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Abstract

A covering array CA(N ; t, k, v) is an N × k array such that every N × t sub-array contains
all t-tuples from v symbols at least once, where t is the strength of the array. Covering arrays
are used to generate software test suites to cover all t-sets of component interactions. Recursive
constructions for covering arrays of strengths 3 and 4 are developed, generalizing many “Roux-
type” constructions. A numerical comparison with current construction techniques is given
through existence tables for covering arrays.

1 Introduction

A covering array CA(N ; t, k, v) is an N×k array such that every N×t sub-array contains all t-tuples
from v symbols at least once, where t is the strength of the array. When ‘at least’ is replaced by
‘exactly’, this defines an orthogonal array [19]. We use the notation OA(N ; t, k, v). Often we refer
to a t-covering array to indicate some CA(N ; t, k, v). We denote by CAN(t, k, v) the minimum N
for which a CA(N ; t, k, v) exists. The determination of CAN(t, k, v) has been the subject of much
research; see [8, 12, 17, 18] for survey material. However, only in the case of CAN(2, k, 2) is an exact
determination known (see [12]). In part the interest arises from applications in software testing [11],
but other applications in which experimental factors interact avail themselves of covering arrays as
well [12, 17].

We outline the approaches taken for strength t = 2, but refer to [12] for a more detailed survey.
When the number of factors is “small”, numerous direct constructions have been developed. Some
exploit the known structure of orthogonal arrays arising from the finite field, but most have a
computational component. A range of methods have been applied, including greedy methods
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[11], tabu search [25], simulated annealing [9], and constraint satisfaction [20]. Assuming that the
covering array admits an automorphism can reduce the computational difficulty substantially [24].

At the other extreme, when the number of factors k goes to infinity, asymptotic methods have
been applied; see [16], for example. In practice, this leaves a wide range of values of k for which
no useful information can be deduced. Computational methods become infeasible, and asymptotic
analysis does not apply, within this range. Hence there has been substantial interest in recursive
(“product”) constructions to make large covering arrays from smaller ones. Currently, the most
general recursive constructions for strength two appear in [15].

This pattern is repeated for strength t > 2. The larger the strength, the more limited is our
ability to obtain computational results for small numbers of factors. For strength three, powerful
heuristic search such as simulated annealing [10] and tabu search [25] are still effective, but for
larger strengths their current applications are quite restricted. Consequently, imposing larger au-
tomorphism groups to accelerate the search has proved effective in some cases [7, 8]. More recently,
Sherwood et al. [27] developed a “permutation vector” representation for certain covering arrays.
In conjunction with tabu search, Walker and Colbourn [33] produce many coverings arrays for
strengths between 3 and 7.

Despite current limitations in producing t-covering arrays with a small number of factors, re-
cursive constructions have proved to be effective in making arrays for larger numbers of factors.
Roux [26] pioneered a conceptually simple recursive construction for strength t = 3 that has been
substantially generalized for strength 3 [8, 10], strength 4 [17, 18, 23], and strength t in general
[22, 23]. In this paper, we improve the recursion for strength 3, and we generalize and unify the
Roux-type recursions for strength 4. We then recall related recursions using Turán families and
perfect hash families in §5, and using this current census of known constructions we present current
existence tables for covering arrays of strengths 3 and 4.

2 Definitions and Preliminaries

Let Γ be a group of order v, with � as its binary operation. A (v, k;λ)-difference matrix D = (dij)
over Γ is a vλ × k matrix D = (d`,i) with entries from Γ, so that for each 1 ≤ i < j ≤ k, the
set {d`,i � d−1

`,j : 1 ≤ ` ≤ vλ} contains every element of Γ λ times. When Γ is abelian, additive
notation is used, so that difference d`,i − d`,j is employed. (Often in the literature the transpose of
this definition is used.)

A t-difference covering array D = (dij) over Γ, denoted by DCA(N,Γ; t, k, v), is an N × k
array with entries from Γ having the property that for any t distinct columns j1, j2, . . . , jt, the set
{(di,j1 �d−1

i,j2
, di,j1 �d−1

i,j3
, . . . , di,j1 �d−1

i,jt
) : 1 ≤ i ≤ N} contains every nonzero (t−1)-tuple over Γ at

least once. When Γ = Zv we omit it from the notation. We denote by DCAN(t, k, v) the minimum
N for which a DCA(N ; t, k, v) exists.

A covering ordered design COD(N ; t, k, v) is an N × k array such that every N × t sub-array
contains all non-constant t-tuples from v symbols at least once. We denote by CODN(t, k, v) the
minimum N for which a COD(N ; t, k, v) exists.

A QCA(N ; k, `, v) is an N × k` array with columns indexed by ordered pairs from {1, . . . , k} ×
{1, . . . , `}, in which whenever 1 ≤ i < j ≤ k and 1 ≤ a < b ≤ `, the N × 4 subarray indexed by the
four columns (i, a), (i, b), (j, b), (j, a) contains every 4-tuple (x, y, z, t) with x − t 6≡ y − z (mod v)
at least once. QCAN(k, `, v) denotes the minimum number of rows in such an array.

We recall two general results.
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Theorem 2.1 [19] When v ≥ 2 is a prime power then an OA(vt; t, v, v + 1) exists whenever v ≥
t − 1 ≥ 0.

Theorem 2.2 [14] The multiplication table for the finite field Fv is a (v, v; 1)-difference matrix
over EA(v).

In order to simplify the presentation later, we establish a basic result:

Theorem 2.3 CAN(2, k, vw) ≤ min

{

CAN(2, k, v)CAN(2, v, w) + vCODN(2, k, w)
CODN(2, k, v)CAN(2, v, w) + vCAN(2, k, w)

.

Proof. We prove the first statement; the second is similar. Suppose that there exist A a CA(NA; 2, k, v),
B a CA(NB ; 2, v, w), and C a COD(NC ; 2, k, w).

We produce a CA(N ′; 2, k, vw) D where N ′ = NANB + vNC . D is formed by vertically juxta-
posing arrays E of size NANB and F 0, . . . ,Fv−1 each of size NC .

We refer to elements of D as ordered pairs (a, b) where 0 ≤ a < v and 0 ≤ b < w. There are vw
such elements.

Define array E as follows. Replace each element i from A with a column of length NB whose
jth entry is (i, σ) where σ is the jth entry of the ith column of B.

Define array F` to be the result of replacing every entry σ of array C by (`, σ). Then D has N ′

rows. We now verify that it is a CA(N ′; 2, k, vw).
Consider columns i and j of D to verify the presence of the pair (r, x) in column i and (s, y) in

column j.
If r 6= s, look in E. There is a row in A that covers the pair (r, s) in columns (i, j). We look at

the expansion of this pair from A into E. Since there is also a row in B that covers the pair (x, y),
say in row n, and since the rth and sth columns of B are distinct, the nth row of the expansion
contains the required pair. Similarly if r = s and x = y, there is a row in A that covers the pair
(r, r) and all pairs are covered in the expansion into E provided that x = y.

It remains to treat the case when r = s but x 6= y, i.e. the pairs sought are of the form (r, x)
and (r, y). For these we consider Fr. Since x 6= y, the pair (x, y) is covered in C. So, the pair
(r, x), (r, y) is covered in Fr. �

Corollary 2.4 For v a prime power,

CAN(2, k, v2) ≤ min

{

v2CAN(2, k, v) + vCODN(2, k, v)
v2CODN(2, k, v) + vCAN(2, k, v)

}

≤ (v2 + v)CAN(2, k, v) − v2.

Proof. CODN(2, k, v) ≤ CAN(2, k, v) − 1. �

Theorem 2.5 CODN(2, k, vw) ≤ CODN(2, k, v)CODN(2, v, w) + vCODN(2, k, w).

Proof. This parallels the proof of Theorem 2.3 closely. �

For large k, these improve upon the simple “composition” of covering arrays that establishes
that CAN(2, k, vw) ≤ CAN(2, k, v)CAN(2, k, w).
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3 Strength Three

In [28], a theorem from Roux’s Ph.D. dissertation [26] is presented.

Theorem 3.1 CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Proof. To construct a CA(3, 2k, 2), we begin by placing two CA(N3, 3, k, 2)s side by side. We now
have a N3 × 2k array. If one chooses any three columns whose indices are distinct modulo k, then
all triples are covered. The remaining selection consists of a column x from among the first k, its
copy among the second k, and a further column y. When the two columns whose indices agree
modulo k share the same value, such a triple is also covered. The remaining triples are handled
by appending two CA(N2, 2, k, 2)s side by side, the second being the bit complement of the first.
Therefore if we choose two distinct columns from one half, we choose the bit complement of one of
these, thereby handling all remaining triples. This gives a covering array of size N2 + N3. �

Chateauneuf and Kreher [8] prove a generalization:

Theorem 3.2 CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

Cohen, Colbourn, and Ling [10] generalize to permit the number of factors to be multiplied by
` ≥ 2 rather than two.

Theorem 3.3 [10] CAN(3, k`, v) ≤ CAN(3, k, v) + CAN(3, `, v) + CAN(2, `, v) × DCAN(2, k, v).

Here we establish a different generalization of the Roux construction for strength three.

Theorem 3.4 For any prime power v ≥ 3

CAN(3, vk, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v) + v3 − v2

Proof. Suppose that C3 is a CA(N3; 3, k, v) and C2 is a CA(N2; 2, k, v). Suppose that D is the
(v − 1) × v array obtained by removing the first row from the difference matrix in Theorem 2.2.
Then di,j = i × j for i = 1, · · · , v − 1 and j = 0, · · · , v − 1. D is a DCA(v − 1; 2, v, v).

We first construct an OA(v3; v, v, 3) A by using Bush’s construction (see the proof of Theorem
3.1 in [19]). The columns of A are labelled with the elements of Fv and rows are labelled by v3

polynomials over Fv of degree at most 2. Then, in A, the entry in the column γi and the row
labelled by the polynomial with coefficients β0, β1 and β2 is β0 + β1 × γi + β2 × γi

2.
Let B be the sub-array of A containing the rows of A which are labelled by the polynomials

of degree 2 (β2 6= 0). Then B is a (v3 − v2) × v array. We label each column of B with the same
element of Fv as its corresponding column in A. Denote i-th column of B by Bi, for i = 0, · · · , v−1.

We produce a covering array CA(N ′; 3, vk, v) G where N ′ = N3 + (v − 1)N2 + v3 − v2. G is
formed by vertically juxtaposing arrays G1 of size N3 × vk, G2 of size (v − 1)N2 × vk, G3 of size
(v3 − v2) × vk.

We describe the construction of each array in turn. We index vk columns by ordered pairs from
{0, . . . , k − 1} × {0, . . . , v − 1}.

G1: In row r and column (f, h) place the entry in cell (r, f) of C3. Thus G1 consists of v copies of
C3 placed side by side.
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G2: Index the (v−1)N2 rows by ordered pairs from {1, . . . , N2}×{1, . . . , v−1}. In row (r, s) and
column (f, h) place cr,f + ds,h, where cr,f is the entry in cell (r, f) of C2 and ds,h is the entry
in cell (s, h) of D.

G3: In row r and column (f, h) place the entry in cell (r, h) of B. Thus G3 consists of k copies of
B0, the first column of B, then k copies of B1, the second column, and so on.

We show that G is a 3-covering array. Consider three columns of G:

(f1, h1), (f2, h2), (f3, h3)

If f1, f2, f3 are all distinct, then these columns restricted to G1 arise from three distinct columns
of C3. Hence, all 3-tuples are covered.

If f1 = f2 6= f3 then all tuples of the form (x, x, y) are covered in G1. All tuples of the form
(x + dy,h1

, x + dy,h2
, z + dy,h3

) for any x, z ∈ {0, 1, · · · , v − 1} and y ∈ {1, · · · , v − 1} are covered
in G2. Therefore, since h1 6= h2 and D is a 2-difference covering array, it follows that all 3-tuples
(x, x + i, y) where i ∈ {1, · · · , v} and x, y ∈ {0, 1, · · · , v − 1} are covered in G2.

If f1 = f2 = f3 then h1 6= h2 6= h3. All tuples of the form (x, x, x) are covered in G1. All
3-tuples of the form (x+dy,h1

, x+dy,h2
, x+dy,h3

), for any x ∈ {0, · · · , v−1} and y ∈ {1, · · · , v−1}
are covered in G2. Hence, for any x, y ∈ Fv, all 3-tuples of the form (x+y×h1, x+y×h2, x+y×h3)
are covered in G1 and G2. The remaining 3-tuples of the form (x + y × h1 + z × h1

2, x + y × h2 +
z × h2

2, x + y × h3 + z × h3
2), where x, y ∈ {0, · · · , v − 1} and z ∈ {1, · · · , v − 1}, are covered in

G3. Hence all 3-tuples are covered. �

4 Strength Four

In this section, we first establish general Roux-type constructions for strength four and then spe-
cialize them by restricting parameter values, and by employing specific ingredient arrays.

4.1 General Constructions

Theorem 4.1 For max(k, `) ≥ 4,

CAN(4, k`, v) ≤ CAN(4, k, v) + CAN(4, `, v) + DCAN(2, `, v)CAN(3, k, v)

+DCAN(2, k, v)CAN(3, `, v) + QCAN(k, `, v).

Indeed when k ≥ 4 and ` ≥ 4,

CAN(4, k`, v) ≤ CAN(4, k, v) + CAN(4, `, v) + DCAN(2, `, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, `, v) + QCAN(k, `, v).

Proof. We prove the second statement, the first being a slight variation. Suppose that the following
exist:

• CA(N4; 4, k, v) C4,

• CA(R4; 4, `, v) B4,
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• DCA(S1; 2, `, v) D1,

• COD(N3; 3, k, v) C3,

• DCA(S2; 2, k, v) D2,

• COD(R3; 3, `, v) B3,

• QCA(M ; k, `, v) G5.

We produce a covering array CA(N ′; 4, k`, v) G where N ′ = N4 + R4 + N3S1 + R3S2 + M . G is
formed by vertically juxtaposing arrays G1 of size N4 × k`, G2 of size R4 × k`, G3 of size N3S1 × k`,
G4 of size R3S2 × k` and G5 of size M × k`. We describe the construction of G1, G2, G3, and G4 in
turn. We index k` columns by ordered pairs from {1, . . . , k} × {1, . . . , `}.

G1: In row r and column (f, h) place the entry in cell (r, f) of C4. Thus G1 consists of ` copies of
C4 placed side by side.

G2: In row r and column (f, h) place the entry in cell (r, h) of B4. Thus G2 consists of k copies of
the first column of B4, then k copies of the second column, and so on.

G3: Index the N3S1 rows by ordered pairs from {1, . . . , N3}×{1, . . . , S1}. In row (r, s) and column
(f, h) place cr,f + ds,h, where cr,f is the entry in cell (r, f) of C3 and ds,h is the entry in cell
(s, h) of D1.

G4: Index the S2R3 rows by ordered pairs from {1, . . . , S2}×{1, . . . , R3}. In row (s, r) and column
(f, h) place br,h + ds,f , where br,h is the entry in cell (r, h) of B3 and ds,f is the entry in cell
(s, f) of D2.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four distinct
columns of C4. Hence, all 4-tuples are covered. Similarly, if h1, h2, h3, h4 are all distinct, then these
four columns restricted to G2 arise from distinct columns of B4 and hence all 4-tuples are covered.

Further, we treat the following cases:

• f1 = f2 6= f3 6= f4 6= f2

In this case h1 6= h2. All 4-tuples (x, x, y, z) are covered in G1, for any x, y, z ∈ {0, · · · , v−1}.

Now, suppose that h2 = h3 = h4. Then G3 covers all tuples of the form (x, x + i, y + i, z + i)
except where x = y = z: i.e. (x,w,w,w). These are exactly the tuples covered in G2.

Similarly, suppose that h1 = h3 = h4. Then G3 covers tuples of the form (x, x+ i, y, z) except
for (x,w, x, x). These are covered in G2.

Suppose then that h1 = h3 and h2 = h4. G3 covers tuples of the form (x, x+ i, y, z + i) except
for x = y = z: i.e. (x,w, x, w). G2 covers precisely tuples of this form. The argument is
nearly identical if h1 = h4 and h2 = h3.

Furthermore, suppose that h1 = h3, but h1 6= h2 6= h4 6= h1. Then, G3 covers tuples of the
form (x, x + i, y, z + j) except for x = y = z: i.e. (x,w, x, u). Again, G2 covers all tuples
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of this form. Without loss of generality, cases with three distinct h values and f1 = f2 are
treated in this manner.

Finally, assume that h1, h2, h3, h4 are distinct. This case has already been discussed. Hence
all 4-tuples are covered for all possible sub-cases.

• f1 = f2 = f3 6= f4

In this case h1 6= h2 6= h3 6= h1. The case where h1, h2, h3 and h4 are all distinct is discussed
above. Suppose that h3 = h4, then 4-tuples (x, y, z, z) for any x, y, z ∈ {0, · · · , v − 1} are
covered in G2. The 4-tuples (x, y, z, z + i), for any i ∈ {1, · · · , v − 1} and any x, y, z ∈
{0, · · · , v − 1}, are covered in G4, except where x = y = z: i.e. (x, x, x, w). However, all
tuples of this form are covered in G1. Hence all 4-tuples are covered.

• f1 = f2 6= f3 = f4

In this case h1 6= h2 and h3 6= h4. Firstly, suppose that h2 = h3 but h1 6= h4. Then 4-tuples
(x, y, y, z) are covered in G2 for any x, y, z ∈ {0, · · · , v−1}. The 4-tuples (x, y, y+ i, z + i), for
any i, j ∈ {1, · · · , v − 1} and for any x, y, z ∈ {0, · · · , v − 1}, are covered in G4 except where
x = y = z: i.e. (x, x, w,w). These remaining tuples are covered in G1. Hence all 4-tuples are
covered.

Now suppose that h2 = h3 and h1 = h4. Fix a 4-tuple (x, y, z, t) where x, y, z and t are any
symbols from {0, · · · , v − 1}. If x− t ≡ y − z (mod v), the 4-tuple is covering in G1 −G4; by
the definition of the QCA, the remaining 4-tuples are covered by G5.

�

Lemma 4.2 QCAN(k, `, v) ≤ CODN(2, k,CAN(2, `, v)).

Proof. Suppose that a CA(N ; 2, `, v) C and a COD(R; 2, k,N) B both exist. A QCA(R; k, `, v) G is
produced by replacing the symbol g in B by the gth row of C for all g ∈ {0, . . . , N −1}. Columns of
the resulting array are indexed by (i, j) where j indicates the column of B inflated, and i indexes
the column of C within the row used in the inflation. Since C is a 2-covering array, it has a row i
such that the entry in cell (i, f1) is x and in cell (i, f3) is t. C also contains a row j such that the
entry in cell (j, f1) is y and in the cell (j, f3) is z. Furthermore, since B is a 2-COD on N symbols,
it has a row m where the entry in cell (m,h1) is the symbol i and in cell (m,h2) is the symbol j.
Thus, from the construction of G it follows that the tuple (x, y, z, t) with x − t 6≡ y − z (mod v)
occurs in the row m and the columns (f1, h1), (f1, h2), (f3, h2) and (f3, h1) of G. �

Corollary 4.3 For k, ` ≥ 4,

CAN(4, k`, v) ≤ CAN(4, k, v) + CAN(4, `, v) + DCAN(2, `, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, `, v) + CODN(2, k,CAN(2, `, v)).

Proof. This follows from Theorem 4.1 and Lemma 4.2. �

Lemma 4.4 QCAN(k, `, v) ≤ dlog2 `eQCAN(k, 2, v).
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Proof. Suppose that a QCA(N ; k, 2, v) C exists with columns indexed by {1 . . . , k} × {0, 1}. The
QCA(k, `, v) G is constructed as follows. We index k` columns by {1, . . . , k}×{1, . . . , `}. Construct
a binary array A with dlog2 `e rows and ` distinct columns. For each row (ρ1, . . . , ρ`) of A in turn,
form an N × k` array by replacing (in this row) the symbol ρi ∈ {0, 1} by the N × k subarray of
C whose columns are indexed by {1, . . . , k} × {ρi}. Vertically juxtaposing the dlog2 `e arrays so
obtained produces G. �

Lemma 4.5 QCAN(k, 2, v) ≤ CODN(2, k, v2).

Proof. Let C be a COD(N ; 2, k, v2). Let φ be a one-to-one mapping from the symbols of C to
{1, . . . , v} × {1, . . . , v}. Construct two N × k arrays, E and F as follows. Let i be the entry in
the cell (r, s) of C and φ(i) = (x, y). Then the entry in cell (r, s) of array E is x and the entry
in cell (r, s) of array F is y. The QCA is produced by placing E and F side-by-side, indexing E by
{1, . . . , k} × {1} and F by {1, . . . , k} × {2}. �

Corollary 4.6 For k, ` ≥ 4,

CAN(4, k`, v) ≤ CAN(4, k, v) + CAN(4, `, v) + DCAN(2, `, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, `, v) + dlog2 `eCODN(2, k, v2).

Proof. This follows from Theorem 4.1 using Lemma 4.4 and Lemma 4.5. �

4.2 Specializations when ` = 2

Hartman [17, 18] showed:

Theorem 4.7 CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + CAN(2, k, v2).

We derive a small improvement here.

Lemma 4.8 For k ≥ 4,

CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + CODN(2, k, v)CODN(2, v, v) + vCODN(2, k, v)

Proof. Apply Theorem 4.1 with ` = 2, using Lemma 4.5 and Theorem 2.5. �

Corollary 4.9 For v a prime power and k ≥ 4,

CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + v2CAN(2, k, v) − v2

Proof. Use CODN(2, v, v) ≤ v2 − v from Bush’s orthogonal array construction, removing the v
constant rows. Hence CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + v2CODN(2, k, v).

In addition, without loss of generality every CA(N ; 2, k, v) can have symbols renamed so that
the resulting covering array has a constant row, whose deletion yields a COD(N −1; 2, k, v). �
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4.3 Specializations when v = 2

We also provide a tripling specialization for binary arrays.

Theorem 4.10 CAN(4, 3k, 2) ≤ CAN(4, k, 2) + 6DCAN(2, k, 2) + CAN(3, k, 2) + CAN(3, k + 1, 2) +
4CODN(2, k, 2)

Proof. Suppose that the following exist:

• CA(N4; 4, k, 2) C4,

• DCA(S2; 2, k, 2) D2,

• CA(N3; 3, k, 2) C3,

• CA(M3; 3, k + 1, 2) F3,

• COD(N2; 2, k, 2) C2.

Also, by removing the constant rows from Bush’s orthogonal array, we can produce a

• COD(6; 3, 3, 2) B3.

We produce a covering array CA(N ′; 4, 3k, 2) G where N ′ = N4 + 6S2 + N3 + M3 + 4N2. G is
formed by vertically juxtaposing arrays G1 of size N4 × 3k, G4 of size 6S2 × 3k, E1 of size N3 × 3k,
E2 of size M3 × 3k, and K1 through K4 each of size N2 × 3k.

We describe the construction of each array in turn. We index 3k columns by ordered pairs from
{0, ..., k − 1} × {0, 1, 2}.

The constructions of G1 and G4 are the same as those in Theorem 4.1. To produce the other
ingredients, proceed as follows:

E1: In row r and column (f, 0) and (f, 1) place the entry in cell (r, f) of C3. In row r and column
(f, 2), place the bitwise complement of the entry in cell (r, f) of C3.

E2: Remove any column from F3 to form a covering array of size M3 × k, F′
3 . In row r and

column (f, 0) place the entry in cell (r, f) of F′
3. In row r and column (f, 1) place the bitwise

complement of the entry in cell (r, f) of F′
3. In row r and column (f, 2) place the r-th element

of the column removed from F3.

K1: In row r and column (f, 0) and (f, 2) place the entry in cell (r, f) of C2. In row r and column
(f, 1), place a 0.

K2: In row r and column (f, 1) and (f, 2) place the entry in cell (r, f) of C2. In row r and column
(f, 0), place a 0.

K3: In row r and column (f, 0) and (f, 2) place the entry in cell (r, f) of C2. In row r and column
(f, 1), place a 1.

K4: In row r and column (f, 1) and (f, 2) place the entry in cell (r, f) of C2. In row r and column
(f, 0), place a 1.
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We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four distinct
columns of C4. Hence, all 4-tuples are covered. When f1 = f2 = f3 = f4, the values h1, h2, h3 and
h4 must all be distinct, but this cannot occur as the h’s are restricted to {0, 1, 2}.

Further, we need to consider the following cases:

• f1 = f2 6= f3 6= f4 6= f2

In this case h1 6= h2. Hence, the tuples (x, x, y, z) are covered in G1. If no hi = 2 then the
tuples (x, x′, y, z) for x, y, z ∈ {0, 1} are covered in E2. If h1 or h2 is 2, tuples (x, x′, y, z) are
covered in E1.

Without loss of generality, the remaining cases have h1 = 0, h2 = 1, h3 = 2. Assume that
h4 6= 2. Then the tuples (x, x′, y, z) are covered in E2. Finally, assume that h4 = 2. Then,
the tuples (x, x′, y, y) are covered in E2, leaving us to cover tuples of the form (x, x′, y, y′). G4

covers tuples of the form (a + i, b + i, c, c′) except for the case a = b = c, which is covered by
G1. Taking a + i = x, b + i = x′, and c = y, and hence a 6= b, we cover the remaining tuples
in G4.

• f1 = f2 = f3 6= f4

In this case h1 6= h2 6= h3 6= h1. There are only three values for hi, i ∈ {1, 2, 3, 4}; hence,
without lost of generality, we suppose that h4 = h1.

The tuples (x, x, x, y) are covered in G1 for any x, y ∈ {0, 1}. The 4-tuples (x, y, z, x′), for any
x, y, z ∈ {0, 1} except x = y = z are covered in G4.

This leaves six tuples: (0, 0, 1, 0), (1, 1, 0, 1), (0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), and (1, 0, 1, 1).
We consider several cases for (h1, h2, h3, h4). When in one of these cases, all tuples are covered,
any permutation of these indices also covers all tuples.

If h1 = h4 = 0, h2 = 1, and h3 = 2, we cover tuples of the form (x, x, x′, y) in E1, treating
(0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x, x′, z, y) in E2. This relies on the fact
that F3 can be split into two disjoint 2-covering arrays with k columns, one where the value
in the column removed is 0 and one where the value in the column removed is 1. This treats
the remaining cases.

If h1 = h4 = 1, h2 = 0, and h3 = 2, we cover tuples of the form (x, x, x′, y) in E1, treating
(0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x′, x, z, y) in E2. This eliminates the
remaining cases.

Finally, if h1 = h4 = 2, h2 = 0 and h3 = 1, we cover tuples of the form (x′, x, x, y) in E1,
treating (0, 1, 1, 0) and (1, 0, 0, 1). We cover tuples of the form (x, y, y ′, x) in E2, treating
(1, 1, 0, 1), (1, 0, 1, 1), (0, 0, 1, 0), and (0, 1, 0, 0).

• f1 = f2 6= f3 = f4

In this case, h1 6= h2 and h3 6= h4. First, suppose that h2 = h3 but h1 6= h4. Then 4-tuples
(x, x, y, y) are covered in G1. Tuples of the form (x, y, y′, z′) are covered in G4, except when
x = y = z, i.e. (x, x, x′, x′). However these are exactly what G1 covers. This leaves the
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six tuples of the form (x, y, y, z) with x 6= z or x 6= y. We again consider specific cases for
(h1, h2, h3, h4).

If h1 = 0, h2 = h3 = 1, h4 = 2, tuples of the form (x, x, y, y′) are covered in E1, which
effectively covers tuples of the form (x, x, x, x′). In E2, tuples of the form (x, x′, y, z) are
covered, which handles the remaining cases (x′, x, x, z).

If h1 = 1, h2 = h3 = 0, h4 = 2, tuples of the form (x, x, y, y′) are covered in E1, which
effectively covers tuples of the form (x, x, x, x′). In E2, tuples of the form (x′, x, y, z) are
covered, which handles the remaining cases (x′, x, x, z).

If h1 = 0, h2 = h3 = 2, h4 = 1, we cover tuples of the form (x, z, z, y) in E2, which covers all
required tuples.

Now suppose that h2 = h3 and h1 = h4. Tuples of the form (x, x, y, y) in G1 and (x, y, y′, x′)
are covered in G4. The remaining tuples are (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).

If no hi = 2, we cover (x, x′, y, y′) in E2, treating (0, 1, 1, 0) and (1, 0, 0, 1), leaving us with all
tuples comprised with an odd number of 0’s. We cover (x, 0, 0, x′) and (0, x, x′, 0) in K1 and
K2, and (x, 1, 1, x′) and (1, x, x′, 1) in K3 and K4. These are all the required cases.

Finally, without loss of generality, assume that h1 = h4 = 2. Then h2 = h3 ∈ {0, 1}. We
cover (x, x′, y, y′) in E1, again leaving us with the tuples having an odd number of 0’s. We
cover (x, y, z, x) in E2. Here we again split F3 into two 2-covering halves. This leaves only
(x, y, y, x′), which are covered in K2 and K4 if h2 = 0 or K1 and K3 if h2 = 1.

Since all tuples are covered in all sets of four columns, G is the required covering array.

�

4.4 Specializations when ` = v = 3

When ` = v = 3 we have the following results:

Theorem 4.11

CAN(4, 3k, 3) ≤ CAN(4, k, 3) + 2CAN(3, k, 3) + 18DCAN(2, k, 3) + CODN(2, k, 9) + 18.

Proof. Suppose that the following exist:

• CA(N4; 4, k, 3) C4,

• CA(N3; 3, k, 3) C3,

• DCA(S; 2, k, 3) D,

• CODN(N2; 2, k, 9) C2,

Suppose that D′ is the 2×3 array obtained by removing the first row from the (3, 3; 1)-difference
matrix in Theorem 2.2. Then d′

i,j = i×j for i = 1, 2 and j = 0, 1, 2. The array D′ is a DCA(2; 2, 3, 3).
Let A be an OA(27; 3, 3, 3) constructed by using Bush’s construction.
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The columns of A are labelled with the elements of F3 and rows are labelled by 27 polynomials
over F3 of degree at most 2. Then the entry in A in the column labelled γi and the row labelled by
the polynomial with coefficients β0, β1 and β2 is β0 + β1 × γi + β2 × γi

2.
Let A′ be an OA(9; 2, 3, 3) which is also a CA(9; 2, 3, 3).
Let B be the sub-array of A containing the rows of A which are labelled by polynomials of degree

2 (β2 6= 0). Then B is a 18× 3 array whose each column is labelled with the same element of F3 as
its corresponding column in A. Denote the i-th column of B by Bi, for i = 0, 1, 2.

We produce a covering array CA(N ′; 4, 3k, 3) G where N ′ = N4 + 2N3 + 18S + N2 + 18. G is
formed by vertically juxtaposing arrays G1 of size N4 ×3k, G2 of size 2N3 ×3k, G3 of size 18S ×3k,
G4 of size N2 × 3k and G5 of size 18 × 3k.

We describe the construction of each array in turn. We index 3k columns by ordered pairs from
{0, . . . , k − 1} × {0, 1, 2}.

G1: In row r and column (f, h) place the entry in cell (r, f) of C4. Thus G1 consists of three copies
of C4 placed side by side.

G2: Index the 2N3 rows of G2 by ordered pairs from {1, . . . , N3}×{1, 2}. In row (r, s) and column
(f, h) place cr,f + d′s,h, where cr,f is the entry in cell (r, f) of C3 and d′s,h is the entry in cell

(s, h) of D′.

G3: Index the 18S rows of G3 by ordered pairs from {1, . . . , S} × {1, . . . , 18}. In row (s, r) and
column (f, h) place br,h + ds,f , where br,h is the entry in cell (r, h) of B and ds,f is the entry
in cell (s, f) of D.

G4: Define a mapping φ that maps the symbol i in C2 to the 3-tuple in the i-th row of A′, for
i ∈ {0, . . . , 8}. Suppose that i is the symbol in cell (r, f) of C2 and φ(i) = (x, y, z), for some
x, y, z ∈ {0, 1, 2}. Then in row r and column (f, 0) place the symbol x; in row r and column
(f, 1) place the symbol y; and in row r and column (f, 2) place the symbol z.

G5: In row r and column (f, h) place the entry in cell (r, h) of B. Thus G5 consists of k copies of
B0, followed by k copies of B1 and then k copies of B2.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four distinct
columns of C4. Hence, all 4-tuples are covered. It cannot happen that f1 = f2 = f3 = f4 since then
h1, h2, h3 and h4 are all distinct.

Further, we consider the following cases:

• f1 = f2 6= f3 6= f4 6= f2

In this case h1 6= h2. Hence, the tuples (x, x, y, z) are covered in G1 and the tuples (x, x+i, y, z)
are covered in G2 for any x, y, z ∈ {0, 1, 2} and for any i ∈ {1, 2}.

• f1 = f2 = f3 6= f4

In this case h1 6= h2 6= h3 6= h1. There are only 3 values for hi, i = 1, 2, 3, 4, hence, without
loss of generality, we suppose that h4 = h1.

12



The tuples (x, x, x, y) are covered in G1 for any x, y ∈ {0, 1, 2}. The tuples (x + d′
y,h1

, x +
d′y,h2

, x + d′y,h3
, t + d′y,h1

) are covered in G2 for any x, t ∈ {0, 1, 2} and any y ∈ {1, 2}. Thus,
all tuples (x + yh1, x + yh2, x + yh3, t) are covered in G1 and in G2 for any x, y, t ∈ {0, 1, 2}.

Further, the tuples (x + yh1 + zh2
1, x + yh2 + zh2

2, x + yh3 + zh2
3, x + yh1 + zh2

1 + i), for any
x, y ∈ {0, 1, 2} and for i, z ∈ {1, 2}, are covered in G3.

Finally, the tuples (x+yh1+zh2
1, x+yh2+zh2

2, x+yh3+zh2
3, x+yh1+zh2

1), where x, y ∈ {0, 1, 2}
and z ∈ {1, 2}, are covered in G5. Hence, all 4-tuples are covered.

• f1 = f2 6= f3 = f4 In this case, h1 6= h2 and h3 6= h4. Firstly, suppose that h2 = h3 but
h1 6= h4.

Fix any tuple (x, y, z, t) where y 6= z. Since A′ is a 2-covering array, it has a row (x, y,m) for
some m ∈ {0, 1, 2}, let it be i-th row. A′ also has a row (s, z, t) for some s ∈ {0, 1, 2}, let it
be j-th row. Since y 6= z it follows that i 6= j. So φ(i) = (x, y,m) for the fixed x, y and for
some m, and φ(j) = (s, z, t) for the fixed z, t and for some s. Since C2 is a 2-COD and since
i 6= j, C2 has a row r such that in cell (r, f1) is the symbol i and in cell (r, f3) is the symbol
j. Thus, the symbol x is in cell (r, (f1, h1)) of G4, the symbol y is in cell (r, (f1, h2)) of G4,
the symbol z is in the cell (r, (f3, h2)) of G4, and the symbol t is in the cell (r, (f3, h4)) of G4.
Hence, the fixed tuple (x, y, z, t) where y 6= z is covered in G4.

Further, for x ∈ {0, 1, 2}, the tuple (x, x, x, x) is covered in G1. The tuples (x+y×h1, x+y×
h2, x + y × h2, x + y × h4) are covered in G2, for any x ∈ {0, 1, 2} and any y ∈ {1, 2}. Tuples
of the form (x + y × h1 + z × h2

1, x + y × h2 + z × h2
2, x + y × h2 + z × h2

2, x + y × h4 + z × h2
4)

are covered in G5, for any x, y ∈ {0, 1, 2} and any z ∈ {1, 2}. Hence all 4-tuples are covered.

Now suppose that h2 = h3 and h1 = h4.

Fix a tuple (x, y, z, t) such that if x = t then y 6= z, for any x, y, z, t ∈ {0, 1, 2}. Since A′ is a
2-covering array, it has a row (x, y,m) for some m ∈ {0, 1, 2}, let it be ith row. A′ also has
a row (t, z, s) for some s ∈ {0, 1, 2}, let it be jth row. Since x 6= t or y 6= z it follow that
i 6= j. So φ(i) = (x, y,m) for the fixed x, y and for some m, and φ(j) = (t, z, s) for the fixed
z, t and for some s. Since C2 is a 2-COD and i 6= j, C2 has a row r such that in cell (r, f1) is
the symbol i and in cell (r, f3) is the symbol j. Thus, the symbol x is in cell (r, (f1, h1)) of
G4, the symbol y is in cell (r, (f1, h2)) of G4, the symbol z is in the cell (r, (f3, h2)) of G4, and
the symbol t is in the cell (r, (f3, h1)) of G4. Hence, the fixed tuple (x, y, z, t), where if x = t
then y 6= z, is covered.

The tuples (x, x, x, x) are covered in G1 for any x ∈ {0, 1, 2}. The tuples (x + y × h1, x + y ×
h2, x + y × h2, x + y × h1) are covered in G2 for any x ∈ {0, 1, 2} and any y ∈ {1, 2}. So all
tuples of the form (x, y, y, x) are covered in G1 and in G2.

�

Corollary 4.12

CAN(4, 3k, 3) ≤ CAN(4, k, 3) + 2CAN(3, k, 3) + 18DCAN(2, k, 3) + CAN(2, k, 9) − 1 + 18.

Proof. Without loss of generality every CA(N ; 2, k, 9) can have symbols renamed so that the re-
sulting covering array has a constant row, whose deletion yields a COD(N − 1; 2, k, 9). �
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4.5 Specializations when ` = v > 3

Theorem 4.13 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v)+(v−1)CAN(3, k, v)+(v3−v2)DCAN(2, k, v)+CODN(2, k, v2)+v4−v2.

Proof. Suppose that the following exist:

• CA(N4; 4, k, v) C4,

• CA(N3; 3, k, v) C3,

• DCA(S; 2, k, v) D,

• COD(N2; 2, k, v2) C2,

Suppose that D′ is a (v − 1) × v array obtained by removing the first row from the (v, v; 1)-
difference matrix in Theorem 2.2. Then d′

i,j = i × j for i = 1, . . . , v − 1 and j = 0, . . . , v − 1. The
array D′ is a DCA(v − 1; 2, v, v).

Let A(3) be an OA(v3; 3, v, v), constructed by using Bush’s construction (see the proof of Theo-
rem 3.1 in [19]). The columns of A(3) are labelled with the elements of Fv and rows are labelled by
v3 polynomials over Fv of degree at most 2. Then, in A(3), the entry in the column γi and the row
labelled by the polynomial with coefficients β0, β1 and β2 is β0 + β1 × γi + β2 × γi

2.
Let B(3) be the sub-array of A(3) containing the rows of A(3) which are labelled by polynomials

of degree exactly 2 (β2 6= 0). Then B(3) is a (v3 − v2) × v array. Label each column of B(3) with

the same element of Fv as its corresponding column in A. Denote the ith column of B(3) by B
(3)
i ,

for i = 0, . . . , v − 1.
Let A(4) be an OA(v4; 4, v, v) constructed by using Bush’s construction. The columns of A(4)

are labelled with the elements of Fv and rows are labelled by v4 polynomials over Fv of degree at
most 3. Then, in A(4), the entry in the column γi and the row labelled by the polynomial with
coefficients β0, β1, β2 and β3 is β0 + β1 × γi + β2 × γi

2 + β3 × γi
3.

Let B(4) be the sub-array of A(4) that contains the rows of A(4) which are labelled by polynomials
of degree 2 or 3(β2 6= 0 or β3 6= 0). Then B(4) is a (v4 − v2)× v array whose each column is labelled
with the same element of Fv as its corresponding column in A. Denote the i-th column of B(4) by

B
(4)
i , for i = 0, . . . , v − 1.

Let A(2) be an OA(v2; 2, v, v) which is also a CA(v2; 2, v, v). Such an array exists by Theorem
2.1.

We produce a covering array CA(N ′; 4, vk, v) G where N ′ = N4 +(v− 1)N3 +(v3 − v2)S +N2 +
v4 − v2. G is formed by vertically juxtaposing arrays G1 of size N4 × vk, G2 of size (v − 1)N3 × vk,
G3 of size (v3 − v2)S × vk, G4 of size N2 × vk and G5 of size (v4 − v2) × vk.

We describe the construction of each array in turn. We index vk columns by ordered pairs from
{0, . . . , k − 1} × {0, . . . , v − 1}.

G1: In row r and column (f, h) place the entry in cell (r, f) of C4. Thus G1 consists of v copies of
C4 placed side by side.
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G2: Index the (v−1)N3 rows by ordered pairs from {1, . . . , N3}×{1, . . . , v−1}. In row (r, s) and
column (f, h) place cr,f + d′s,h, where cr,f is the entry in cell (r, f) of C3 and d′s,h is the entry

in cell (s, h) of D′.

G3: Index the (v3 − v2)S rows by ordered pairs from {1, . . . , S} × {1, . . . , (v3 − v2)}. In row (s, r)
and column (f, h) place br,h + ds,f , where br,h is the entry in cell (r, h) of B(3) and ds,f is the
entry in cell (s, f) of D.

G4: Let φ be a mapping that maps the symbol i of C2 to the v-tuple on the i-th row of A(2),
for any i = {0, . . . , v2 − 1}. Let i be the symbol in cell (r, f) in C2. Suppose that φ(i) =
(x0, x1, . . . , xv−1) for some x0, x1, . . . , xv−1 ∈ Fv. Then, in row r and column (f,m) place the
symbol xm, for m = 0, . . . , v − 1.

G5: In row r and column (f, h) place the entry in cell (r, h) of B(4). Thus G5 consists of k copies
of the first column of B(4), followed by k copies of the second column of B(4), and so on.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four distinct
columns of C4. Hence, all 4-tuples are covered.

Further, we consider the following cases:

• f1 = f2 6= f3 6= f4 6= f2

All 4-tuples (x, x, y, z) are covered in G1, for any x, y, z ∈ {0, · · · , v − 1}. All 4-tuples (x, x +
i, y, z), for any i ∈ {1, · · · , v − 1} and any x, y, z ∈ {0, · · · , v − 1}, are covered in G2. Hence
all 4-tuples are covered.

• f1 = f2 = f3 6= f4

In this case h1 6= h2 6= h3 6= h1. The case where h1, h2, h3 and h4 are all distinct is discussed
separately. Now suppose that h4 = h1.

The tuples (x, x, x, y), for any x, y ∈ {0, · · · , v − 1}, are covered in G1. The tuples (x +
d′y,h1

, x + d′y,h2
, x + d′y,h3

, t + d′y,h1
), for any x, t ∈ {0, · · · , v − 1} and for y ∈ {1, · · · , v − 1},

are covered in G2.

So all the tuples (x + yh1, x + yh2, x + yh3, t), for any x, y, t ∈ {0, . . . , v − 1}, are covered in
G1 and in G2.

The tuples (x+yh1+zh2
1, x+yh2+zh2

2, x+yh3+zh2
3, x+yh1+zh2

1+i), where i, z ∈ {1, · · · , v−1}
and x, y ∈ {0, · · · , v − 1}, are covered in G3. Finally, the tuples (x + yh1 + zh2

1 + th3
1, x +

yh2 + zh2
2 + th3

2, x + yh3 + zh2
3 + th3

3, x + yh1 + zh2
1 + th3

1, ), where if z = 0 then t 6= 0 for any
x, y, z, t ∈ {0, . . . , v − 1}, is covered in G5. Hence, all 4-tuples are covered.

• f1 = f2 6= f3 = f4 and h2 = h3 but h1 6= h4.

In this case h1 6= h2 and h3 6= h4.

Fix any tuple (x, y, z, t) where y 6= z. Since A(2) is a 2-covering array, it has row with the
tuple (m0, . . . ,mv−1), where mh1

= x and mh2
= y, let it be ith row of A(2). A(2) also has
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a row with the tuple (m′
0, . . . ,m

′
v−1), where m′

h2
= z and m′

h4
= t, let it be row jth row of

A(2). Since y 6= z it follows that i 6= j. So φ(i) = (m0, . . . ,mv−1) and φ(j) = (m′
0, . . . ,m

′
v−1).

Since C2 is a 2-COD and i 6= j, C2 has a row r such that in cell (r, f1) is the symbol i and in
cell (r, f3) is the symbol j. Thus, in G4, the symbol x is in cell (r, (f1, h1)), the symbol y is
in cell (r, (f1, h2)), the symbol z is in cell (r, (f3, h2)) and the symbol t is in cell (r, (f3, h4)).
Hence, the fixed tuple (x, y, z, t) is covered when y 6= z.

Further, the tuple (x, x, x, x), for any x ∈ {0, . . . , v − 1}, is covered in G1. The tuple (x +
yh1, x+yh2, x+yh2, x+yh4), for any x ∈ {0, . . . , v−1} and any y ∈ {1, . . . , v−1}, is covered
in G2.

Finally, the tuples (x+yh1+zh2
1+th3

1, x+yh2+zh2
2+th3

2, x+yh2+zh2
2+th3

2, x+yh4+zh2
4+th3

4),
such that if z = 0 then t 6= 0, for any x, y, z, t ∈ {0, . . . , v − 1}, are covered in G5.

• f1 = f2 6= f3 = f4, h2 = h3 and h1 = h4.

Fix any tuple (x, y, z, t) such that if x = t then y 6= z. Since A(2) is a 2-covering array, it has
row with the tuple (m0, . . . ,mv−1), where mh1

= x and mh2
= y, let it be ith row of A(2).

A(2) also has a row with the tuple (m′
0, . . . ,m

′
v−1), where m′

h1
= t and m′

h2
= z, let it be jth

row A(2). Since either x 6= t or y 6= z it follows that i 6= j. Now φ(i) = (m0, . . . ,mv−1) and
φ(j) = (m′

0, . . . ,m
′
v−1).

Since C2 is a 2-COD and i 6= j, it has a row r such that in cell (r, f1) is the symbol i and
in cell (r, f3) is the symbol j. Thus, in G4, the symbol x is in cell (r, (f1, h1)) the symbol
y is in cell (r, (f1, h2)) the symbol z is in the cell (r, (f3, h2)) and the symbol t is in the
cell (r, (f3, h1)). Hence, any fixed tuple (x, y, z, t), such that if x = t then y 6= z, for any
x, y, z, t ∈ {0, . . . , v − 1}, is covered in G4.

Further, the tuples of the form (x, x, x, x) are covered in G1. The tuples of the form (x +
yh1, x + yh2, x + yh2, x + yh1) are covered in G2 for x ∈ {0, . . . , v − 1} and y ∈ {1, . . . , v − 1}.

These are all the tuples of the form (x, y, y, x) for any x, y ∈ {0, . . . , v−1}. Hence all 4-tuples
are covered.

• In the remaining cases which are not discussed above h1, h2, h3 and h4 are all distinct.

The tuple (x, x, x, x) is covered in G1 for any x ∈ {0, . . . , v − 1}. The tuple

(x + yh1, x + yh2, x + yh3, x + yh4) is covered in G2 for any x ∈ {0, . . . , v − 1} and any
y ∈ {1, . . . , v−1}. Finally, the tuple (x+yh1 + zh2

1 + th3
1, x+yh2 + zh2

2 + th3
2, x+yh3 + zh2

3 +
th3

3, x + yh4 + zh2
4 + th3

4) such that if z = 0 then t 6= 0, for any x, y, z, t ∈ {0, . . . , v − 1}, is
covered in G5.

�

Corollary 4.14 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) +

(v3 − v2)DCAN(2, k, v) + CAN(2, k, v2) − 1 + v4 − v2.
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Proof. Without loss of generality every CA(N ; 2, k, v2) can have symbols renamed so that the
resulting covering array has a constant row, whose deletion yields a COD(N − 1; 2, k, v2). �

Corollary 4.15 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) +

(v3 − v2)DCAN(2, k, v) + (v2 + v)CAN(2, k, v) − 1 + v4 − 2v2.

Proof. Apply Corollary 2.4 to bound CAN(2, k, v2). �

5 Numerical Consequences

To assess the effectiveness of the recursions developed, it is necessary to determine their impact
on our knowledge of covering array numbers. We have outlined computational methods in the
introduction; in preparation for a comparison we therefore introduce related recursive methods
that do not (at present) fall into the “Roux-type” framework.

The Turán number T (t, n) is the largest number of edges in a t-vertex simple graph having no
(n + 1)-clique. Turán [32] showed that a graph with the T (t, n) edges is constructed by setting
a = bt/nc and b = t − na, and forming a complete multipartite graph with b classes of size a + 1
and n − b classes of size a. Using these, Hartman generalizes a constructions in [6, 7, 30].

Theorem 5.1 [17] If a CA(N ; t, k, v) and a CA(k2; 2, T (t, v) + 1, k) both exist, then a CA(N ·
(T (t, v) + 1); t, k2, v) exists.

Perfect hash families are well studied combinatorial objects. A t-perfect hash family H, denoted
PHF(n; k, q, t), is a family of n functions h : A 7→ B, where k = |A| ≥ |B| = q, such that for any
subset X ⊆ A with |X| = t, there is at least one function h ∈ H that is injective on X. Thus a
PHF(n; k, q, t) can be viewed as an n× k-array H with entries from a set of q symbols such that for
any set of t columns there is at least one row having distinct entries in this set of columns.

Theorem 5.2 (see [3, 23]) If a PHF(s; k,m, t) and a CA(N ; t,m, v) both exist then a CA(sN ; t, k, v)
exists.

For constructions of perfect hash families, see [1, 2, 4, 5, 31].
To assess the contributions of each of the constructions described, we computed upper bounds

for CAN(t, k, v) for t ∈ {2, 3, 4}, 2 ≤ v ≤ 25, and t < k ≤ 10000. Previous tables (e.g., [8]) have
reported only small numbers of factors (k ≤ 30). With the current power of computational search
techniques, this fails to explore into the range in which recursions are most powerful. Evidently it
is not sensible to report 10,000 results for every t and v, and fortunately there is no need to do so.
Let κ(N ; t, v) be the largest k for which CAN(t, k, v) ≤ N . As k increases, for many consecutive
numbers of factors, the covering array number does not change. Therefore reporting those values
of κ(N ; t, v) for which κ(N ; t, v) > κ(N − 1; t, v), along with the corresponding value of N , enables
one to determine all covering array numbers when k is no larger than the largest κ(N ; t, v) value
tabulated. Since the exact values for covering array numbers are unknown in general, we in fact
report lower bounds on κ(N ; t, v).
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For each strength in turn, explicit constructions of covering arrays from direct and computa-
tional constructions are tabulated. Then each known construction is applied and its consequences
tabulated (in the process, results implied by this for fewer factors are suppressed, so that one ex-
planation (“authority”) for each entry is maintained). Applications of the recursions is repeated
until no entries in the table improve.

The authorities used are:

f constraint programming [20] h perfect hash family [23]
` Roux-type [10] m Roux-type (this paper)
n nearly resolvable design [8] o orthogonal array [19]
q Turán squaring [17] r Roux-type (this paper)
s simulated annealing [9] t tabu search [25]
u Martirosyan (unpublished) v permutation vector [33]
y binary construction [28] z composition
↓ symbol identification

Composition and symbol identification are standard constructions; see [8], for example. Other
constructions, such as derivation of a t-covering array from a (t+1)-covering array, and “Construc-
tion D” from [8], can yield improvements but do not do so within the ranges of the tables reported;
hence they are omitted.

5.1 Tables for Strength Three

We provide tables for (lower bounds on) κ(N ; 3, v) for 2 ≤ v ≤ 9 only, since they illustrate the main
points. The strength two tables used are from [13]. For each v, we tabulate the entries for N and
κ(N ; 3, v). We also provide a plot showing the logarithm of the number of factors horizontally and
the size of the covering array vertically. Asymptotically one expects this to become a straight line
(see, e.g., [16]), and its deviation from the straight line results from non-uniform behaviour when
k is small, but also from the “errors” compounded in repeated applications of the recursions. The
plot simply demonstrates the growth; the explicit points given are definitive.

Exponents indicate the authority for the entry provided, to provide one method for the con-
struction; alternative constructions may produce the same result.

4 8o 5 10n 11 12y

12 15t 14 16y 16 17y

20 18` 22 19` 24 22`

28 23` 32 24` 40 25`

44 27` 48 30` 56 31`

64 32` 70 33` 80 34`

88 36` 96 39` 112 40`

128 41` 140 42` 160 44`

176 46` 192 49` 224 50`

252 51` 256 52` 280 53`

320 55` 352 57` 384 60`

448 61` 504 62` 512 64`

3-CAs with 2 symbols

0

20

40

60

80

100

120

S
iz

e

1 2 3 4
Log(Number of Factors)
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560 65` 640 67` 704 69` 768 72` 896 73` 924 74`

1008 75` 1024 77` 1120 78` 1280 80` 1408 82` 1536 85`

1792 86` 1848 87` 2016 89` 2048 91` 2240 92` 2560 94`

2816 96` 3072 99` 3432 100` 3584 101` 3696 102` 4032 104`

4096 106` 4480 107` 5120 109` 5632 111` 6144 114` 6864 115`

7168 117` 7392 118` 8064 120` 8192 122` 8960 123` 10000 125`

4 27o 6 33n 7 40f

8 45` 9 50s 10 51v

12 57` 13 62s 14 64`

15 68s 16 69s 17 73s

18 74s 22 75v 23 82s

25 85s 27 87s 29 91s

30 93s 32 95s 34 98s

37 99v 38 102s 39 104s

40 105` 41 106s 42 107s

43 108s 44 109s 46 116`

48 117m 51 121m 54 122m

60 123m 66 127m 69 134m

3-CAs with 3 symbols

0

100

200

300

400

S
iz

e

1 2 3 4
Log(Number of Factors)

72 137` 75 139m 81 141m 87 145m 90 147m 96 151m

102 154m 108 155m 111 157m 114 160m 117 162m 120 163m

123 164m 126 165m 129 166m 132 169m 142 171v 144 177m

160 180` 162 182m 180 183m 198 187m 207 194m 216 197m

222 199m 225 203m 243 205m 261 209m 270 211m 282 215m

288 217m 306 220m 324 221m 333 223m 342 226m 351 228m

360 229m 369 230m 378 231m 387 232m 396 235m 402 237m

426 239m 440 240` 460 247` 480 248m 500 250` 522 251m

540 252` 582 257m 594 259m 621 266m 648 269m 666 271m

675 275m 729 277m 783 281m 810 283m 846 287m 864 289m

918 292m 972 293m 999 295m 1026 298m 1053 300m 1080 301m

1107 302m 1134 303m 1161 304m 1182 307m 1188 311m 1206 313m

1278 315m 1320 316m 1380 323m 1422 324m 1440 326m 1500 328m

1566 329m 1620 330m 1746 335m 1782 337m 1863 346m 1944 349m

1998 351m 2025 355m 2142 357m 2187 359m 2349 363m 2430 365m

2538 369m 2562 371m 2592 373m 2754 376m 2916 377m 2997 379m

3078 382m 3159 384m 3240 385m 3321 386m 3402 387m 3483 388m

3546 391m 3564 395m 3618 397m 3834 399m 3960 400m 4140 407m

4266 408m 4320 410m 4422 412m 4500 416m 4698 417m 4860 418m

5238 423m 5346 425m 5388 434m 5589 436m 5832 439m 5994 441m

6075 445m 6426 447m 6561 449m 7047 453m 7092 455m 7290 457m

7326 460` 7614 461m 7686 463m 7776 465m 7920 466` 8118 467`

8316 468` 8748 469m 8991 471m 9090 474m 9234 475` 9477 477`

9720 478` 9963 479` 10000 480`
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6 64o 8 88n 10 112`

12 121` 16 124v 20 160m

24 169m 34 184v 40 232m

64 244v 68 283` 80 284`

96 301m 120 304v 136 331m

222 364v 236 406m 256 409m

272 448m 276 449m 320 452`

384 461` 464 472m 480 481m

544 506` 560 541m 576 544m

656 547m 736 550m 768 553m

888 556m 944 596` 1024 602`

1110 620` 1280 648` 1332 656`

3-CAs with 4 symbols

0
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Log(Number of Factors)

1536 665` 1856 668` 1920 685m 2176 710m 2240 745m 2304 752`

2624 758` 2704 763m 2944 764` 3072 770` 3168 775m 3552 776`

3776 818` 4096 827` 4440 848m 5328 869` 6144 897` 6416 905m

7424 908` 7680 917` 8704 942` 8960 977` 9216 992m 10000 998m

6 125o 10 185n 12 225`

24 245v 30 325m 48 365v

50 433m 55 477m 95 485v

120 525m 144 570` 160 605v

175 645m 205 661m 210 673m

240 677m 250 753m 264 774`

288 790` 295 813m 325 817m

355 825m 385 829m 415 833m

450 837m 475 841m 576 850`

600 885m 720 930m 800 965m

840 970` 984 1002` 1025 1021m

1152 1034` 1200 1053m 1225 1141m

3-CAs with 5 symbols
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1250 1145m 1320 1166m 1405 1182m 1416 1186` 1440 1190m 1560 1194`

1704 1210` 1848 1218` 1992 1226` 2160 1234` 2280 1242` 2375 1269m

2425 1278m 2625 1282m 2775 1286m 2880 1290m 3000 1325m 3456 1335`

3840 1370` 4000 1405m 4200 1410m 4920 1426` 5125 1461m 5760 1474m

6000 1493m 6125 1597m 6250 1601m 6336 1603` 6744 1619` 6912 1635`

7025 1638m 7080 1654m 7175 1658m 7320 1662` 7800 1666m 8225 1682m

8280 1686` 8520 1690m 9120 1698` 9225 1702m 9240 1706m 9960 1714m

10000 1722m

20



4 216o 6 260s 8 342↓

9 423s 10 455` 12 465`

13 546s 16 552` 17 638s

18 653` 19 677s 32 678↓

36 814` 42 848m 48 896`

56 930↓ 81 1014↓ 84 1197m

96 1286` 100 1325` 112 1330`

150 1350↓ 160 1444` 162 1454`

192 1484` 224 1518↓ 256 1608`

294 1688m 336 1736m 392 1770↓

441 1854↓ 448 1890↓ 474 1892`

480 1904` 553 1926↓ 560 1938↓

3-CAs with 6 symbols
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567 1962↓ 588 2145m 609 2234m 648 2238` 672 2270m 693 2309m

700 2321m 721 2344m 763 2350m 784 2360` 810 2384` 833 2394↓

858 2396` 889 2406↓ 900 2408` 945 2418↓ 1001 2430↓ 1050 2442↓

1106 2526` 1120 2536m 1152 2542` 1200 2574` 1344 2576m 1568 2610↓

1792 2700m 2058 2780m 2352 2828m 2744 2862↓ 3087 2946↓ 3136 2982↓

3318 2984m 3360 2996m 3479 3018↓ 3528 3054↓ 3871 3090↓ 3920 3102↓

3969 3126↓ 4116 3309m 4263 3398m 4361 3402m 4480 3414m 4536 3438m

4704 3470m 4802 3509m 4851 3545m 4900 3557m 5047 3580m 5341 3586m

5467 3596m 5488 3608m 5600 3632m 5670 3650m 5684 3660↓ 5831 3666↓

6006 3668m 6020 3678↓ 6174 3690↓ 6223 3702↓ 6300 3704m 6566 3714↓

6615 3720↓ 7007 3738↓ 7350 3762↓ 7448 3846m 7742 3858m 7840 3868m

7889 3874m 8192 3882` 8400 3918m 9408 3920m 10000 3954↓

8 343o 10 511↓ 16 637`

32 679v 56 931m 81 1015v

150 1351v 224 1519m 256 1610`

392 1771m 441 1855m 448 1891m

553 1927m 560 1939m 567 1963m

648 2240` 693 2335m 700 2347m

721 2365m 763 2371m 784 2383m

833 2395m 840 2401m 889 2407m

945 2419m 1001 2431m 1050 2443m

1200 2576` 1568 2611m 1792 2702m

2016 2786` 2048 2835` 2744 2863m

3087 2947m 3136 2983m 3479 3019m
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3528 3055m 3871 3091m 3920 3103m 3969 3127m 4361 3404m 4480 3416m

4536 3440m 4802 3535m 4851 3571m 4900 3583m 5047 3601m 5341 3607m

5467 3619m 5488 3631m 5600 3643m 5684 3661m 5831 3667m 5880 3673m

6020 3679m 6174 3691m 6223 3703m 6566 3715m 6615 3721m 7007 3739m

7350 3763m 8192 3885` 8400 3920m 10000 3955m
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10 512o 18 960` 40 1016v

72 1408m 80 1506m 91 1520v

96 2003m 200 2024v 320 2304m

360 2424` 400 2620` 576 2696m

640 2794m 648 2857m 720 2906m

728 2920m 819 3376` 856 3459m

928 3508m 968 3522m 1000 3557m

1056 3571m 1144 3606m 1208 3641m

1240 3655m 1280 3669m 1360 3683m

1600 3704m 1800 3880` 2560 3984m

2880 4104m 3200 4202` 3240 4280`

4608 4376m 5120 4474m 5184 4537m

3-CAs with 8 symbols
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5696 4586m 5760 4635m 5824 4698m 6464 5154m 6552 5168m 6848 5251m

7128 5300m 7424 5335m 7616 5349m 7744 5398m 8000 5433m 8256 5447m

8448 5461m 8712 5496m 8896 5531m 9152 5545m 9504 5580m 9664 5615m

9920 5629m 10000 5643m

10 729o 12 1329↓ 20 1377`

41 1449v 90 2025m 113 2169v

117 2865m 225 2889v 369 3321m

410 3474` 810 3897m 891 4041m

900 4105m 1017 4233m 1130 4842`

1161 4953m 1251 5017m 1260 5065m

1341 5081m 1512 5145m 1629 5209m

1638 5257m 1755 5273m 1764 5321m

2025 5337m 2250 5562` 3321 5769m

3690 5922m 4059 6066` 4100 6147`

7290 6345m 8019 6489m 8100 6553m

8829 6681m 8910 6745m 9000 6809m
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5.2 Tables for Strength Four

Here we report similar results for strength four; the only table of which we are aware appears in
[18], and treats only k ≤ 10.

5 16o 6 21u 10 24f

12 48r 14 53r 16 54r

20 55r 25 80q 28 91r

30 92r 32 94r 40 96r

81 120q 88 178r 96 181r

112 182r 128 183r 140 184r

160 189r 162 191r 176 249r

189 252r 192 253r 224 257r

252 259r 256 263r 280 265r

320 272r 400 275q 448 346r

504 349r 512 358r 560 361r

640 370r 704 375r 768 378r

4-CAs with 2 symbols
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800 379r 810 449r 896 450r 924 454r 1008 458r 1024 469r

1120 473r 1600 480q 1620 569r 1792 570r 1848 575r 2016 584r

2048 597r 6561 600q 6859 715h 6864 755r 7168 760r 7392 761r

8064 763r 8192 765r 8960 766r 10000 768r

5 81o 6 115s 7 133s

8 153s 10 159v 16 237v

23 315v 30 393v 39 471v

51 549v 54 718r 58 726r

60 730r 66 735r 69 749r

74 822r 76 828r 78 832r

81 837r 87 881r 90 885r

92 934r 96 936r 102 944r

111 975r 114 981r 117 985r

120 1065r 123 1067r 126 1069r

129 1071r 132 1073r 138 1087r

144 1089r 153 1097r 154 1221r
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156 1222r 161 1260r 162 1268r 174 1278r 180 1282r 198 1295r

207 1323r 216 1402r 222 1406r 225 1412r 228 1416r 234 1420r

256 1422q 261 1513r 270 1521r 276 1586r 288 1588r 297 1602r

300 1610r 306 1618r 324 1651r 333 1655r 342 1667r 351 1675r

352 1693r 368 1735r 369 1769r 378 1773r 387 1777r 396 1793r

400 1805r 420 1811r 426 1821r 432 1833r 447 1847r 459 1855r

484 1877r 529 1890h 567 2028r 588 2081r 594 2083r 621 2125r

648 2210r 666 2218r 675 2232r 684 2240r 702 2244r 729 2246r

768 2290r 900 2358q 918 2508r 972 2543r 999 2551r 1026 2569r

1053 2581r 1056 2601r 1058 2619r 1080 2643r 1104 2645r 1107 2679r

1134 2685r 1136 2687r 1161 2691r 1188 2713r 1200 2729r 1224 2731r

1260 2739r 1278 2743r 1296 2763r 1320 2777r 1377 2787r 1440 2823r

1521 2826q 1566 2842r 1584 2844r 1587 2852r 1620 2982r 1701 2992r

1755 3013r 1764 3025r 1782 3051r 4096 3081h 4131 3959r 4158 3995r

4200 4003r 4266 4005r 4320 4009r 4428 4016r 4500 4024r 4563 4026r

4698 4042r 4752 4046r 4761 4054r 10000 4095h

5 256o 6 375s 13 508v

20 760v 31 1012v 42 1264v

48 1639r 52 1648r 60 1878r

65 1890r 68 2119r 76 2136r

80 2142r 85 2412r 95 2444r

96 2489r 100 2514r 108 2641r

112 2656r 116 2671r 120 2686r

124 2701r 125 2925r 128 2933r

136 2968r 140 2988r 145 3003r

150 3018r 155 3033r 160 3112r

168 3148r 170 3315r 176 3351r

186 3488r 200 3507r 208 3532r
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210 3555r 240 3762r 256 3774r 260 3939r 264 4113r 300 4169r

320 4181r 330 4425r 341 4535r 361 4560h 380 4643r 384 4688r

400 4722r 432 4849r 448 4864r 464 4879r 480 4894r 496 4990r

500 5214r 512 5222r 544 5257r 560 5376r 580 5391r 600 5406r

620 5421r 640 5500r 672 5536r 680 5703r 704 5739r 744 5876r

800 5895r 832 5920r 840 5943r 961 6072h 1024 6297r 1040 6492r

1050 6515r 1110 6722r 1180 6890r 1200 6902r 1280 6914r 1292 7280r

1320 7327r 1332 7411r 1364 7437r 1444 7447r 1472 7568r 1520 7583r

1681 7584h 1748 7854r 1792 7900r 1856 7915r 1900 7957r 1920 7972r

1968 8143r 1984 8158r 2000 8382r 2036 8390r 2048 8392r 2128 8412r

2176 8442r 2185 8579r 2240 8610r 2320 8625r 2375 8676r 2400 8691r

2480 8742r 2560 8821r 2624 8857r 2688 8866r 2720 9033r 2816 9069r

2944 9206r 2976 9215r 3072 9234r 3200 9243r 3328 9268r 3360 9291r

3552 9420r 3776 9540r 3840 9558r 3844 9573r 4096 9783r 6859 9880h

6984 11682r 6992 11697r 7168 11728r 7424 11743r 7600 11836r 7680 11851r

7872 12097r 7936 12112r 8000 12336r 8140 12344r 8192 12346r 8512 12366r

8704 12396r 8736 12638r 8740 12648r 8960 12669r 9216 12705r 9280 12709r

9480 12774r 9600 12789r 9920 12840r 9988 12919r 10000 12934r

6 625o 15 1245v 24 1865v

37 2485v 62 3105v 75 4225r

120 4845r 144 5571r 150 6287r

170 6557r 185 6675r 190 7295r

200 7357r 240 7565r 250 7837r

275 8013r 310 8045r 375 9165r

475 9785r 600 9945r 625 10851r

720 11251r 750 12107r 800 12377r

850 12537r 875 12655r 925 12719r

950 13339r 1000 13401r 1025 13609r

1050 13657r 1200 13673r 1250 14249r

1320 14509r 1375 14573r 1440 14605r
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1470 14697r 1540 14713r 1550 14737r 1625 15833r 1760 15865r 1875 15881r

1920 16501r 2070 16517r 2250 16533r 2375 16549r 2880 16745r 3000 16885r

3125 17971r 3721 18630h 3750 19869r 3900 20139r 4000 20265r 4200 20421r

4250 20573r 4350 20667r 4375 20691r 4500 20731r 4625 20865r 4650 21461r

4750 21485r 4800 21523r 4920 21547r 4950 21599r 5000 21623r 5100 21807r

5125 21909r 5200 21985r 5610 22033r 5760 22057r 5780 22109r 6000 22179r

6120 23155r 6125 23179r 6250 23195r 6460 23515r 6600 23573r 6875 23701r

7020 23733r 7080 23749r 7200 23765r 7350 23873r 7700 23889r 7750 23913r

10000 24245h

6 Concluding Remarks

The recursive constructions for strength three developed here provide a useful complement to
that in [10]. More importantly, the recursive constructions for strength four provide numerous
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powerful techniques for the construction of covering arrays. The existence tables demonstrate the
utility of computational search for small arrays combined with flexible recursive constructions. The
constructions using perfect hash families and Turán graphs provide some of the best bounds as the
number of columns (factors) increases, but currently do not exhibit the generality of the Roux-type
constructions developed here.
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