
On existence theorems for simple t-designs

Tran van Trung
Institut für Experimentelle Mathematik

Universität Duisburg-Essen
Thea-Leymann-Straße 9, 45127 Essen, Germany

Abstract

The paper concerns a study of our previous general construction for sim-
ple t-designs, called the basic construction, with the goal to establish existence
theorems for t-designs. As a general framework the basic construction involves
a great deal of possibilities of combining ingredient designs, and thus compu-
tations are necessary for constructing designs by this method. The work shows
the results of an investigation finding specified conditions under which the re-
quired computations can be avoidable. They thus lead to existence theorems
for simple t-designs and many of them have been found. Also a large number
of examples are included to illustrate the results.
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1 Introduction

Two recursive methods for constructing simple t-designs with arbitrary t have been
presented in [5, 6]. Both methods are of combinatorial nature in which a t-design
is built up from other small designs. The first method in [5], also called the basic
construction, gives a construction in which the blocks of the constructed t-design are
formed as a collection of block unions from a number of appropriate pairs of disjoint
ingredient designs. As a result, the construction sets conditions on the indices of
the ingredient designs for which a certain set of equalities have to be satisfied. The
second method in [6] is a further extension of the basic construction using the concept
of s-resolutions for ingredient designs. The explicit applications of the second method
as shown in [6] are derived from large sets of s-designs, which are special examples of
s-resolutions of the trivial t-designs for s < t.

In this work we particularly focus on the first paper [5]. The basic construction
is a generic method which may be viewed as a general framework for constructing
t-designs by block unions. First, to construct a simple t-(v, k,Λ) design, the method
allows all bv/2c possible choices of two disjoint sets X1 and X2 of size v1 and v2 with
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v1 + v2 = v, on which (k + 1) pairs of ingredient designs
(
(X1,B

(i)), (X2,B
(k−i))

)
of block sizes i and k − i, for i = 0, . . . , k, are formed. Second, the method also
allows the “vanishing” of certain such pairs, which means that they are not involved
in the construction. Thus the basic construction produces a great number of possible
combinations of ingredient designs. Consequently, the method requires computations
to find all the designs for any given set of parameters t, v, k. In spite of this fact, we
investigate the equations of the basic construction to determine specified conditions
for the existence of solutions, where computations can be avoided. In particular, this
leads to establishing existence theorems for simple t-designs. The results of the study
are presented by distinguishing between two cases t < k ≤ 2t and 2t + 1 ≤ k. We
also include numerous examples to illustrate the obtained theorems.

For the sake of completeness we recall a few basic definitions. A t-design, denoted
by t-(v, k, λ), is a pair (X,B), where X is a v-set of points and B is a collection of
k-subsets, called blocks, of X having the property that every t-set of X is a subset of
exactly λ blocks in B. The parameter λ is called the index of the design. A t-design is
called simple if no two blocks are identical i.e. no block of B is repeated; otherwise, it
is called non-simple (i.e. B is a multiset). It can be shown by simple counting that a
t-(v, k, λ) design is an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. Since

λs is an integer, necessary conditions for the parameters of a t-design are
(
k−s
t−s

)
|λ
(
v−s
t−s

)
,

for 0 ≤ s ≤ t. For given t, v and k, we denote by λmin(t, k, v), or λmin for short, the
smallest positive integer such that these conditions are satisfied for all 0 ≤ s ≤ t.
By complementing each block in X of a t-(v, k, λ) design, we obtain a t-(v, v − k, λ∗)
design with λ∗ = λ

(
v−k
t

)
/
(
k
t

)
, hence we shall assume that k ≤ v/2. The largest value

for λ for which a simple t-(v, k, λ) design exists is denoted by λmax and we have
λmax =

(
v−t
k−t

)
. The simple t-(v, k, λmax) design is called the complete design or the

trivial design.
We refer the reader to [1, 2, 3] for more information about designs.

1.1 The basic construction

We include a summary of the basic construction as described in [5] in the following
theorem. This is necessary for the main investigation in the next section.

Theorem 1.1 (Basic construction) Let v, k, t be integers with v > k > t ≥ 2.
Let X be a v-set and let X = X1 ∪ X2 be a partition of X with |X1| = v1 and
|X2| = v2. Let Di = (X1,B

(i)) be the complete i-(v1, i, 1) design for i = 0, . . . , t and

let Di = (X1,B
(i)) be a simple t-(v1, i, λ

(i)
t ) design for i = t + 1, . . . , k. Similarly,

let D̄i = (X2, B̄
(i)) be the complete i-(v2, i, 1) design for i = 0, . . . , t, and let D̄i =

(X2, B̄
(i)) be a simple t-(v2, i, λ̄

(i)
t ) design for i = t+ 1, . . . , k. Define

B = B(0,k) × [u0] ∪B(1,k−1) × [u1] ∪ · · · ∪B(k−1,1) × [uk−1] ∪B(k,0) × [uk],

where
B(i,k−i) = {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.
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Assume that

L0,t = L1,t−1 = L2,t−2 = · · · = Lt,0 := Λ, (1)

for a positive integer Λ, where

Lr,t−r =
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
t−r , (2)

r = 0, . . . , t, and ui ∈ {0, 1}, for i = 0, . . . , k. Then (X,B) is a simple t-(v, k,Λ)
design.

Some explanations of the symbols in the theorem need to be included.

• Two degenerate cases for designs occur when either k = t = 0 or v = k.

– The case k = t = 0 gives an “empty” design, denoted by ∅; note however
that the number of blocks of the empty design is 1.

– The case v = k gives a degenerate k-design having just 1 block consisting
of all v points.

• The notation X × [u], where X is a finite set and u ∈ {0, 1}, has the following
meaning. X×[0] is the empty set ∅, and X×[1] = X. In particular, B(i,k−i)×[ui]
indicates that either it is an empty set ∅ (when ui = 0) or the set B(i,k−i) itself
(when ui = 1). The case ui = 0 means that the pair (Di, D̄k−i) is not involved
in the construction.

• Any t-subset T of X is denoted by T(r,t−r) where |T∩X1| = r and |T∩X2| = t−r,
for r = 0, . . . , t. And Lr,t−r is the number of blocks in B containing T(r,t−r).

We should mention that Theorem 1 in [4] is a special case of the basic construction,
in particular, the easiest case with v1 = 1 and v2 = v has widely been used to generate
new designs from two specific known designs.

2 Existence Theorems

We present in this section various existence theorems which arise from studying spe-
cific conditions of the basic construction.

2.1 Designs with k ≤ 2t

In this section we study the case k ≤ 2t and t ≤ 8, where we restrict to conditions
v1 = v2 = v and λ

(i)
t = λ̄

(i)
t for i ≤ k. The goal is to find solutions of the basic

construction for which ui can be set to 0, or the ingredient design corresponding to
ui can be chosen as the trivial design.
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Theorem 2.1 (i) Suppose there exist simple 5-(v, i, λ
(i)
5 ) designs, i = 7, 8, such

that

λ
(7)
5 = (v − 2)(v − 9)/2,

λ
(8)
5 = 8(v − 2).

Then there exists a simple 5-(2v, 8,Λ1) design with

Λ1 = 4

(
v − 2

3

)
.

(ii) Suppose there exist simple 5-(v, i, λ
(i)
5 ) designs, i = 6, 7, 8, such that

λ
(7)
5 = −vλ(6)

5 + 2

(
v − 2

2

)
,

λ
(8)
5 = 2(v2 − v + 3)λ

(6)
5 /3− (v + 3)

(
v − 2

2

)
.

Then there exists a simple 5-(2v, 8,Λ2) design with

Λ2 =

(
v − 3

2

)
λ

(6)
5 /3 + (v − 3)

(
v − 2

2

)
.

Proof. It is traightforward to see that the theorem follows from equalities of the
basic construction. However, as an illustration, we show here some details of the
proof.

(i) For case (i) we choose v1 = v2 = v, k = 8, u4 = u6 = 0 and λ
(i)
5 = λ̄

(i)
5 for

i = 7, . . . , 8. We obtain the following equalities

L2,3 = L3,2 = 3

(
v − 2

3

)
+

(
v − 2

3

)
,

L1,4 = L4,1 = (v − 4)λ
(7)
5 +

(
v − 1

2

)
(v − 4),

L0,5 = L5,0 = λ
(8)
5 + vλ

(7)
5 +

(
v

3

)
(v − 4).

The values for λ
(7)
5 , λ

(8)
5 and Λ1 are derived from L2,3 = L1,4 = L0,5 = Λ1.

(ii) Similar to case (i), here however, we choose u5 = 0. The equalities become

L2,3 = L3,2 =

(
v − 3

2

)
λ

(6)
5 /3 +

(
v − 2

2

)
(v − 3),

L1,4 = L4,1 = (v − 4)λ
(7)
5 /3 + (v − 1)(v − 4)λ

(6)
5 /2 +

(
v − 1

3

)
,

L0,5 = L5,0 = λ
(8)
5 + vλ

(7)
5 +

(
v

2

)
λ

(6)
5 .

From L2,3 = L1,4 = L0,5 = Λ2 we compute λ
(7)
5 , λ

(8)
5 and Λ2, as desired. 2
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Remark 2.1 In Case (i) of the theorem, for a given v, if required ingredient designs
exist, then the index Λ1 of the resulting design is unique. In Case (ii), the existence

of ingredient designs depends on “free” parameter λ
(6)
5 , and thus the resulting designs

normally have different values for Λ2. For example, consider the case v1 = v2 = 24 for
Theorem 2.1. Without any restriction on ui, there are altogether 7 solutions for 5-
(48, 8, λ) from the basic construction. One of which is the complete 5-(48, 8, 1763×7)
design. One solution for case (i) with u4 = u6 = 0, namely 5-(48, 8, 880 × 7) has its
supplement 5-(48, 8, 883×7) with u5 = 0. There are two further solutions for case (ii)
with u5 = 0, namely 5-(48, 8, 863× 7), 5-(48, 8, 873× 7) and two of their supplements
5-(48, 8, 900× 7), 5-(48, 8, 890× 7).

Examples 2.1 Case (i) of Theorem 2.1:

1. v1 = v2 = 18. There is a simple 5-(36, 8, 448× 5) design, since there are simple

5-(18, i, λ
(i)
5 ) designs for i = 7, 8 with λ

(7)
5 = 12× 6 and λ

(8)
5 = 64× 2.

2. v1 = v2 = 22. If there are simple 5-(22, i, λ
(i)
5 ) designs for i = 7, 8 with λ

(7)
5 =

65× 2 and λ
(8)
5 = 8× 20, then there is a simple 5-(44, 8, 4560) design.

3. v1 = v2 = 23. If there are simple 5-(23, i, λ
(i)
5 ) designs for i = 7, 8 with λ

(7)
5 =

49× 3 and λ
(8)
5 = 21× 8, then there is a simple 5-(46, 8, 266× 20) design.

4. v1 = v2 = 24. There is a simple 5-(48, 8, 880× 7) design, since there are simple

5-(24, i, λ
(i)
5 ) designs for i = 7, 8 with λ

(7)
5 = 55× 3 and λ

(8)
5 = 176.

5. v1 = v2 = 32. If there are simple 5-(32, i, λ
(i)
5 ) designs for i = 7, 8 with λ

(7)
5 =

115× 3 and λ
(7)
5 = 48× 5, then there is a simple 5-(64, 8, 16240) design.

Case (ii) of Theorem 2.1:

1. v1 = v2 = 24. The following simple 5-(48, 8,Λ2) designs exist with

Λ2 = (836 + 10j)× 7, j = 0, 1, 2

since there exist simple 5-(24, i, λ
(i)
5 ) designs for i = 6, 7, 8 with

λ
(6)
5 = (17 + j), λ

(7)
5 = (18− 8j)× 3, λ

(8)
5 = (53 + 370j), j = 0, 1, 2.

2. v1 = v2 = 32. If there exist simple 5-(32, i, λ
(i)
5 ) designs for i = 6, 7, 8 with

λ
(6)
5 = (8 + j)× 3, λ

(7)
5 = (34− 32j)× 3, λ

(8)
5 = (139 + 398j)× 5, j = 0, 1,

then there exists a simple (64, 8,Λ2) design with

Λ2 = (15863 + 406j), j = 0, 1.
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Theorem 2.2 (i) Suppose there exist simple 6-(v, i, λ
(i)
6 ) designs, i = 8, 9, 10, such

that

λ
(8)
6 = (v − 3)(v − 10)/2,

λ
(9)
6 = 8(v − 3),

λ
(10)
6 = (v − 3)(v3 − 27v2 + 122v − 480)/24.

Then there exists a simple 6-(2v, 10,Λ1) design with

Λ1 = 2(v − 3)

(
v − 3

3

)
.

(ii) Suppose there exist simple 6-(v, i, λ
(i)
6 ) designs, i = 7, . . . , 10, such that

λ
(8)
6 = −(v − 1)λ

(7)
6 + 2

(
v − 3

2

)
,

λ
(9)
6 = 2(v2 − 3v + 5)λ

(7)
6 /3− (v + 2)

(
v − 3

2

)
,

λ
(10)
6 = (−3v3 + 6v2 + 9v − 60)λ

(7)
6 /12 +

(
v − 3

2

)
(v2 − v + 12)/2.

Then there exists a simple 6-(2v, 10,Λ2) design with

Λ2 =

(
v − 3

3

)
λ

(7)
6 /2 +

(
v − 3

2

)2

.

Proof. The proof is similar to that of Theorem 2.1.

(i) For the equalities of the basic construction with v1 = v2 = v, k = 10 and

λ
(i)
6 = λ̄

(i)
6 for i = 8, . . . , 10 choose u5 = u7 = 0.

(ii) As in (i), but choose u4 = u6 = 0.

2

Examples 2.2 Case (i) of Theorem 2.2:

1. v1 = v2 = 24. If there are simple 6-(24, i, λ
(i)
6 ) designs for i = 8, 9, 10 with

λ
(8)
6 = 49 × 3, λ

(9)
6 = 7 × 24 and λ

(10)
6 = 7 × 90, then there is a simple 6-

(48, 10, 266× 210) design.

2. v1 = v2 = 33. If there are simple 6-(33, i, λ
(i)
6 ) designs for i = 8, 9, 10 with

λ
(8)
6 = 115 × 3, λ

(9)
6 = 16 × 15 and λ

(10)
6 = 140 × 90, then there is a simple

6-(66, 10, 16269× 15) design.

3. v1 = v2 = 40. If there are simple 6-(40, i, λ
(i)
6 ) designs for i = 8, 9, 10 with

λ
(8)
6 = 185 × 3, λ

(9)
6 = 37 × 8 and λ

(10)
6 = 19425 × 2, then there is a simple

6-(80, 10, 95830× 6) design.
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Case (ii) of Theorem 2.2:

1. v1 = v2 = 45. If there are simple 6-(45, i, λ
(i)
6 ) designs for i = 7, . . . , 10 with

λ
(7)
6 = 12 × 3, λ

(8)
6 = 46 × 3, λ

(9)
6 = 5013 and λ

(10)
6 = 8324 × 9, then there is a

simple 6-(90, 10, 15047× 63) design.

2. v1 = v2 = 59. If there exist simple 6-(59, i, λ
(i)
6 ) designs for i = 7, . . . , 10 with

λ
(7)
6 = 48 + j, λ

(8)
6 = (148− 29.j)× 2,

λ
(9)
6 = (5974 + 1103.j)× 2, λ

(10)
6 = (53012− 9913.j)× 5, j = 0, . . . , 5,

then there exists a simple 6-(118, 10,Λ2) design with

Λ2 = (43384 + 198.j)× 70, j = 0, . . . , 5.

Theorem 2.3 (i) Suppose there exist simple 7-(v, i, λ
(i)
7 ) designs, i = 9, . . . , 12,

such that

λ
(10)
7 = −2(2v − 3)λ

(9)
7 /3 + 2

(
v − 3

2

)
(2v − 19)/3,

λ
(11)
7 = (11v2 − 29v + 30)λ

(9)
7 /12− 5

(
v − 3

2

)
(v2 − 9v − 10)/6,

λ
(12)
7 = −(2v3 − 5v2 + 3v + 10)λ

(9)
7 /5 +

(
v − 3

2

)
(2v3 − 21v2 + 19v − 150)/5.

Then there exists a simple 7-(2v, 12,Λ1) design with

Λ1 =

(
v − 4

3

)
λ

(9)
7 /10 + 3

(
v − 3

4

)
(v − 4).

(ii) Suppose there exist simple 8-(v, i, λ
(i)
8 ) designs, i = 10, . . . , 14, such that

λ
(11)
8 = −(4v − 10)λ

(10)
8 /3 + 2

(
v − 4

2

)
(2v − 21)/3,

λ
(12)
8 = (11v2 − 51v + 70)λ

(10)
8 /12− 5

(
v − 4

2

)
v(v − 11)/6,

λ
(13)
8 = −v(2v2 − 11v + 19)λ

(10)
8 /5 +

(
v − 4

2

)
(2v3 − 27v2 + 67v − 192)/5,

λ
(14)
8 = (23v4 − 128v3 + 253v2 − 268v + 840)λ

(10)
8 /180

− (v − 4)(v − 5)(3v4 − 38v3 + 33v2 + 242v − 1680)/48.

Then there exists a simple 8-(2v, 14,Λ2) design with

Λ2 = 2

(
v − 4

4

)
λ

(10)
8 /15 + 2

(
v − 4

2

)(
v − 4

4

)
.
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Proof.

(i) Choose u6 = u8 = 0 for equalities of the basic construction with v1 = v2 = v,

k = 12 and λ
(i)
7 = λ̄

(i)
7 , i = 9, . . . , 12.

(ii) Choose u7 = u9 = 0 for equalities of the basic construction with v1 = v2 = v,

k = 14 and λ
(i)
8 = λ̄

(i)
8 , i = 10, . . . , 14.

2

Examples 2.3 Case (i) of Theorem 2.3:

1. v1 = v2 = 60. If there exist simple 7-(60, i, λ
(i)
7 ) designs for i = 9, . . . , 12 with

λ
(9)
7 = (672 + j)× 2, λ

(10)
7 = (1316− 78.j)× 2,

λ
(11)
7 = (37436 + 1263.j)× 5, λ

(12)
7 = (392088− 23668.j)× 7, j = 0, . . . , 16,

then there exists a simple 7-(120, 12,Λ1) design with

Λ1 = (455112 + 36.j)× 154, j = 0, . . . , 16.

2. v1 = v2 = 66. If there exist simple 7-(66, i, λ
(i)
7 ) designs for i = 9, . . . , 12 with

λ
(9)
7 = (1670 + 11.j), λ

(10)
7 = (3506− 946.j),

λ
(11)
7 = (21410 + 3014.j)× 14, λ

(12)
7 = (28898− 7906.j)× 154, j = 0, . . . , 3,

then there exists a simple 7-(132, 12,Λ1) design with

Λ1 = (10646330 + 3782.j)× 11, j = 0, . . . , 3.

3. v1 = v2 = 69. If there exist simple 7-(69, i, λ
(i)
7 ) designs for i = 9, . . . , 12 with

λ
(9)
7 = (1841 + 2.j), λ

(10)
7 = (224− 9.j)× 20,

λ
(11)
7 = (69965 + 1680.j)× 5, λ

(12)
7 = (3119008− 126686.j)× 2, j = 0, . . . , 24,

then there exists a simple 7-(138, 12,Λ1) design with

Λ1 = (74290944 + 4368.j)× 2, j = 0, . . . , 24.

Case (ii) of Theorem 2.3:

1. v1 = v2 = 61. If there are simple 8-(61, i, λ
(i)
8 ) designs for i = 10, . . . , 14 with

λ
(10)
8 = 686× 2, λ

(11)
8 = 224× 2, λ

(12)
8 = 55118× 5,

λ
(13)
8 = 4672× 91, λ

(14)
8 = 41853× 364.

then there is a simple 8-(122, 14,Λ2) design with Λ2 = 8656704× 154.
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2. v1 = v2 = 70. If there are simple 8-(70, i, λ
(i)
8 ) designs for i = 10, . . . , 14 with

λ
(10)
8 = (1869 + 2.j), λ

(11)
8 = (98− 9.j)× 20, λ

(12)
8 = (93485 + 1680.j)× 5,

λ
(13)
8 = (1345404− 126686.j)× 2, λ

(14)
8 = 2221149 + 5661642.j, j = 0, . . . , 10,

then there is a simple 8-(140, 14,Λ2) design with

Λ2 = (5719392 + 336.j)× 572, j = 0, . . . , 10.

Theorem 2.4 Suppose there exist simple 4-(v, i, λ
(i)
4 ) designs, i = 5, 7, 8 such that

λ
(7)
4 = (v − 2)(v − 9)λ

(5)
4 /6,

λ
(8)
4 = 2(v − 2)λ

(5)
4 .

Then there exists a simple 4-(2v, 8,Λ) design with

Λ = 2(v − 2)

(
v − 2

2

)
λ

(5)
4 /3.

Proof. The result follows from equalities of the basic construction with v1 = v2 = v,
k = 8, u2 = u4 = u6 = 0 and λ

(i)
4 = λ̄

(i)
4 , i = 5, 7, 8. 2

Examples 2.4 1. v1 = v2 = 22. There exist simple 4-(44, 8,Λ) designs with

Λ = j.1520× 10, j = 1, 2, 3,

since simple 4-(22, i, λ
(i)
4 ) designs for i = 5, 7, 8 exist with

λ
(5)
4 = j6, λ

(7)
4 = j4, λ

(8)
4 = j30, j = 1, 2, 3.

2. v1 = v2 = 23. There exist simple 4-(46, 8,Λ) designs with

Λ = j.14× 210, j = 1, . . . , 19,

since simple 4-(23, i, λ
(i)
4 ) designs for i = 5, 7, 8 exist with

λ
(5)
4 = j, λ

(7)
4 = j, λ

(8)
4 = j2, j = 1, . . . , 19.

In previous theorems we observe that certain ui are set to 0 for the basic con-
struction. On the other hand, we may view a complete t-(v, i,

(
v−t
i−t

)
) design, whose

existence is guaranteed for all possible parameters, as a “constant”. So, we may as-
sume that the complete design is the corresponding design for certain ui = 1. The
next theorem shows how to use complete designs for the case k = 2t.
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Theorem 2.5 (i) Suppose there exist simple 5-(v, i, λ
(i)
5 ) designs, i = 8, 9, 10, such

that

λ
(9)
5 = −(2v − 1)λ

(8)
5 /2 + (v − 2)(v − 3)(v − 5)(2v − 17)/12,

λ
(10)
5 = (11v2 − 7v + 12)λ

(8)
5 /20− (v − 2)(v − 3)(v − 5)(v2 − 7v − 18)/12.

Then there exists a simple 5-(2v, 10,Λ1) design with

Λ1 =

(
v − 3

2

)
λ

(8)
5 /10 +

(
v − 2

2

)(
v − 3

2

)
(v − 5)/2.

(ii) Suppose there exist simple 6-(v, i, λ
(i)
6 ) designs, i = 9, 10, 11, 12, such that

λ
(10)
6 = −(2v − 3)λ

(9)
6 /2 +

(
v − 3

2

)
(v − 6)(2v − 19)/6,

λ
(11)
6 = (11v2 − 29v + 30)λ

(9)
6 /20−

(
v − 3

2

)
(v − 6)(v2 − 9v − 10)/6,

λ
(12)
6 = −(2v3 − 5v2 + 3v + 10)λ

(9)
6 /10 +

(
v − 3

2

)
(v − 6)(2v3 − 21v2 + 19v − 150)/30.

Then there exists a simple 6-(2v, 12,Λ2) design with

Λ2 =

(
v − 3

3

)
λ

(9)
6 /10 +

(
v − 3

2

)(
v − 3

3

)
(v − 6)/2.

(iii) Suppose there exist simple 7-(v, i, λ
(i)
7 ) designs, i = 11, 12, 13, 14, such that

λ
(12)
7 = −(6v − 10)λ

(11)
7 /5− (v − 3)

(
v − 7

3

)
(13v − 10)/20

+ 7

(
v − 3

3

)
(v − 7)(v − 10)/10,

λ
(13)
7 = (11v2 − 29v + 24)λ

(11)
7 /15 + (4v − 12)

(
v − 7

3

)
(2v2 − 4v + 5)/15

− 4

(
v − 3

3

)
(v − 7)(2v2 − 20v − 3)/15,

λ
(14)
7 = −(31v3 − 80v2 + 61v + 60)λ

(11)
7 /105

− (v − 3)

(
v − 7

3

)
(101v3 − 199v2 + 194v + 480)/420

+

(
v − 3

3

)
(v − 7)(29v3 − 295v2 + 74v − 960)/120.

Then there exists a simple 7-(2v, 14,Λ3) design with

Λ3 =

(
v − 4

3

)
λ

(11)
7 /35 + 8

(
v − 3

4

)(
v − 7

3

)
/35 + 8

(
v − 3

4

)(
v − 4

2

)
(v − 7)/15.

10



Proof.

(i) Choose v1 = v2 = v, k = 10, u5 = u7 = 0 and u6 = 1 with the complete
5-(v, 6, (v − 5)) design for the basic construction.

(ii) Choose v1 = v2 = v, k = 12, u6 = u8 = 0 and u7 = 1 with the complete
6-(v, 7, (v − 6)) design.

(iii) Choose v1 = v2 = v, k = 14, u7 = u9 = 0 and u8 = u10 = 1 with the complete
7-(v, 8, (v − 7)) and 7-(v, 10,

(
v−7

3

)
) designs.

2

Examples 2.5 Case (i) of Theorem 2.5:

1. v1 = v2 = 23. If there are simple 5-(23, i, λ
(i)
5 ) designs for i = 8, 9, 10 with

λ
(8)
5 = (98 + j)× 8, λ

(9)
5 = (7− 2.j)× 90, λ

(10)
5 = (7 + 9.j)× 252, j = 0, . . . , 3,

then there is a simple 5-(46, 10,Λ1) design with

Λ1 = (186998 + 76.j)× 2, j = 0, . . . , 3.

2. v1 = v2 = 24. There are simple 5-(48, 10,Λ1) designs with

Λ1 = (11438 + 6.j)× 42, j = 0, 1, 2,

since there are simple 5-(24, i, λ
(i)
5 ) designs for i = 8, 9, 10 with

λ
(8)
5 = (931 + 12.j), λ

(9)
5 = (133− 47.j)× 6, λ

(10)
5 = (133 + 206.j)× 18, j = 0, 1, 2.

3. v1 = v2 = 64. If there are simple 5-(64, i, λ
(i)
5 ) designs for i = 8, 9, 10 with

λ
(8)
5 = (30267 + 28.j), λ

(9)
5 = (10148− 127.j)× 14,

λ
(10)
5 = (1888 + 4462.j)× 14, j = 0, . . . , 79,

then there is a simple 5-(128, 10,Λ1) design with

Λ1 = (2562488 + 122.j)× 42, j = 0, . . . , 79.

Case (ii) of Theorem 2.5:

1. v1 = v2 = 59. If there are simple 6-(59, i, λ
(i)
6 ) designs for i = 9, . . . , 12 with

λ
(9)
6 = (11414 + j)× 2, λ

(10)
6 = (6824− 23.j)× 5,

λ
(11)
6 = (256122 + 523.j)× 7, λ

(12)
6 = (818600− 2811.j)× 28, j = 0, . . . , 291,

then there is a simple 6-(118, 12,Λ2) design with

Λ2 = (1292784 + 6.j)× 924, j = 0, . . . , 291.
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2. v1 = v2 = 68. If there are simple 6-(68, i, λ
(i)
6 ) designs for i = 9, . . . , 12 with

λ
(9)
6 = (1840 + j)× 20, λ

(10)
6 = (13504− 266.j)× 5,

λ
(11)
6 = (2000080 + 24461.j)× 2, λ

(12)
6 = 60842624− 1211916.j, j = 0, . . . , 50,

then there is a simple 6-(136, 12,Λ2) design with

Λ2 = (14177280 + 416.j)× 210, j = 0, . . . , 50.

Case (iii) of Theorem 2.5:

1. v1 = v2 = 39. If there are simple 7-(39, i, λ
(i)
7 ) designs for i = 11, . . . , 14 with

λ
(11)
7 = 5× 10, λ

(12)
7 = 3548× 56, λ

(13)
7 = 876× 84, λ

(14)
7 = 6500× 312.

then there is a simple 7-(78, 14,Λ3) design with Λ3 = 930002× 715.

2. v1 = v2 = 48. If there are simple 7-(48, i, λ
(i)
7 ) designs for i = 11, . . . , 14 with

λ
(11)
7 = (7 + 13.j)× 10, λ

(12)
7 = (372466− 3614.j)× 2,

λ
(13)
7 = (938 + 1332.j)× 156, λ

(14)
7 = (24720− 5154.j)× 780, j = 0, . . . , 4,

then there is a simple 7-(96, 14,Λ3) design with

Λ3 = (78298958 + 1118.j)× 44, j = 0, . . . , 4.

2.2 Designs with arbitrarily large t and k ≥ 2t+ 1

In the previous section we have dealt with specified conditions for the basic construc-
tion for 4 ≤ t ≤ 8 and k ≤ 2t. In this section we investigate specified conditions for
the basic construction with arbitrarily large t, and k ≥ 2t+1. This case is interesting
as we obtain statements about internal relationship between ingredient designs and
constructed designs.

Theorem 2.6 Let t, k, and v be positive integers such that 2t + 1 ≤ k < v − t.
Assume that there exist simple t-(v, h, λ̄

(h)
t ) designs for h = k− t, . . . , k such that the

indices λ̄
(h)
t , for h = k − t + 1, . . . , k, can be computed from λ̄

(k−t)
t by the recursive

formulas

Li,t−i =

(
v − (t− i)

i

) t−i∑
j=0

(
t+1−i
j

)(
k−t−j
i

) λ̄(k−i−j)
t ,

and equalities L0,t = L1,t−1 = · · · = Lt,0. Then there is a simple t − (v + t + 1, k,Λ)
design with

Λ =

(
v
t

)(
k−t
t

) λ̄(k−t)
t .

12



Proof. The theorem follows from the basic construction with |X1| = v1 = t + 1,
|X2| = v2 = v and ui = 1 for i = 0, . . . , t and ut+1 = 0. More precisely, from the
general expression for

Li,t−i =
k∑
j=0

uj.λ
(j)
i .λ̄

(k−j)
t−i ,

we have

Li,t−i =

(
t+ 1− i
i− i

) (
v−(t−i)

i

)(
k−i−(t−i)

i

) λ̄(k−i)
t +

(
t+ 1− i
i+ 1− i

) (
v−(t−i)

i

)(
k−(i+1)−(t−i)

i

) λ̄(k−(i+1))
t

+

(
t+ 1− i
i+ 2− i

) (
v−(t−i)

i

)(
k−(i+2)−(t−i)

i

) λ̄(k−(i+2))
t + · · ·+

(
t+ 1− i

i+ (t− i)− i

) (
v−(t−i)

i

)(
k−t−(t−i)

i

) λ̄(k−t)
t ,

=

(
v − (t− i)

i

)[ (
t+1−i
i−i

)(
k−i−(t−i)

i

) λ̄(k−i)
t +

(
t+1−i
i+1−i

)(
k−(i+1)−(t−i)

i

) λ̄(k−(i+1))
t

+

(
t+1−i
i+2−i

)(
k−(i+2)−(t−i)

i

) λ̄(k−(i+2))
t + · · ·+

(
t+1−i

i+(t−i)−i

)(
k−t−(t−i)

i

) λ̄(k−t)
t

]
,

=

(
v − (t− i)

i

)[(t+1−i
0

)(
k−t
i

) λ̄(k−i)
t +

(
t+1−i

1

)(
k−t−1

i

) λ̄(k−(i+1))
t

+

(
t+1−i

2

)(
k−t−2

i

) λ̄(k−(i+2))
t + · · ·+

(
t+1−i
t−i

)(
k−t−(t−i)

i

) λ̄(k−t)
t

]
,

=

(
v − (t− i)

i

) t−i∑
j=0

(
t+1−i
j

)(
k−t−j
i

) λ̄(k−i−j)
t ,

as desired.
The equalities L0,t = L1,t−1 = · · · = Lt,0 := Λ for a positive integer Λ shows in

particular that

Λ = Lt,0 =

(
v
t

)(
k−t
t

) λ̄(k−t)
t .

2

Here is an example to illustrate the recursive computation of λ̄
(h)
t , h = k − t +

1, . . . , k in terms of v, k and λ̄
(k−t)
t from Li,t−i for t = 5. The expressions Li,5−i, for

13



i = 5, 4, 3, 2, 1, 0, are then

L5,0 =

(
v

5

)( 1(
k−5

5

) λ̄(k−5)
5

)
,

L4,1 =

(
v − 1

4

)( 1(
k−5

4

) λ̄(k−4)
5 +

2(
k−6

4

) λ̄(k−5)
5

)
,

L3,2 =

(
v − 2

3

)( 1(
k−5

3

) λ̄(k−3)
5 +

3(
k−6

3

) λ̄(k−4)
5 +

3(
k−7

3

) λ̄(k−5)
5

)
,

L2,3 =

(
v − 3

2

)( 1(
k−5

2

) λ̄(k−2)
5 +

4(
k−6

2

) λ̄(k−3)
5 +

6(
k−7

2

) λ̄(k−4)
5 +

4(
k−8

2

) λ̄(k−5)
5

)
,

L1,4 = (v − 4)
( 1

k − 5
λ̄

(k−1)
5 +

5

k − 6
λ̄

(k−2)
5 +

10

k − 7
λ̄

(k−3)
5 +

10

k − 8
λ̄

(k−4)
5 +

5

k − 9
λ̄

(k−5)
5

)
,

L0,5 = λ̄
(k)
5 + 6λ̄

(k−1)
5 + 15λ̄

(k−2)
5 + 20λ̄

(k−3)
5 + 15λ̄

(k−4)
5 + 6λ̄

(k−5)
5 .

It is clear that the equalities L5,0 = L4,1 = L3,2 = L2,3 = L1,4 = L0,5 yield a

recursive computation of λ̄
(k−4)
5 , λ̄

(k−3)
5 , λ̄

(k−2)
5 , λ̄

(k−1)
5 , λ̄

(k)
5 in terms of v, k and λ̄

(k−5)
5 .

Remark 2.2 Observe that in Theorem 2.6 the number of ingredient designs whose
indices need to be computed from λ̄

(k−t)
t is always t independent of the given value k

in the interval [t+ 1, v − t− 1].

As an illustration of Theorem 2.6 we show two corollaries for t = 5, k = 12 and
t = 6, k = 15, with explicit expressions for computing the indices of the ingredient
designs.

Corollary 2.7 Suppose there are simple 5-(v, h, λ̄
(h)
5 ) designs, h = 7, . . . , 12, such
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that

λ̄
(8)
5 =

1

3
(v−1

4

) λ̄(7)
5

(
5
(v

5

)
− 14

(v − 1

4

))
,

λ̄
(9)
5 =

1

12
(v−2

3

)(v−1
4

) λ̄(7)
5

(
− 105

(v − 2

3

)(v
5

)
+ 168

(v − 2

3

)(v − 1

4

)
+ 20

(v
5

)(v − 1

4

))
,

λ̄
(10)
5 =

1

15
(v−3

2

)(v−2
3

)(v−1
4

) λ̄(7)
5

(
420
(v − 3

2

)(v − 2

3

)(v
5

)
− 504

(v − 3

2

)(v − 2

3

)(v − 1

4

)
− 140

(v − 3

2

)(v
5

)(v − 1

4

)
+ 15

(v − 2

3

)(v
5

)(v − 1

4

))
,

λ̄
(11)
5 =

1

18
(v−3

2

)(v−2
3

)(v−1
4

)
(v − 4)

λ̄
(7)
5

(
6
(v

5

)(v − 3

2

)(v − 2

3

)(v − 1

4

)
+ 1260v

(v − 3

2

)(v − 2

3

)(v − 1

4

)
− 1260v

(v − 3

2

)(v − 2

3

)(v
5

)
+ 560v

(v − 3

2

)(v
5

)(v − 1

4

)
− 105v

(v
5

)(v − 2

3

)(v − 1

4

)
− 5040

(v − 3

2

)(v − 2

3

)(v − 1

4

)
+ 5040

(v − 3

2

)(v − 2

3

)(v
5

)
− 2240

(v − 3

2

)(v
5

)(v − 1

4

)
+ 420

(v − 2

3

)(v
5

)(v − 1

4

))
,

λ̄
(12)
5 =

1

21
(v−3

2

)(v−2
3

)(v−1
4

)
(v − 4)

λ̄
(7)
5

(
− 46

(v
5

)(v − 3

2

)(v − 2

3

)(v − 1

4

)
− 2772v

(v − 3

2

)(v − 2

3

)(v − 1

4

)
+ 3150v

(v − 3

2

)(v − 2

3

)(v
5

)
− 1680v

(v − 3

2

)(v
5

)(v − 1

4

)
+ 420v

(v
5

)(v − 2

3

)(v − 1

4

)
+
(v

5

)(v − 3

2

)(v − 2

3

)(v − 1

4

)
v + 11088

(v − 3

2

)(v − 2

3

)(v − 1

4

)
+ 6720

(v − 3

2

)(v
5

)(v − 1

4

)
− 1680

(v − 2

3

)(v
5

)(v − 1

4

)
− 12600

(v − 3

2

)(v − 2

3

)(v
5

))
.

Then there is a simple 5-(v + 6, 12,Λ) design with Λ = 1
21

(
v
5

)
λ̄

(7)
5 .

Examples 2.6 (Corollary 2.7):

1. v1 = 6, v2 = 25. If there are simple 5-(25, i, λ̄
(i)
5 ) designs for i = 7, . . . , 12 with

λ̄
(7)
5 = 6.j × 10, λ̄

(8)
5 = 11.j × 20, λ̄

(9)
5 = 81.j × 15,

λ̄
(10)
5 = 141.j × 24, λ̄

(11)
5 = 155.j × 60, λ̄

(12)
5 = 144.j × 120, j = 1, 2, 3,

then there is a simple 5-(31, 12,Λ) design with

Λ = 345.j × 440, j = 1, 2, 3.

A close look at these 3 solutions shows that a 5-(31, 12, 690× 440) design exists
for j = 2 which was not known before. When j = 1 and 3, all the ingredient
5-(25, i, λ̄

(i)
5 ) designs exist, except for 5-(25, 11, λ̄

(11)
5 ) designs with λ̄

(11)
5 = 155×

60 and 465× 60, whose existence is still undecided.
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2. v1 = 6, v2 = 28. If there exist simple 5-(28, i, λ̄
(i)
5 ) designs for i = 7, . . . , 12 with

λ̄
(7)
5 = 15.j, , λ̄

(8)
5 = 10.j × 7, λ̄

(9)
5 = 12.j × 35,

λ̄
(10)
5 = 210.j × 7, λ̄

(11)
5 = 20.j × 231, λ̄

(12)
5 = 330.j × 33, j = 1, . . . , 16,

then there exists a simple 5-(34, 12,Λ) design with

Λ = 5850.j × 12, j = 1, . . . , 16.

Corollary 2.8 Suppose there are simple 6-(v, h, λ̄
(h)
6 ) designs, h = 9, . . . , 15, such

that

λ̄
(10)
6 =

3

2
(v−1

5

) λ̄(9)
6

(
−
(v

6

)
+ 3
(v − 1

5

))
,

λ̄
(11)
6 =

3

10
(v−2

4

)(v−1
5

) λ̄(9)
6

(
5
(v

6

)(v − 1

5

)
− 27

(v − 2

4

)(v
6

)
+ 45

(v − 2

4

)(v − 1

5

))
,

λ̄
(12)
6 =

1(v−3
3

)(v−2
4

)(v−1
5

) λ̄(9)
6

((v
6

)(v − 2

4

)(v − 1

5

)
− 9
(v − 3

3

)(v
6

)(v − 1

5

)
+ 27

(v − 3

3

)(v − 2

4

)(v
6

)
− 33

(v − 3

3

)(v − 2

4

)(v − 1

5

))
,

λ̄
(13)
6 =

3

7
(v−4

2

)(v−3
3

)(v−2
4

)(v−1
5

) λ̄(9)
6

((v − 3

3

)(v − 2

4

)(v
6

)(v − 1

5

)
− 15

(v − 4

2

)(v
6

)(v − 2

4

)(v − 1

5

)
+ 75

(v − 4

2

)(v − 3

3

)(v
6

)(v − 1

5

)
− 165

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v
6

)
+ 165

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

))
,

λ̄
(14)
6 =

3

28
(v−4

2

)(v−3
3

)(v−2
4

)(v−1
5

)
(v − 5)

λ̄
(9)
6

(
1485v

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v
6

)
− 1287v

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
− 27v

(v
6

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
+ 225v

(v − 4

2

)(v
6

)(v − 2

4

)(v − 1

5

)
− 825v

(v − 4

2

)(v − 3

3

)(v
6

)(v − 1

5

)
− 7425

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v
6

)
+ 6435

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
+ 135

(v
6

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
− 1125

(v − 4

2

)(v
6

)(v − 2

4

)(v − 1

5

)
+ 4125

(v − 4

2

)(v − 3

3

)(v
6

)(v − 1

5

)
+
(v − 4

2

)(v − 3

3

)(v − 2

4

)(v
6

)(v − 1

5

))
,

λ̄
(15)
6 =

1

84
(v−4

2

)(v−3
3

)(v−2
4

)(v−1
5

)
(v − 5)

λ̄
(9)
6

(
− 68

(v
6

)(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
− 27027v

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v
6

)
+ 21021v

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
+ 945v

(v
6

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
− 5775v

(v − 4

2

)(v
6

)(v − 2

4

)(v − 1

5

)
+ 17325v

(v − 4

2

)(v − 3

3

)(v
6

)(v − 1

5

)
+
(v

6

)(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
v

− 4725
(v

6

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
− 105105

(v − 4

2

)(v − 3

3

)(v − 2

4

)(v − 1

5

)
+ 135135

(v
6

)(v − 4

2

)(v − 3

3

)(v − 2

4

)
− 86625

(v
6

)(v − 4

2

)(v − 3

3

)(v − 1

5

)
+ 28875

(v
6

)(v − 4

2

)(v − 2

4

)(v − 1

5

))
.
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Then there is a simple 6-(v + 7, 15,Λ) design with Λ = 1
84

(
v
6

)
λ̄

(9)
6 .

Examples 2.7 (Corollary 2.8):

v1 = 7, v2 = 30. If there are simple 6-(30, i, λ̄
(i)
6 ) designs for i = 9, . . . , 15 with

λ̄
(9)
6 = 14.j × 8, λ̄

(10)
6 = 8.j × 42, λ̄

(11)
6 = j × 1848, λ̄

(12)
6 = 16.j × 308,

λ̄
(13)
6 = 18.j × 792, λ̄

(14)
6 = 280.j × 99, λ̄

(15)
6 = 1211.j × 44, j = 1, . . . , 18,

then there is a simple 6-(37, 15,Λ) design with

Λ = 12180.j × 65, j = 1, . . . , 18.

Remark 2.3 The expressions for λ̄
(i)
t in Corollaries 2.7 and 2.8 were computed by

using Maple 14, Maple April 5, 2010.

Theorem 2.9 Let t, k, v1, and v2 be positive integers with v = v1 + v2 such that
2t + 1 ≤ k < v − t. Assume that there are simple t-(v1, j, λ

(j)
t ) and t-(v2, j, λ̄

(j)
t )

designs for j = 0, . . . , k having the property that either λ
(j)
t = λ

(j)
max or λ̄

(k−j)
t = λ̄

(k−j)
max

but not both (i.e. in each pair (B(j), B̄(k−j)) of the basic construction, exactly one
design is not the complete design). Let

J := {j | λ(j)
t 6= λ(j)

max for j = 0, . . . , k},

J̄ := {j | λ̄(j)
t 6= λ̄(j)

max, for j = 0, . . . , k}

denote the subsets of non-trivial designs in all such pairs. Let

mj := λ(j)
max/λ

(j)
min, m̄j := λ̄(j)

max/λ̄
(j)
min,

for j ∈ J ∪ J̄ .
Let

n = gcd(mi1 , . . . ,mi|J| , m̄j1 , . . . , m̄j|J̄|),

where J = {i1, . . . , i|J |} and J̄ = {j1, . . . , j|J̄ |}
For i ∈ J and j ∈ J̄ , define

%(i) := mi/n, %̄(j) := m̄j/n.

Assume that
λ

(i)
t = λ

(i)
min.%

(i).h and λ̄
(j)
t = λ̄

(j)
min.%̄

(j).h,

i ∈ J , j ∈ J̄ and 1 ≤ h ≤ n. Then there is a simple t-(v, k,Λ) design, with Λ =
L(0, t) = L(1, t− 1) = · · · = L(t, 0) =

(
v1+v2−t
k−t

)
∗ h/n.

17



Proof. Recall that the expressions L(0, t), L(1, t−1), . . . , L(t−1, 1), L(t, 0) from the
basic construction are obtained by taking the union of blocks from (k + 1) pairs of
the ingredient designs

(B(0), B̄(k)), . . . , (B(t), B̄(k−t)), (B(t+1), B̄(k−(t+1)), . . . , (B(k−(t+1)), B̄(t+1)),

(B(k−t), B̄(t)), . . . , (B(k), B̄(0)),

where

L(s, t− s) =
k∑
j=0

ujλ
j
sλ̄

k−j
t−s ,

=
k∑
j=0

ujcj,k−jλ
j
t λ̄

k−j
t .

with cj,k−j as constant.
Here is the crucial point. Set uj = 1 for j = 0, . . . , k. From each pair (B(j), B̄(k−j))

choose exactly one, either B(j) or B̄(k−j), as the trivial design. In other words, in all
the terms cj,k−jλ

(j)
t λ̄

(k−j)
t we have either λ

(j)
t = λ

(j)
max or λ̄

(k−j)
t = λ̄

(k−j)
max .

In doing so we treat the index of the trivial design in each pair (B(j), B̄(k−j)) as
a constant, and the index of the other design as a variable.

Now, observe that if all ingredient designs are trivial designs, we then obtain the
trivial t-(v1 +v2, k,

(
v1+v2−t
k−t

)
) design from the basic construction. In this case, we have

either
λ

(j)
t = λ

(j)
min.%

(j).n or λ̄
(j)
t = λ̄

(j)
min.%̄

(j).n,

for j = 0, . . . , k and

L(0, t) = L(1, t− 1) = · · · = L(t, 0) =

(
v1 + v2 − t
k − t

)
.

This implies that each of the expressions L(0, t) = L(1, t − 1) = · · · = L(t, 0) is a
multiple of n. In particular, if the non-trivial ingredient designs have indices

λ
(j)
t = λ

(j)
min.%

(j) or λ̄
(k−j)
t = λ̄

(k−j)
min .%̄(k−j),

for j = 0, . . . , k, then we obtain a non-trivial t-(v1 + v2, k,Λ) design with

L(0, t) = L(1, t− 1) = · · · = L(t, 0) = Λ =

(
v1 + v2 − t
k − t

)
/n.

Therefore, if
λ

(j)
t = λ

(j)
min.%

(j).h or λ̄
(k−j)
t = λ̄

(k−j)
min .%̄(k−j).h,

for 1 ≤ h < n and j = 0, . . . , k, the construction will yield a non-trivial t-(v1 +
v2, k,Λ)= t-(v1 + v2, k,

(
v1+v2−t
k−t

)
∗ h/n) design. 2
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Examples 2.8 1. t = 5, v1 = 18, v2 = 19 and k = 12. For the pair (B(6), B̄(6))
we choose (X2, B̄

(6)) as the trivial 5-(19, 6, 14) design. Here we have

(λ
(6)
min, λ

(7)
min, λ

(8)
min, λ

(9)
min, λ

(10)
min , λ

(11)
min , λ

(12)
min ) = (1, 6, 2, 5, 9, 132, 132),

(λ̄
(6)
min, λ̄

(7)
min, λ̄

(8)
min, λ̄

(9)
min, λ̄

(10)
min , λ̄

(11)
min , λ̄

(12)
min ) = (2, 7, 28, 7, 14, 231, 264),

so, n = gcd(x0, . . . , x12) = 13 and

(%(6), %(7), %(8), %(9), %(10), %(11), %(12)) = (1, 1, 11, 11, 11, 1, 1),

(%̄(7), %̄(8), %̄(9), %̄(10), %̄(11), %̄(12)) = (1, 1, 11, 11, 1, 1).

Hence, if

(λ(6), λ(7), λ(8), λ(9), λ(10), λ(11), λ(12)) = (h, h6, 11h2, 11h5, 11h9, h132, h132),

(λ̄(7), λ̄(8), λ̄(9), λ̄(10), λ̄(11), λ̄(12)) = (h7, h28, 11h7, 11h14, h231, h264),

for h = 1, . . . , 12, then there exists a non-trivial 5-(37, 12,Λ) design with Λ =(
v1+v2−t
k−t

)
h/n) =

(
32
7

)
h/13. It turns out that for h = 4, 5 all the ingredient designs

exist, hence there exist a 5-(37, 12, 43152×24) and a 5-(37, 12, 53940×24) design.
Both designs were unknown.

2. t = 5, v1 = v2 = 21, k = 12, 13, 14, 15. It is straightforward to check that
n = gcd(x0, . . . , x15) = 2 and

(%(6), %(7), %(8), %(9), %(10), %(11), %(12), %(13), %(14), %(15)) = (2, 2, 1, 13, 13, 13, 13, 1, 2, 2),

with %(i) = %̄(i), i = 7, . . . , 15. Since the 5-(21, i, λ(i)) ingredient designs with the
following indices

(λ(6), λ(7), λ(8), λ(9), λ(10), λ(11), λ(12), λ(13), λ(14), λ(15)) =

(2× 4, 2× 30, 1× 180, 13× 70, 13× 168, 13× 308, 13× 440, 1× 6435, 2× 2860, 2× 2002)

exist, there exist non-trivial simple designs with the following parameters

5− (42, 12, 38998× 132),

5− (42, 13, 38998× 495),

5− (42, 14, 1130942× 55),

5− (42, 15, 1130942× 154).

Note that these designs are all halvings of the complete 5-(42, k,
(

37
k−5

)
) designs

for k = 12, . . . , 15.

3. t = 5, v1 = v2 = 25, k = 13, . . . , 18. Observe that n = gcd(x0, . . . , x18) = 19
and

(%(7), %(8), %(9), %(10), %(11), %(12), %(13), %(14), %(15), %(16), %(17), %(18)) =

(1, 3, 17, 34, 34, 34, 34, 34, 34, 17, 3, 1),
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with %(i) = %̄(i), i = 7, . . . , 18. Since the 5-(25, i, λ(i)) ingredient designs with the
following indices

(λ(7), λ(8), λ(9), λ(10), λ(11), λ(12), λ(13), λ(14), λ(15), λ(16), λ(17), λ(18)) =

(8× 10, 24× 20, 136× 15, 272× 24, 272× 60, 272× 120,

272× 195, 272× 260, 272× 286, 136× 520, 24× 2210, 8× 4080)

exist, there exist non-trivial simple designs with the following parameters

5− (50, 13, 14104× 6435),

5− (50, 14, 521848× 715),

5− (50, 15, 1565544× 858),

5− (50, 16, 1565544× 2730),

5− (50, 17, 1565544× 7735),

5− (50, 18, 5740328× 5355).

Remark 2.4 1. It should be noted that if appropriate t-(v, i, λ(i)) designs would
exist for i ∈ {t+1, . . . , v−(t+1)}, then Theorem 2.9 could be able to construct
t-(2v, k,Λ) designs for 2t+ 1 ≤ k ≤ v − (t+ 1).

2. Observe that in Example 2.8 (3) above if we would consider the case k = 12,
then Theorem 2.9 would only yield the trivial design. This is because the
trivial 5-(25, 6, 20) design is the only simple design for 5-(25, 6, λ

(6)
5 ). So, n =

gcd(x0, . . . , x12) = 1, hence the theorem will give the trivial 5-(50, 12,
(

45
7

)
)

design as the single solution.

The next proposition is useful with regard to the application of Theorem 2.9,
as it will show us that n = gcd(mi1 , . . . ,mi|J| , m̄j1 , . . . , m̄j|J̄|) 6= 1 under a specific
condition.

Proposition 2.10 Let t, k, v be integers with 0 < t < k < v − t such that (v − t)
is a prime. Then there is a permissible parameter t-(v, k, σ) with λmin ≤ σ < λmax;
in other words λmin 6= λmax. In particular, λmin divides

(
v−(t+1)
k−(t+1)

)
/(k − t) and (v − t)

divides λmax/λmin.

Proof. We have

λmax =

(
v − t
k − t

)
= (v − t)

(
v − (t+ 1)

k − (t+ 1)

)
/(k − t).

Set

σ =

(
v − (t+ 1)

k − (t+ 1)

)
/(k − t).
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Because (v − t) is a prime and k − i < v − t for all i = 0, . . . , k, it follows that σ is
an integer. For the trivial design t-(v, k, λmax)=t-(v, k,

(
v−t
k−t

)
), we have

λs = λmax

(
v − s
t− s

)
/

(
k − s
t− s

)
= (v − t)σ

(
v − s
t− s

)
/

(
k − s
t− s

)
,

for 0 ≤ s ≤ t. Again, because (v− t) is a prime larger than k− s and t− s, it follows
that σ

(
v−s
t−s

)
/
(
k−s
t−s

)
is an integer. In other words, t-(v, k, σ) is a permissible parameter.

Since λmin|σ and σ < λmax, we have λmin 6= λmax. 2

The next examples show an application of Theorem 2.9 together with Proposition
2.10.

Examples 2.9 1. t = 5, v1 = v2 = 22 and k = 11, 12, 13, 14, 15, 16. By Propo-
sition 2.10 it follows that n = gcd(x0, . . . , xk) = 17. Since the 5-(22, i, λ(i))
ingredient designs with the following indices

(λ(6), λ(7), λ(8), λ(9), λ(10), λ(11), λ(12), λ(13), λ(14), λ(15), λ(16)) =

({5, 6} × 1, {20, 24} × 2, {10, 12} × 20, {10, 12} × 70, {130, 156} × 14, {130, 156} × 28,

{130, 156} × 44, {10, 12} × 715, {10, 12} × 715, {20, 24} × 286, {5, 6} × 728)

exist, there exist non-trivial simple designs with the following parameters

5− (44, 11, 45695× 21), 5− (44, 11, 54834× 21),

5− (44, 12, 45695× 99), 5− (44, 12, 54834× 99),

5− (44, 13, 14060× 1287), 5− (44, 13, 16872× 1287),

5− (44, 14, 435860× 143), 5− (44, 14, 523032× 143),

5− (44, 15, 435860× 429), 5− (44, 15, 523032× 429),

5− (44, 16, 6319970× 78), 5− (44, 16, 7583964× 78).

2. t = 6, v1 = v2 = 23 and k = 13, 14, 15, 16. By Proposition 2.10 it follows that
n = gcd(x0, . . . , xk) = 17. Since the 6-(23, i, λ(i)) ingredient designs with the
following indices

(λ(7), λ(8), λ(9), λ(10), λ(11), λ(12), λ(13), λ(14), λ(15), λ(16)) =

({5, 6, 8} × 1, {10, 12, 16} × 4, {10, 12, 16} × 20, {10, 12, 16} × 70,

{130, 156, 208} × 14, {130, 156, 208} × 28, {10, 12, 16} × 572, {10, 12, 16} × 715,

{10, 12, 16} × 715, {5, 6, 8} × 1144)

exist, there exist non-trivial simple designs with the following parameters

6− (46, 13, 3515× 1560), 6− (46, 13, 4218× 1560), 6− (46, 13, 5624× 1560),

6− (46, 14, 3515× 6435), 6− (46, 14, 4218× 6435), 6− (46, 14, 5624× 6435),

6− (46, 15, 28120× 2860), 6− (46, 15, 33744× 2860), 6− (46, 15, 44992× 2860),

6− (46, 16, 217930× 1144), 6− (46, 16, 261516× 1144), 6− (46, 16, 348688× 1144).
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3 Conclusion

The main purpose of this work was an investigation of specified conditions for the
basic construction, under which the existence of solutions can be proved without
computations. The results have led to various existence theorems for simple t-designs,
and would contribute to a better understanding of the solutions emerged from this
general construction. We think there are further cases which are worth studying.
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