1, 0).

These four cases correspond to the four summands in equation (4.2).

In general, we will consider an SHF one row at a time. Suppose the rows of an SHF(N ;n, 2, {1, w})
are denoted r1, . . . , rn. For 1 ≤ i ≤ n, define µi to be the number of column pairs (C1, C2) separated
by ri that were not separated by r1, . . . , ri−2 or ri−1.

Lemma 4.2. Let A be the representation matrix in standard form of an SHF(6; 5, 2, {1, 3}). Then
by permuting the rows of A we have that the first five rows are of type 1 and the last row is of any
type.
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Proof. The proof of the lemma is by straightforward counting. First of all note that there are in
total T =

(
5
3

)
2 = 20 column pairs (C1, C2) of A to be separated (where |C1| = 1, |C2| = 3 and

C1 ∩ C2 = ∅). On average each row separates 20
6 > 3 new column pairs. From Lemma 2.3, a row

of type 1 separates four column pairs and a row of type 2 separates two column pairs. Suppose
without loss of generality that µ1 ≥ µ2 ≥ · · · ≥ µ6. It follows that the first row is of type 1. Row 2
has to separate at least d20−45 e = 4 new column pairs, so row 2 is of type 1. Row 3 has to separate at
least d16−44 e = 3 column pairs, so row 3 is of type 1. Row 4 also has to separate at least d12−43 e = 3
column pairs, so row 4 is of type 1. Now row 5 has to separate at least d8−42 e = 2 column pairs. If
row 5 is of type 2, then it has to overlap at least one of the first four rows (which are all of type
1). Then row 5 can separate at most one new column pair, from Lemma 4.1. It follows that row 5
is also of type 1 and the first five rows separate all the column pairs.

Lemma 4.3. Let A be the representation matrix in standard form of an SHF(7; 6, 2, {1, 3}) Then
by permuting the rows of A we have that the first six rows are of type 1 and the last row is of any
type.

Proof. There are in total T =
(
6
3

)
3 = 60 column pairs (C1, C2) of A to be separated (where |C1| = 1,

|C2| = 3 and C1 ∩C2 = ∅). On average each row separates 60
7 > 8 column pairs. From Lemma 2.3,

a row of type 1 separates ten column pairs, a row of type 2 separates eight column pairs, and a row
of type 3 separates six column pairs. Suppose without loss of generality that µ1 ≥ max{µ2, . . . , µ7}.
It follows that the first row of A is of type 1. By permuting the columns if necessary, we assume
that the first row has the entry 1 in the first column. Then A has the form

A =



1 0 0 0 0 0

a
b
c B
d
e
f


where B is the representation matrix of an SHF(6; 5, 2, {1, 3}). By Lemma 4.2, we may assume

B =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
∗ ∗ ∗ ∗ ∗

 .

So rows 2, . . . , 6 have type 1 or 2. If a = b = c = d = e = 0, then the first six rows of A are of
type 1 and they separate all 60 column pairs. Suppose that not all of a, b, c, d, e are 0. Then, from
Lemma 2.3 and Lemma 4.1, the first six rows of A separate at most 5× 10 + 4 = 54 column pairs,
and this occurs if and only if there is exactly one nonzero element in {a, . . . , f}. It follows that row
7 has to separate at least six new column pairs. This is impossible due to overlapping with rows 1
to 6, unless row 7 is of type 1. In this case we can interchange row 7 with one of the first six rows
to obtain the desired conclusion.
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Theorem 4.4. The representation matrix A in standard form of an SHF(8; 8, 2, {1, 3}) is a per-
mutation matrix of degree 8.

Proof. Let A be the representation matrix in standard form of an SHF(8; 8, 2, {1, 3}). Then there
are T =

(
8
3

)
5 = 280 column pairs to be separated. On average, each row separates 280

8 = 35 column
pairs. From Lemma 2.3, a type 1 row separates 35 column pairs, a type 2 row separates 40 column
pairs, a type 3 row separates 35 column pairs, and a type 4 row separates 32 column pairs.

Suppose that A contains a row of type 1. Then by Theorem 2.5 and Lemma 3.2, A is a
permutation matrix. Therefore we can assume that A contains no row of type 1. We next show
that A contains a row of type 2. Assume the contrary and suppose without loss of generality that
µ1 ≥ max{µ2, . . . , µ8}. Since, on average, each row of A separates 35 column pairs, it follows that
all rows must be of type 3. However, from Lemma 4.1, it can be verified that any two rows of type
3 must separate a positive number of common column pairs, so we have a contradiction.

Therefore, by permuting columns if necessary, we may assume that the first row of A is of type
2, having the entry 1 in the first two columns. Thus we have

A =



1 1 0 0 0 0 0 0

a2 b2
a3 b3
a4 b4
a5 b5 B
a6 b6
a7 b7
∗ ∗


where B is the representation matrix of an SHF(7; 6, 2, {1, 3}). By Lemma 4.3 we may assume

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗


.

From the assumption that A has no row of type 1, we have that (ai, bi) 6= (0, 0) for i = 2, . . . , 7.
It follows that rows 2, 3, . . . , 7 are of type 2 or 3 and each of them overlap row 1. From Lemma
4.1, if (ai, bi) = (1, 1), then row i separates at most 15 new column pairs, whereas if (ai, bi) =
(1, 0) or (0, 1), then row i separates at most 30 new column pairs. In any case, rows 1, 2, . . . , 7
separate at most 40+6×30 = 220 column pairs. Thus row 8 has to separate at least 280−220 = 60
new column pairs, which is impossible. This completes the proof.

The next theorem follows immediately from Theorem 4.4 and Theorem 3.1.

Theorem 4.5. Suppose there exists an SHF(8;n, 2, {1, 3}). Then n ≤ 8.
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4.2 The case w = 3 and N = 9

We first prove several preliminary lemmas.

Lemma 4.6. Let A be the representation matrix in standard form of an SHF(7; 5, 2, {1, 3}) Then
by permuting the rows of A we have that the first 5 rows are of type 1 and the last two row are of
any type.

Proof. There are 2
(
5
3

)
= 20 column pairs to be separated. A type 1 row separates four column

pairs and a type 2 row separates two column pairs. Let x denote the number of disjoint type 1
rows; we claim that x = 5. If x ≤ 2, then the number of column pairs that are separated is at most
2× 4 + 5× 2 = 18 < 20, which is a contradiction.

Suppose x = 4. Four disjoint type 1 rows separate 16 column pairs. Due to overlap, any type
two row separates at most one additional column pair. This means that at least four type two rows
are required so that all column pairs are separated. This yields eight rows, which is a contradiction.

Finally, we suppose x = 3. Three disjoint type 1 rows separate 12 column pairs. There is
one possible type 2 row that separates two additional column pairs, and any other type two row
separates at most one additional column pair. It follows that we cannot separate all the column
pairs using seven rows.

Lemma 4.7. Let A be the representation matrix in standard form of an SHF(8; 6, 2, {1, 3}) Then
by permuting the rows of A we have that the first six rows are of type 1 and the last two rows are
of any type.

Proof. There are in total T =
(
6
3

)
3 = 60 column pairs of A to be separated. A type 1 row separates(

5
3

)
= 10 column pairs. A type 2 row separates 2

(
4
3

)
= 8 columns pairs, but it separates at most

seven new column pairs if it is not disjoint from all the 1 and type 2 rows (Lemma 4.1). Finally, a
type 3 row separates 3

(
3
3

)
× 2 = 6 pairs, but it separates at most five new column pairs if it is not

disjoint from all the type 1 rows (Lemma 4.1).
First, suppose there is no row of type 1. In order to cover all the column pairs, we need at least

six rows of type 2 (observe that 5 × 8 + 3 × 6 = 58 < 60). There are at most three disjoint rows
of type two. Therefore there are at least three rows of type two that each cover at most four new
pairs. As well, there are two additional rows that each cover at most six new column pairs. The
maximum number of column pairs that are covered is 3× 8 + 3× 7 + 2× 6 = 57 < 60, so we have
a contradiction.

Thus we may assume that the first row of A is of type 1, with entry 1 in the first column, so A
has the form

A =



1 0 0 0 0 0

a
b
c
d B
e
f
g


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where B is the representation matrix of an SHF(7; 5, 2, {1, 3}). By Lemma 4.6 we may assume

B =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


Let x denote the number of 1’s in the multiset {a, b, c, d, e}. We want to show that x = 0.

First suppose x = 1 and assume without loss of generality that a = 1. There are six column
pairs not covered by the first six rows, namely, ({2}, {1, y, z}), where {y, z} ⊆ {3, 4, 5, 6}. The only
way that these six column pairs can be covered by two rows is if one of the two rows is of type 1,
having a 1 in column 2. Thus we have six rows of type 1 and this case is done.

Next, suppose x = 2 and assume without loss of generality that a = b = 1. There are twelve
column pairs not covered by the first six rows, namely, ({2}, {1, y, z}), where {y, z} ⊆ {3, 4, 5, 6}
and ({3}, {1, y, z}), where {y, z} ⊆ {2, 4, 5, 6}. The only way to cover the first six column pairs by
two rows is to include the row of type 1, having a 1 in column 2. Further, the only way to cover
the second six column pairs by two rows is to include the row of type 1, having a 1 in column 3.
Thus we have six rows of type 1 and this case is done.

If x ≥ 3, then we need x additional rows of type 1 to cover the uncovered column pairs, but now
the total number of rows is 6 + x > 8. So these cases cannot occur, and the proof is complete.

Lemma 4.8. Let A be the representation matrix of an SHF(8; 7, 2, {1, 3}) in standard form. By
permuting the rows of A if necessary we have that the first seven rows of A are of type 1. The last
row can be of any type.

Proof. There are T =
(
7
3

)
4 = 140 column pairs of A to be separated. A type 1 row separates 20

column pairs, a type 2 row separates 20 column pairs, and a type 3 row separates 16 column pairs.
Further, if a type 2 row is not disjoint from all other type two rows, then it separates at most 16
new column pairs (Lemma 4.1).

First we show that there must be a row of type 1. Suppose not; then there are x rows of type
2 and 8 − x rows of type 3. Since 2 × 20 + 6 × 16 = 136 < 140, we must have x ≥ 3. Now, there
can be at most three disjoint rows of weight 2, so the number of column pairs covered is at most
3× 20 + (x− 3)16 + (8− x)16 = 140. Then, in order for all 140 column pairs to be separated, each
row of type 3 must be disjoint from all rows of type 2 (Lemma 4.1), which is impossible.

Therefore, we may assume that the first row of A is of type 1 with entry 1 in the first column.
Thus A has the form

A =



1 0 0 0 0 0 0

a2
a3
a4
a5 B
a6
a7
b


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where B is the representation matrix of an SHF(7; 6, 2, {1, 3}). By Lemma 4.3 we have that

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗


To prove the lemma we show that a2 = · · · = a7 = 0.

Suppose some ai is nonzero, say a2 = 1. The column pairs not covered by the first seven rows,
include the following ten column pairs: ({2}, {1, y, z}), where {y, z} ⊆ {3, 4, 5, 6, 7}. The only way
that these ten column pairs can be covered by two rows is if one of the two rows is of type 1, having
a 1 in column 2. Thus we must have a row of type 1 whose nonzero entry is in column 2. The
above argument can be applied for any ai = 1, which completes the proof.

We are now in a position to prove the following theorem.

Theorem 4.9. The representation matrix A in standard form of an SHF(9; 9, 2, {1, 3}) is a per-
mutation matrix.

Proof. There are in total 6
(
9
3

)
= 504 column pairs of A to be separated. A type 1 row separates

56 column pairs, a type 2 row separates 70 column pairs, a type 3 row separates 66 column pairs,
and a type 4 row separates 60 column pairs. If a type 2 row overlaps another type two row, then it
separates at most 50 new column pairs, and if a type 3 row has overlap 2 with a type 2 row, then
it separates at most 26 new column pairs (Lemma 4.1).

If A has a row of type 1, then by Lemma 3.2, A is a permutation matrix and we are done. We
will show that A must contain a row of type 1 by successively ruling out the cases that A contains
a row of type 2, type 3 or type 4.

Case 1 A contains row of type 2 but no rows of type 1.

Assume w.l.o.g. that the first row of A is of type 2 with entry 1 in columns 1 and 2. By
removing the first two columns and the first row of A we obtain an 8 × 7 binary matrix B
which is the representation matrix of an SHF(8; 7, 2, {1, 3}). By Lemma 4.8, we may assume
that the first seven rows of B are of type 1. Here is the structure of the first eight rows of A:

1 1 0 0 0 0 0 0 0

∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 1 0 0 0 0 0
∗ ∗ 0 0 1 0 0 0 0
∗ ∗ 0 0 0 1 0 0 0
∗ ∗ 0 0 0 0 1 0 0
∗ ∗ 0 0 0 0 0 1 0
∗ ∗ 0 0 0 0 0 0 1


First note that rows 2, . . . , 8 must contain an entry equal to 1 in the first two columns, since
we are assuming that A has no rows of type 1. This implies that rows 2, . . . , 8 are all of type
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2 or 3 and they all overlap row 1. If a type 2 row overlaps another type two row, then it
separates at most 50 new column pairs, and if a type 3 row has overlap 2 with a type 2 row,
then it separates at most 26 new column pairs (Lemma 4.1). Therefore, the first eight rows
of A can separate at most 70 + 50 × 7 = 420 column pairs. Then the last row of A has to
separate at least 504− 420 = 84 column pairs, which is impossible. This rules out Case 1.

Case 2 A contains row of type 3 but no rows of type 1 or 2.

Assume that the first row of A is of type 3 with entry 1 in columns 1 and 2 and 3. By
removing the first three columns and the first row of A we obtain an 8 × 6 binary matrix B
which is the representation matrix of an SHF(8; 6, 2, {1, 3}). By Lemma 4.7, we may assume
that the first six rows of B are of type 1. Here is the structure of the first seven rows of A:

1 1 1 0 0 0 0 0 0

∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ 0 1 0 0 0 0
∗ ∗ ∗ 0 0 1 0 0 0
∗ ∗ ∗ 0 0 0 1 0 0
∗ ∗ ∗ 0 0 0 0 1 0
∗ ∗ ∗ 0 0 0 0 0 1


Note that A only has rows of type 3 or 4. Let i ∈ {2, 3, 4, 5, 6, 7}. If row i is of type 3, then it
has overlap 2 with row 1 and it separates at most 66−20 = 46 new column pairs, and if row i
is of type 4, then it has overlap 3 with row 1 and separates at most 66−30 = 36 column pairs
(Lemma 4.1). It follows that the first seven rows of A separate at most 66 + 6 × 46 = 342
column pairs. Hence rows 8 and 9 have to separate at least 504 − 342 = 162 new column
pairs, which is impossible. This rules out Case 2.

Case 3 All rows of A are of type 4.

Let αi denote the number of repeated column pairs arising from two rows of type 4 having
overlap equal to i. From Lemma 4.1, we have α0 = 32, α1 = 6, α2 = 2, and α3 = 16. So the
maximum number of column pairs covered by any two rows is 60 + 58 = 118.

Let’s now consider sets of three rows. A consideration of possible cases shows that the
maximum number of column pairs covered by three rows is 60 + 58 + 56 = 174. This happens
if and only if the three rows have pairwise overlaps all equal to 2. There are in fact three
non-isomorphic ways in which this can happen:

111100000
110011000
110000110

111100000
110011000
101010100

111100000
110011000
001111000

The three cases are distinguished by the number of columns of weight 3.

Now let’s look at the maximum number of column pairs obtained by extending one of the
three 3-row configurations enumerated above. The maximum number of column pairs covered
by four such rows is 60 + 58 + 56 + 54 = 228. This happens if and only if the four rows have
pairwise overlaps all equal to 2. There are in fact four non-isomorphic ways in which this can
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happen:
111100000
110011000
110000110
101010100

111100000
110011000
101010100
100101100

111100000
110011000
101101000
011011000

111000100
110110000
101101000
011011000

Now suppose the rows are ordered so µ1 ≥ µ2 ≥ · · · ≥ µ9. We know that µ1 = 60 and
µ2 ≤ 58. We consider three cases and apply the results above.

1. If µ1 = 60, µ2 = 58 and µ3 = 56, then µ4 ≤ 54. Then∑
µi ≤ 60 + 58 + 56 + 6× 54 = 498 < 504.

So this case is impossible.

2. If µ1 = 60, µ2 = 58 and µ3 ≤ 55, then∑
µi ≤ 60 + 58 + 7× 55 = 503 < 504.

So this case is also impossible.

3. If µ1 = 60 and µ2 < 58, then µ2 ≤ 54 and∑
µi ≤ 60 + 8× 54 = 492 < 504.

Since all cases lead to a contradiction, the proof is complete.

Theorem 4.10. Suppose there is an SHF(9;n, 2, {1, 3}). Then n ≤ 9.

Proof. Theorem 4.10 follows from Theorems 3.1 and 4.9.

5 Discussion of the case w = 2

For completeness, we include a discussion regarding the w = 2 case. Since q = w, some of the
previously known results apply, and the situation is much different from where w ≥ 3.

Theorem 5.1. For every N ≥ 3, there exists an SHF(N ;N + 1, 2, {1, 2}).

Proof. Take the N × N identity matrix and append to it a column of 1s; call this matrix A. We
will show that A is an SHF(N ;N + 1, 2, {1, 2}).

Let (C1 = {x}, C2 = {y, z}) be a column set pair. First consider 1 ≤ x ≤ N . If 1 ≤ y, z ≤ N
then (C1, C2) is clearly separated by A. Suppose w.l.o.g. that z = N + 1, then row y has entry 1
in columns y, z and entry 0 in column x, so (C1, C2) is again separated.

Finally, consider x = N + 1, so 1 ≤ y, z ≤ N . Since N ≥ 3, there is some row w /∈ {y, z}, so
row w has entry 0 in columns y, z and entry 1 in column x, so (C1, C2) is separated.

Theorem 5.1 above shows that Theorem 2.4 does not hold when w = 2. We will also demonstrate
that Theorem 2.5 and Theorem 3.1 do not hold when w = 2.
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Theorem 5.2. The matrix

A =


1 1 0 0
0 1 1 0
1 0 1 0
0 0 0 1


is an SHF(4; 4, 2, {1, 2}).

The result in Theorem 5.2 can be extended to N > 4 by constructing the matrix

B =

(
A 0
0 Ik

)
where A is from Theorem 5.2 and Ik is the k × k identity matrix for k = N − 4. Observe that for
every column x, y ∈ {1, 2, 3}, there exist rows rx, ry such that rx(x) = 1, rx(y) = 0 and ry(x) = 0,
ry(y) = 1. It is straightforward to verify that B is indeed an SHF(N ;N, 2, {1, 2}). Theorem 5.3
below covers the last case N = 3, and shows that Theorem 3.1 does hold when w = 2.

Theorem 5.3. The representation matrix of an SHF(3; 3, 2, {1, 2}) in standard form is a permu-
tation matrix.

Proof. In standard form, every row is of type 1. Two distinct rows must not overlap, so each
column also has one 1.

6 Conclusion

Gathering together the results proven in this paper, we have the following theorems.

Theorem 6.1. Let w, N be positive integers such that w ≥ 3 and w+ 1 ≤ N ≤ 3w. Suppose there
exists an SHF(N ;n, 2, {1, w}). Then n ≤ N.

Theorem 6.2. Let w, N be positive integers such that w ≥ 3 and w+ 1 ≤ N ≤ 3w. Suppose there
exists an SHF(N ;n, 2, {1, w}) with n = N . Then its representation matrix in standard form is a
permutation matrix of degree N .

Here is an interesting problem that is suggested by our work: For a given w, find the smallest N
such that there exists an SHF(N ;n, 2, {1, w}) with n > N . A closely related problem is to find the
smallest n such that there exists an SHF(n;n, 2, {1, w}) that is not a permutation matrix. Finally,
it may be of interest to try to generalize the results in this paper to SHF of other types, or to SHF
over non-binary alphabets.
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