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Abstract

This paper concerns construction methods for ¢-covering arrays.
Firstly, a construction method using perfect hash families is discussed
by combining with recursion techniques and error-correcting codes.
In particular, by using algebraic-geometric codes for this method we
obtain infinite families of t¢-covering arrays which are proved to be
better than currently known probabilistic bounds for covering arrays.
Secondly, inspired from a result of Roux and also from a recent result
of Chateauneuf and Kreher for 3-covering arrays, we present several
explicit constructions for t-covering arrays, which can be viewed as
generalizations of their results for ¢t-covering arrays.

Keywords t-covering arrays, orthogonal arrays, perfect hash families,
algebraic-geometric codes.

1 Introduction

A t-covering array, denoted CA(N;t,k,v), is a k x N-array with entries from
a set of v > 2 symbols such that each ¢ x N-subarray contains each ordered
t-tuple of symbols at least once as a column.
Let CAN(t, k, v) denote the minimum number N such that a CA(N;t, k,v)
exists, i.e.,
CAN(t, k,v) = min{N : 3 CA(N;t, k,v)}.

Then CAN(t, k,v) is called the covering array number.

Covering arrays can be viewed as a generalization of orthogonal arrays.
In fact, if we require that each ¢ x N-subarray contains each ordered t-tuple of
symbols in exactly A times as a column, then we have an t-orthogonal array,
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denoted OA\ (%, k,v). In this case we have N = \v’. Thus, an OA)(t, k,v) is a
CA(M\v';t, k,v). In particular, if there is an OA;(t, k,v), then CAN(¢, k,v) =
v'. For instance, an OA;(t,t + 1,v) exists for all ¢ and v, see e.g. [12]; also,
for any prime power ¢ and any ¢t < g, OA;(t,q + 1,q) exists [2]. Therefore,
CAN(t,t + 1,v) = o' and CAN(t,q + 1,q) = ¢'.

A main problem of covering arrays is to minimize N for given values
t, k, v, or equivalently to maximize k for given values ¢, v, N. The case
t = 2 has been studied by several authors, see for instance [8], [13], [14],
[15], [21]. The case t = 3 can be found in [4], [5], [6], [16], [17]. Upper
bounds on the number of columns N for t-covering arrays are given in [11].
However, very little are known for #-covering arrays with ¢ > 4. This paper
is concerned with t-covering arrays for an abitrary value ¢. Our interest in
this paper is in constructing ¢-covering arrays using combinatorial techniques
and in establishing bounds on the covering array number CAN(¢,k,v). In
particular, we present constructions of good classes of t-covering arrays using
recursive methods and perfect hash families. We then show several explicit
constructions of covering arrays for ¢ > 4 from other covering arrays and
thus obtain new bounds for ¢-covering arrays in the spirit of the results for
3-covering arrays of Roux [16], Chateauneuf and Kreher [6].

2 Preliminaries

The following basic facts on CAN(t, k,v) can be found in [6]. Let A be a
CA(N;t,k,v) with entries from a set V.

Symbol-fusing. If a symbol z is replaced with any symbol in V' \ {z},
wherever z occurs in the array A, then the resulting array isa CA(N;t, k,v—
1). Thus

CAN(t, k,v — 1) < CAN(t, k, v).

Row-deleting. If any row of A is deleted, then the remaining rows form
a CA(N;t,k —1,v). Hence

CAN(t, k — 1,v) < CAN(¢, k, ).

Derived array. Note that if x € V appears M times in row ¢ of A, then
M > v'~!. Removing all columns of A not having z on row i and then
deleting row 7 form a CA(M;t — 1,k — 1,v). Therefore

CAN(t, k,v) > v-CAN(t — 1,k — 1,v).

We prove a simple lemma which shows rough lower and upper bounds
for CAN(t, k,v) for certain values of k.
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Lemma 2.1 For any v > 2 , t > 2 we have
v < CAN(t, k,v) <2t .ot — 1,
where k < 2™ and n is the smallest integer such that v < 2™.

Proof. An obvious lower bound is
v" < CAN(t, k,v),

and this bound is reached if v = ¢ is a prime power and k& < g + 1 because
an orthogonal array OA;(¢,q + 1,q) exists [2]. If v is not a prime power,
then 27! < v < 2" for a certain integer n. Now take CA(N;t,27,2") =
OA;(t,2",2"). Then N = 22" Using the symbol-fusing methode one gets
a CA(N;t,2" v). Since N = 2¢. 200Dt < 9t . 4t we have N < 2ot — 1.
|

In [16], a Ph.D. dissertation, Roux shows the following theorem, (see
also [17]).

Theorem 2.2 (Roux [16])
CAN(3, 2k, 2) < CAN(3,k,2) + CAN(2, k, 2).

Thus, Roux’s theorem gives an upper bound for 3-covering array for
v = 2.

Recently, Chateauneuf and Kreher [6] generalized Roux’s theorem for
any v > 2.

Theorem 2.3 (Chateauneuf and Kreher [6])
CAN(3,2k,v) < CAN(3,k,v) + (v — 1) - CAN(2, k,v).

3 A recursive construction of covering arrays using perfect
hash families

A t-perfect hash family H, denoted PHF(N; k, g, 1), is a family of N functions
h: A — B, where |A| = k > |B| = ¢, such that for any subset X C A with
| X | = t, there is at least one function h € #H such that h is injective on X.

Thus, a PHF(N; k, g, t) can be described as an k x N-array ‘H with entries
from a set of ¢ symbols such that for any set of ¢ rows there is at least one
column having different entries in this set of rows.

There is a simple direct construction of perfect hash families from error-
correcting codes. An (N, k,d,q) code is a subset C C QY with |C| = &,
|Q| = ¢ such that the Hamming distance between any two distinct vectors
in C is at least d.
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Theorem 3.1 [1] Suppose there is an (N,k,d,q) code C. Then there is a

PHF(N;k,q,t) provided
N > (N —d) (;)

We describe a relationship between covering arrays and perfect hash
families. Let A = (a; ;) denote the k£ x N-matrix of a CA(N;t,k,v). For any
two columns j; and jo of A, define

I(j1,92) = {i: aij, = aijp}l,

and
I(A) = max{I(j1,2) : j1 # jo}-

Theorem 3.2 Suppose there exists a CA(N;t, k,v).
(i) Then there exists a PHF(N;k,v,t) provided t <wv
(i) If k/I(A) > (g), then there is a PHF(k; N, v, t').

Proof. Let A denote the k x N-array presented the CA(N;t, k,v). (i) It is
obvious that A is a PHF(N; k,v,t) if t < v.

(ii) Taking the columns of A as codewords, we have a (k, N,k —I(A),v)
code. Then apply Theorem 3.1. |

When A is an OA;(r, N,v), it is easy to see that I(A) =r — 1. Thus we
have

Corollary 3.3 Suppose there is an OAq(r,N,v). Then there ezxists a
PHF(N;v",v,t) if N/(r — 1) > (;)

It is well-known that there is an OA4(r, g, q) for any prime power ¢ and
any integer r such that 2 < r < ¢. Applying Corollary 3.3 gives

Corollary 3.4 For any prime power q and any integer v such that 2 <r <
q, there ezists a PHF(q;q",q,t) if ¢/(r — 1) > (;)

A construction of covering arrays using perfect hash families is as follows.

Theorem 3.5 Suppose there exists a PHF(s;k,m,t) and a CA(N;t,m,v).
Then there is a CA(sN;t, k,v).

We now use Corollary 3.4 and Theorem 3.5 to construct an infinite class
of t-covering arrays with good asymptotic behavior.
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Theorem 3.6 Suppose there exists a CA(Ny;t,q¢°°,v), where q is a prime
power and ¢*° > t(t — 1)/2. Then there exists a CA(NoR;;t,q%,v) for all
1 > 0, where Ry =1, and

S;—
R, = q¢"'R;_1,
Si—1

s = Si—1[ |
(2)
for all 1 > 1.

Proof. We proceed by induction on i. For ¢ = 0, the assertion is correct.
Now assume 7 > 1. We apply Corollary 3.4 with g replaced by ¢*-! and

r = [qSl_l].

(2)

= -1> (3)

and 7 > 2 are satisfied. Thus, there is a PHF(¢%i-1; ¢%, ¢%i-1,t).
By induction, there exists a CA(NoR;_1;t,¢%-1,v). Now applying The-
orem 3.5 yields a CA(NyR;;t,q%,v). The proof is complete. [ |

The conditions

Let N; = NoR; and k; = ¢®%. Then, by a similar argumentation as shown
in [23] pp.196-197 it can be proved that

N, 219
< Not™®

N; <
sgloggq

(t2)log*(ki)(log kz)

for all 7 > 1.

For any given values of kg, v and t we can always construct a CA(Ny; t, ko, v)
for some Ny. Therefore, we have the following theorem.

Theorem 3.7 For any positive integers v and t there is an infinite family
of covering array CA(N;t,k,v) such that N is O((t?)°8"*)(log k).

Theorem 3.5 becomes to be powerful when algebraic-geometric (AG)
codes are used. The idea is to derive good classes of perfect hash fami-
lies from AG codes by Theorem 3.1, and then apply Theorem 3.5. As a
paradigmatic example we consider the class of linear AG codes defined on
the Garcia-Stichtenoth (G-S) curves [9, 10]. The nth curve A;, over Fy: in
the sequence of Garcia-Stichtenoth curves is defined by the equations

q i
ol o= ———
1

il =12, 0.
Tl +1
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The number of rational points of &, is more than ¢"(q?> — ¢) and the
genus g, of X, is less than ¢"t!. The “one-point” AG codes constructed
on the G-S curve is as follows: Let P = {Py,..., Py, P} be N + 1 distinct
[F,2-rational points and let L(mP) be the F;:-vector space consisting of all
functions defined on the curve such that the only pole of any f € L(mP) is
P and the pole order is at most m. Define an evaluation map

0 : L(mP) — F

fH(f(Pl)aaf(PN))

Then, the image C = I'm#@ is referred to as a “one-point” AG code. Now,
take

N =q"(¢° —q),
2g, —2 < m < N.

Then C is a linear code with parameters (N, . d, q?), where £ = m—g, +1
and d > ¢"(¢*> — q) — m. Thus, ¢"t! < £ < ¢"? — 2¢"*! + 1. We will
write £ = [ug"*!], where u is a real number satisfying 1 < u < ¢ — 2. So,
d>q"(¢> —q) = [(u+1)g"'] +2.

The parameters of C are then

(qn (q2 - q)a q2 |—uqn+1-| ’ da q2)

Applying Theorem 3.1 to C we obtain the following result.

Theorem 3.8 For every prime power q and any integer n > 1, there exists
a PHF(N;E,¢?,t), where

N =q¢""(q - 1),

k = g2lua"*'1,

u 18 a real number with 1 <u < gq — 2, and
t=T3014 /14 g35(@— D).

Now, combining Theorem 3.5 and Theorem 3.8 we can prove the follow-
ing result.

Theorem 3.9 For every given integers t,v > 2, and for any integer n > 1,
there ezists a covering array CA(N;t,k,v), where

N = Ny.(q — 1)g™*!, Ny is a constant,

k= qZ[“anrlW , q s a prime power such that q > w + 1,

and u is a real number with 1 < u < g — 2.

Moreover, we have N = O(logk).
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Proof. Let t,v > 2 be given integers. Let ¢ be the smallest prime power

such that t = [3(1 4+ 4/1+ %(q— 1))], with 1 < u < g — 2, as shown in
Theorem 3.8. A simple obervation shows that we can always construct a
CA(Np;t,¢?,v) explicitly for a certain value Ny. Applying Theorem 3.5 and

Theorem 3.8 yields the covering arrays with parameters as claimed. |

It should be noticed that the first low-complexity algorithm for con-
structing “one-point” AG codes on G-S curves has a runtime upper-bounded
by (N log, N )3, where N is the length of the code and the complexity is mea-
sured in terms of multiplications and divisions over the finite field F> [18].
The complexity of constructing #-covering arrays in Theorem 3.9 is, there-
fore, polynomial in N. The covering arrays in Theorem 3.7, however, can
be viewed as an explicitly constructed family.

The following probabilistic upper bound for CAN(¢, k, v) is due to God-
bole et al [11].

Theorem 3.10 (Godbole, Skipper, Sunley [11])

E=Dlogk ) 4 o)y,

CAN(t, k,v) < "
log (,,,t_l)

as k — oco.

It turns out that the explicit constructed covering arrays in Theorem 3.9
yield much better results compared to Godbole-Skipper-Sunley bound. To
see it we consider e.g. the case with a square prime power v = ¢°. For any
given ¢ > 2 and any prime power ¢ satisfying the conditions of Theorem
3.9 choose a real number 1 < u < g — 2 such that ((ZI_B = (5) By taking
a CA(Ny;t,q%, ¢%) with Ny = ¢?', Theorem 3.9 gives a CA(N;t, k,q?) with

N = ¢?(g—1)¢"" and k = ¢2[*¢" "', Thus N ~ q;;('f;;) In k. For these t and

k, the Godbole-Skipper-Sunley bound gives CAN(%, k,v) < 111“%%2 Ink{1+

g2t —1

o(1)}. Let a = a-1) apq B = l(t%t) Then

2ulng
n g2t—1

2t

(g—1)¢* In -

a 21
8 2u(t —1)Ing
(u+1)t
4ulng
N t
- 41Ing

by taking into account ¢ In qgffl =~ 1. Thus % < 1for g > e. This shows

that sizes of arrays from Theorem 3.9 with v = ¢? are better than Godbole-
Skipper-Sunley bounds.
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As examples we consider several values of v.

For v =32, ¢t =2 u =1 we have o = 73.729 and 3 = 80.498

Forv = 7?,¢t = 3and u = 1 we have a = 181378.878 and 8 = 235296.999.

For v = 132 and ¢t = 4 and u = 1 we have o = 1908179711.915 and
B = 2447192161.523.

a

Since 5 0 as ¢ = oo, the Godbole-Skipper-Sunley bound becomes
weak. For instance, if v = 232, ¢t = 2, u = 216 — 2 we have a ~ 8,3 * 1017
whereas 3 = 25 * 10'8. Thus, « is about 30 times smaller than j.

4 Constructions of Roux’s type for {-covering arrays

The constructions in the previous section provide classes of covering arrays
with good asymptotic behavior, when k& — oo and v, t are fixed. In this
section we focus on construction techniques that can be used to improve the
results for small values of k.

With Theorem 2.2 Roux shows an interesting bound for binary 3-covering
array, i.e. v = 2. This bound is recently generalized by Chateauneuf and
Kreher to any v > 2, as presented in Theorem 2.3. The idea is to construct
a CA(3,2k,v) using a CA(3,k,v) and a CA(2,k,v).

Remark 4.1 We want to make a remark that Theorem 4.7. of Chateauneuf
and Kreher [6] p.231 is incorrect. Theorem 4.7. [6] states that one obtains

. CAN(3,k,v) v
lim ——————= =
k—o0 log k 2

from
CAN(3,2k,v) < CAN(3,k,v) + (v — 1)CAN(2,k,v), (%)

and
CAN(2, k,v) v

hyo0 log, k T2 (x%)

In fact, it can be shown from (*) and (*x*) that

. CAN(3,k,v)
lim —————— =0
k—o00 log k
In this section we discuss several constructions of CA(t,2k,v) using

CA(s, k,v) for s <t in the spirit of Roux, Chateauneuf and Kreher.

4.1 4-Covering arrays

Let D be a CA(Ny;2,v,v) with entries d;; € V = {1,...,v}. Let Fp =
{fi,---,fn,} be a set of mappings derived from D as follows. For each
1=1,..., Ny define

fi: V—>V
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by
fild) = dj;.
Thus f; maps the vector (1,...,v)” to the i—th column of D, i.e., fi(j) = d; ;-

Remark 4.2 The family Fp has the following property. For any given
two pairs (z,y) and (z,w) with z,y,z,w € V and z # y, there is at least
an f; € Fp such that f;(r) = z and fj(y) = w. This is because D is a
CA(Ny; 2,v,v).

In the following theorem we give a bound for 4-covering arrays by means
of a direct construction.

Theorem 4.3 For any v > 2 we have

CAN(4, 2k, v) < CAN(4, k, v)+(v—1)CAN(3, k, v)+2CAN(2, v, v) CAN(2, k, v).

Proof. Let Abea CA(Ny;4,k,v), Bbea CA(N3;3,k,v), Cbea CA(N2;2,k,v),
and D be a CA(Ni;2,v,v), all on the symbol set V. = {1,2,...,v}. Let
Fp = {f1, f2,---, fn,} be the set of mappings derived from D as defined

above. Finally, let 7 = (1,2,...,v) be a cyclic permutation on the symbol
set V. Define
e - 27
LA
B B B
Ey =
1 2 v—1
B™ B™ B™
C C C
E; =
ch | ci2 | ... | ™
g, o llcfr | cf2 ]|
. =
C C C

where B™ and C/i are the arrays obtained by applying 7* and fj to the
symbols of B and C, respectively.

Construct an array E as follows:
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E is therefore an 2k x N-array, where N = Ny + (v — 1) N3 + 2NoNy.
Consider 4 rows r1, 79, T3, T4 Of E.

1. If r1, 7o, r3, r4 include 4 distinct rows of A, then all quadruples occur
on these rows among the columns of E;.

2. fri<rg<ry<k<rgs=rit+korri <k<ro=ri+k<ry<ry,
then all quadruples of the form (z,y,w,z)” for any z,y,w occur on
these rows among the columns of E; and quadruples (z,y,w,2)T with
T # z occur in Es.

3. If ri <ro <k <rg=ri+k <ry, then we have two subcases.

3.1.

3.2.

r4 # T2 + k. Quadruples of the form (z,y,z,2)? for any z,vy,2
occur among the columns of E;. Let rjy = r4—k. Then ry,79,7) <
k < rs =i+ k. For any quadruple of the form (z,y,z’,2)T with
z! # z, we have 2’ = z™ for some i. Hence there is a column in E,
containing z in row r1, y in row 9, 2™) " in row ry, and 2’ = ™
in row r3. Therefore, (z,y,2',2)” appears in that column on the
TOWS T'1,T2,T3,T4.

r4 = ro + k. Quadruples of the form (z,y,w,z)’ with z # y
for any w, 2z occur on the rows ri,7r9,73,74 among the columns
of E3, because there exists an f; such that zfi = w and yfi = z;
similarly quadruples (z,y,w,z)? with w # z is covered by Eg;
quadruples of the form (z,z,vy,y)” for every z and y occur among
the columns of E3 and E4.

Therefore, E is a coverring array CA(N; 4,2k, v) with N = Ny + (v —1)N3 +
2Ny N1, as required.

If v = g is a prime power, then a CA(¢?;2,q,q) exists. Hence, the bound
in Theorem 4.3 can be strenghened and we obtain:

Corollary 4.4 For any prime power q > 2 we have

CAN(4,2k,q) < CAN(4,k,q) + (¢ — 1) - CAN(3, k, q) + 2¢° - CAN(2, k, q).
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It can be observed from the proof of Theorem 4.3 that we can even
construct better covering arrays in several cases by chosing the arrays A, C,
D more carefully. These cases are listed in the following proposition.

Proposition 4.5 The construction in Theorem 4.8 still works if any of
arrays A, C and D is chosen as follows:

1. Cis a k X Ny-array with entries from a set of v symbols such that each
2 X N-subarray contains each ordered 2-tuple of not equal symbols at
least once as a column.

2. In the binary alphabet case, D is a 2 X 2 array whose rows are both
equal to {0,1}.

3. In the case k < 4, A is the same as the array B.

From Proposition 4.5 (2) and Theorem 4.3 we obtain the following corol-
lary.

Corollary 4.6
CAN(4,2k,2) < CAN(4,k,2) + CAN(3,k,2) + 4CAN(2, &, 2).

Theorem 4.3 together with Proposition 4.6 gives the following example.

Example 4.7 CA(28;4,6,2)

0001110100011101000100111100
0010101100101011000010111010
0100011101000111000001111001
0001110111100010100000100111
0010101111010100010000010111
0100011110111000001000001111

The next example is a CA(25;4, 6,2) which is obtained from this CA(28;4, 6, 2)
by removing the 1st, 9th and 16th columns.

Example 4.8 CA(25;4,6,2)

0011101001110000100111100
0101011010101000010111010
1000111100011000001111001
0011101110001100000100111
0101011101010010000010111
1000111011100001000001111
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Therefore CAN(4, 6,2) < 25.

Example 4.9 CA(40;4,8,2)
We take the arrays A, B, C and D as follows:

0001110100011101 00011101
A — 0010101100101011 B — 00101011
0100011101000111 01000111
0001110111100010 01110001

A is a 4-covering array, B is a 3-covering array.

1000

0100 01
€= 0010 D = 01

0001

C is an array defined from Proposition 4.5 (case 1) and D is the array
from Proposition 4.5 (case 2).

Applying Theorem 4.3 to A,B,C and D yields a CA(40;4,8,2) E as fol-
lows:

0001110100011101 | 00011101 | 1000 | 1000 | 0000 | 1111
0010101100101011 | 00101011 | 0100 | 0100 | 0000 | 1111
0100011101000111 | 01000111 | 0010 | 0010 | 0000 | 1111
0001110111100010 | 01110001 | 0001 | 0001 | 0000 | 1111
0001110100011101 | 11100010 | 0000 | 1111 | 1000 | 1000
0010101100101011 | 11010100 | 0000 | 1111 | 0100 | 0100
0100011101000111 | 10111000 | 0000 | 1111 | 0010 | 0010
0001110111100010 | 10001110 | 0000 | 1111 | 0001 | 0001

Example 4.10 CA(37;4,8,2)

It can be shown that by deleting the 1st, 17th and 24th columns from the
CA(40;4,8,2) in Example 4.9 we obtain a CA(37;4,8,2).

It should be noted that by a computer search [19, 20] Sherwood has
constructed a CA(28;4,6,2) and a CA(40;4,8,2). Also, a CA(31;4,8,2) has
been found, as reported in [20].
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4.2 5-Covering arrays

We prove the following theorem.

Theorem 4.11 For any v > 3 we have

CAN(5, 2k, v) < CAN(5, k, v)+(v—1)CAN (4, k, v)+[6v(v—1)+2CAN (2, v, v)]CAN (3, k, v).
Proof. Let Abea CA(Ns;5,k,v), Bbea CA(Ny;4,k,v), Cbea CA(Ns;3,k,v),

and D be a CA(N1;2,v,v), all on the symbol set V' = {1,2,...,v}. Again let

Fp = {f1, fo,---, fn,} be the set of mappings defined from a CA(Ny;2,v,v)

as in Section 4. Also, let 7 = (1,2,...,v) be a cyclic permutation on the

symbol set V.
We define three families of mappings from V into V as follows:

(i). Let G ={gap: V—V : a,b €V, a# b}, where
(z) = a ifr=a
JabtT) = p ifrx#a

(ii). Let G ={Gap: V —V : a,b €V, a# b}, where

a ifz=05

%M”:{b if 2 b

(iii). Let X ={hep: V—V : a,b€V, a# b}, where

_Ja ifrxFaorz#d
ha’b(x)_{b ifz=aorz==»5

Define

B B B
Ey =
g=' | B2 | ... | ™!
c c | ... c ch | cf2 | ... | Im
Es =
cf1 | cf2 vy C C C
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C C C c91,2 C91,3 Cgv,v—l
Ey =
c91,2 c91,3 cgv,v—l C C C
C C C 912 | ¢913 | .. | cFvv-1
E; =
912 | ¢91.3 | . | CFvv-1 C d C
C C C chie | ch13 | [ | cPew-t
Eg =
chr2 | P13 | | che-t C C C

Construct an array E as follows.

Let r1,79,73,74,75 be b rows of E. Because of the symmetry of E we need

to consider the following cases.

1. If r1, 7o, 73, T4, 75 satisfy r; #r; +k, 4 # j and 4,5 = 1,2,3,4,5,

then all 5-tuples occur on these rows among the columns of E;.

I <reo<rg <ry <k <rs =1+ k, then 5-tuples of the form

(a,b,c,d,a)” occur on these rows among the columns of E;, and all
5-tuples (a,b,c,d,a’)T with o' # a appear in the columns of Es.

.Assumery <ro <rg<k<ry<rs,r4 =71+kand r5 # r; + k for all

i = 1,2,3. Consider a 5-tuple X = (a,b,c,a’,e)T. If a = a/, then X
is covered by E;. Now assume a # a’. As B is a 4-covering array, all
(v — 1) quadruples (a,b,c,e1)”, ..., (a,b,c,ey,_1)T with e # e;, appear
on the rows 71, T2, T3, 75 — k among the columns. Thus, for each 7%,
there is a e; such that 7*(e;) = e. Further, 7°(a) = a; with a # a;. It
follows that all 5-tuples (a, b, ¢, a1, ¢), (a,b, c,a2,¢), ..., (a,b,c,ay_1,c),
where and a; # a; for ¢ # j, appear in the columns corresponding to
TOWS 71, T'9, T3, T4, T5 in Eo.

.Assumeri <o <r3<k<rys<rs,ra=ri+kandrs =10+ k We

need to consider different types of 5-tuples.

(i) A 5-tuple of the form (a,b,z,a,b)T for any a,b,z is covered by
E;.
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(i) A 5-tuple of the form (a,a,z,b,b)” for any a,b,z is covered by

(iii)

Eo.

A 5-tuple of the form (a, b, z,c,d)? for any a,b,z,c,d and a # b is
covered by Es. This is because C is a 3-covering array, there is at

least one column of C containing the triple (a, b, z

)T in the rows

r1, T2, r3 and there is an f; such that f;(a) = c and f;(b) = d.

From now on we assume c¢ # d.

Consider a 5-tuple of the form (a,a,z,c,d

)T for any a,,c,d and

¢ # d. We have the following subcases.

(@)

T # a,c,d. There is a column j of C containing the triple
(z,c,d)T in the rows r3 +k, 1 +k, 7o+ k of E4. The column
7 of the block

C9=a
C

contains the 5-tuple (a, a,z,c,d)” with z # a, c, d in the rows
T, T2, T3, T1 + Kk, T2 + k, because g5 4(z) = z, g5,4(c) = a,
and gz q(d) = a.

z = a. As C is a 3-covering array, there is a column j
containing the triple (¢, d, )T in the rows ri +k, ro+k, r3+k.
Also there is a mapping f;, 1 <4 < Ny, such that fi(c) =a
and f;(d) = a, by Remark 4.2. Therefore the column j of the
block

Cli
C

in E3 contains the 5-tuple (a, a, a, c,d) in the rows r1, 7o, r3, 71+
k, ro + k.

z # a and = = c. Again there is a column j of C containing
the triple (c,d,a)’ in the row rq +k, ro +k, r3 + k. Hence

the column j of the block

Clera
C

in E5 contains the 5-tuple (a, a, ¢, c,d)” in the rows 1, ro, 73, r1+
k, ro + k.
z=a=c (i.e. a #d). The 5-tuple (a,a,a,a,d)’ is covered

by a column of the block

Cli
C

with f;(a) = a and f;(d) = a in part Es.
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(#) x = ¢ and a = d. Consider a column j of C containing
the triple (c,a,b)T with b # c,a in the rows vy + k, ro +
k, r3+k. The 5-tuple (a,a,c,c,a)T is contained in a column
j corresponding to the rows ri, 1o, 73, 71 + k, 72 + k of the
block

Chc,a
C

of Eg. This is because h¢ q(b) = ¢, heq(c) = a and heq(a) = a.

Hence E is a 5-covering array. The proof is complete by using |G| = |G| =
[H| = v(v = 1). n

If v = ¢ is a prime power, then N; = v? by Lemma 2.1. Therefore we
have

Corollary 4.12 For any prime power q¢ > 3 we have

CAN(5,2k,q) < CAN(5,k,q) + (¢ — 1)CAN(4,k, q) + (8¢* — 6q)CAN(3, k,q).

4.3 t-Covering arrays for t > 4
Theorem 4.13 For any integers t > 4 and v > 2 we have

-2
CAN(t, 2k, v) < CAN(t, k,v)—l—(v—l)CAN(t—l,k,v)—i—Z CAN(i, k,v)CAN(t—i, k, v).
=2

Proof. Let A¢,Ai—1,...,A2 be CA(Ny;t, k,v), CA(Ny_1;t—1,k,v),...,CA(N2;2, k,v),
respectively.
Let Bf-vj be the k x N;.N; array obtained from A; by repeating each
column N; times, where 4,7 =t —2,...,2 and i+ j = ¢.
Let Cj-vi be the k x N;.N; array obtained by concatenating N; copies of
Aj, where 1,7 =t —2,...,2and i+ j =t.

Define
Ay
E, = A,
Aot | Agor | oo A1
Et—l = o 2 TR
Al AL |- | AT

Fori=1—2,...,2, define
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B~
E; = o
(il
Construct an array E as follows.
E =] E: | Et—1 | Et—2 E2
Let r1,...,7; be t rows of E. Without loss of generality it is enough to
consider the following cases.
1. If r1,...,r; include t distinct rows of Ay, then all t-tuples occur on

these rows among the columns of E;.

2. If r < ... <141 <k <71 =11+ Kk, then t-tuples of the form
(a1,...,as_1,a1)7 is covered by E;, and all t-tuples (ay,...,a;_1,a’)T
with a’ # a; appear in the columns of E; ;.

3. For the remaining cases we can assume 1 < ... < 1; < k and £k <
rig1 < ... < 1¢, where 1 = t — 2,t — 3,...,2. Then for each 7 =
t—2,t—3,...,2 and for any t-tuple (a1, as,...,a;)T of symbols there
is a column in F; containing this ¢-tuple in the rows ry < ... < r; <
k < T < ... <7t

The proof is complete. |

For ¢t = 4,5 and large values of k the construction in Theorem 4.13 yields
a weaker upper bound on covering array number than the constructions for
4-, 5-covering arrays in Theorem 4.3 and Theorem 4.11. However, for a not
very large k the construction in Theorem 4.13 provides better results, as
shown in the following example.

Example 4.14
1. CAN(4,8,3) < 216,
2. CAN(5,10,4) < 3840,
3. CAN(5,12,5) < 11875.

Note that from Corollary 4.4 and Corollary 4.12 we obtain a CA(297; 4, 8, 3),
a CA(8448;5,10,4) and a CA(26875;5,12,5). Moreover, the probabilistic
bound in [11] only shows the existence of a CA(904;4, 8, 3), a CA(15940; 5, 10,4)
and a CA(54424;5,12,5).
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