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Abstract

An extending theorem for s-resolvable t-designs is presented, which may be
viewed as an extension of Qiu-rong Wu’s result. The theorem yields recursive
constructions for s-resolvable t-designs, and mutually disjoint t-designs. For
example, it can be shown that if there exists a large set LS[29](4, 5, 33), then
there exists a family of 3-resolvable 4-(5 + 29m, 6, 52m(1 + 29m)) designs for
m ≥ 1, with 5 resolution classes. Moreover, for any given integer h ≥ 1, there
exist (5 · 2h − 5) mutually disjoint simple 3-(3 +m(5 · 2h − 3), 4,m) designs for
all m ≥ 1. In addition, we give a brief account of t-designs derived from the
result of Wu.
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1 Introduction

In [11] Teirlinck presented a recursive construction method for large sets LS[n](t, t+
1, v), and also mentioned (on page 351) that the result was implicit in his earlier paper
[10], but it is by no means obvious. In [4] Khosrosvshahi and Ajoodani-Namini gave a
theorem for extending t-designs for k = t+1, whose application to large sets provided
the same result as that of Teirlinck. Shortly after, Qiu-rong Wu [14] generalized the
construction for any k ≥ t + 1 and obtained a striking result on extending t-designs
and large sets. Based on Wu’s result, Kramer, Magliveras and O’Brien [5] proved
among others the existence of large sets LS[3](4, 6, 9m + 5) for any m ≥ 1. And
Kreher [7] showed the existence of LS[2](6, 8, 16m+ 23) for all m ≥ 0. In the present
paper we are interested in simple s-resolvable t-designs and we will prove an extending
theorem for s-resolvable t-designs along the lines of the extending theorem of Wu. It
should be mentioned that a general method for constructing t-designs was presented
in [12], in which s-resolvable t-designs play a crucial role, and the first investigation
of these designs was recently given in [13].
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We recall a few basic definitions. A t-design, denoted by t-(v, k, λ), is a pair (X,B),
where X is a v-set of points and B is a collection of k-subsets of X, called blocks, such
that every t-subset of X is a subset of exactly λ blocks of B. A t-design is called
simple if no two blocks are identical, otherwise, it is called non-simple. All designs
in this paper are simple designs. For any fixed subset Y of X with |Y | = u ≤ t,
define BY = {B \ Y : Y ⊂ B ∈ B}. Then (X \ Y,BY ) is a (t − u)-(v − u, k − u, λ)
design, called a derived design of (X,B). It is well-known that a t-(v, k, λ) design is
also an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. If B is the set of all

k-subsets of X, then (X,B) is a t-(v, k,
(
v−t
k−t

)
) design, called the complete design or

the trivial design. A t-(v, k, λ) design (X,B) is said to be s-resolvable, for 0 < s < t,
if its block set B can be partitioned into N ≥ 2 classes A1, . . . ,AN such that each
(X,Ai) is an s-(v, j, δ) design for i = 1, . . . , N . Each Ai is called an s-resolution
class or simply a resolution class and the set of N classes is called an s-resolution
of (X,B). If the complete k-(v, k, 1) design is t-resolvable with N resolution classes,
where each class is a t-(v, k, λ) design, then we say that there exists a large set of size
N of t-designs denoted by LS[N ](t, k, v) or by LSλ(t, k, v) to emphasize the value λ.
Moreover, if there is an LS[N ](t, k, v), then there is an LS[N ](t− u, k− u, v− u), for
u ≤ t.

For more information about s-resolvable t-designs with 1 < s < t we refer the
reader to [12, 13]. It should be remarked that s-resolvable t-designs have been used
in the construction of t-designs [12].

2 The main theorem of Wu and a proposition of

Teirlinck

We begin by recalling the main extending theorem for t-designs of Qiu-rong Wu in
[14] and a proposition of Teirlinck about large sets in [11].

Theorem 2.1 (Wu) Suppose that there exist

(i) simple t-(v1, k, λ1) and t-(v2, k, λ2) designs D1 and D2 such that λ1

(v1−t
k−t )

= λ2

(v2−t
k−t )

=

z;

(ii) LS[n](k− 2, k− 1, v1− 1) and LS[n](k− 2, k− 1, v2− 1), where n is an integer
such that zn is an integer.

Then there exists a simple t-(v1 + v2− k+ 1, k, λ) design D3 with λ = z
(
v1+v2−k+1−t

k−t

)
.

Corollary 2.2 (Wu) Suppose that there exist a simple t-(v, k, λ) design with z =
λ

(v−t
k−t)

and a large set LS[n](k − 2, k − 1, v − 1), where n is an integer such that zn is

an integer. Then there exists a simple t-(v+m(v− k+ 1), k, z
(
v−t+m(v−k+1)

k−t

)
) design,

for any m > 0.

Proposition 2.3 (Teirlinck) If there exists a large set LS[n](t, t+ 1, v), then there
exists a large set LS[n](t, t+ 1, v +m(v − t)) for any positive integer m.
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Note that Proposition 2.3 is Proposition 9 given in [11], where Teirlinck also mentioned
that it was implicitly in [10].

3 An Extending Theorem for s-resovable t-designs

Theorem 3.1 Let D1 and D2 be simple t-(v1, k, λ1) and t-(v2, k, λ2) designs respec-
tively such that λ1

(v1−t
k−t )

= λ2

(v2−t
k−t )

= z. Suppose that

(i) D1 and D2 are both s-resolvable with N resolution classes and z = Nu
n

, where
u, n are positive integers;

(ii) there exist LS[n](k − 2, k − 1, v1 − 1) and LS[n](k − 2, k − 1, v2 − 1).

Then there exists a simple s-resolvable t-(v1 + v2 − k + 1, k, λ) design D3 with N
resolution classes, where λ = z

(
v1+v2−k+1−t

k−t

)
.

The following simple lemma is needed for the proof of Theorem 3.1.

Lemma 3.2 Let (X,D) be a t-(v, k, λ) design such that z = λ

(v−t
k−t)

= Nu
n

, where N , u,

n are positive integers. Suppose that (X,D) is s-resolvable with N resolution classes,
where each class is an s-(v, k, δs) design. Then z′ = δs

(v−s
k−s)

= u
n
.

Proof. First note that λs = λ
(v−s
t−s)

(k−s
t−s)

. Since (X,D) is a disjoint union of N designs

with parameters s-(v, k, δs), we have λs = Nδ3. Thus

δs =
λs
N

=
u

n

(
v − t
k − t

)(v−s
t−s

)(
k−s
t−s

) .
This simplifies to

δs =
u

n

(
v − s
k − s

)
.

Hence z′ = δ3

(v−s
k−s)

= u
n
. 2

Proof. (of Theorem 3.1)
The proof consists of two parts. Part 1 is the construction of D3. Part 2 is the

proof of s-resolvability of D3. Part 1 is the proof of Theorem 2.1, given by Qui-rong
Wu in [14]. In order to follow the proof in Part 2 we need to describe the construction
of D3 in Part 1.

Part 1: Construction of D3.

Let X = {1, 2, . . . , v1+v2−k+1}. Define Xj = {1, 2, . . . , v1−j}, j = 0, 1, . . . , k−
1, and Yj = {v1 + 2− j, v1 + 3− j, . . . , v1 + v2 − k + 1}, j = 1, 2, . . . , k.

Note that Xj ∪ Yj = X \ {v1 + 1− j}, for 0 < j < k.
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Partition Pk(X) into (k + 1) classes: C0, . . . , Ck, as follows. C0 = Pk(X0), Ck =
Pk(Yk), and for 0 < j < k, Cj = {A ∪ A′, A ∈ Pk−j(Xj), A

′ ∈ Pj(Yj)}.
Let Pt(X) = {T1, T2, . . . , T(v1+v2−k+1

t )} be the set of all t-subsets of X, and let nij

denote the number of blocks B ∈ Cj containing Ti. Then

k∑
j=0

nij =

(
v1 + v2 − k + 1− t

k − t

)
(1)

The main idea is to construct a collection Bj of k-subsets of X from Cj such that any
t-subset Ti of X is contained in znij blocks in Bj for j = 0, . . . , k. Thus by equation

(1), (X,
⋃k
j=0 Bj) is a t-(v1 + v2 − k + 1, k, z

(
v1+v2−k+1−t

k−t

)
) design.

The description of Bj is as follows. Consider two cases (a): j = 0, k and (b):
0 < j < k.

Case (a): j = 0, k.
B0 is a collection of k-subsets of X0 such that (X0,B0) is a copy of the t-(v1, k, λ1)
design D1. Bk is a collection of k-subsets of Yk such that (Yk,Bk) is a copy of the
t-(v2, k, λ2) design D2.

Then it is clear that if Ti ⊂ X0, then zni,0 = λ1. Thus Ti is contained in zni,0
blocks of B0. Similarly, if Ti ⊂ Yk, then Ti is contained in zni,k blocks of Bk.

Case (b): 0 < j < k.
The construction of Bj, 0 < j < k, is based on the large sets LS[n](k−2, k−1, v1−1)
and LS[n](k − 2, k − 1, v2 − 1) and their derived large sets. First, consider X1 =
{1, 2, . . . , v1 − 1}. Let (X1,A1,1), (X1,A2,1), . . . , (X1,An,1) be a large set of (k − 2)-
(v1 − 1, k − 1, v1−k−1

n
) designs. Now X1 \ Xj = {v1 − j + 1, v1 − j + 2, . . . , v1 − 1}.

Deleting the points v1 − j + 1, v1 − j + 2, . . . , v1 − 1 gives the corresponding derived
designs (Xj,A1,j), (Xj,A2,j), . . . , (Xj,An,j) which form a large set of (k − 1 − j)-
(v1 − j, k − j, v1−k−1n

) designs.
Similarly, consider Yk−1 = {v1 − k + 3, v1 − k + 4, . . . , v1 − k + v2 + 1}. Let

(Yk−1,A′1,k−1), (Yk−1,A′2,k−1), . . . , (Yk−1,A′n,k−1) be a large set of (k − 2)-(v2 − 1, k −
1, v2−k−1

n
) designs. By deleting the points v1 + 3 − k, v1 + 4 − k, . . . , v1 + 1 − j

we obtain the corresponding derived designs (Yj,A′1,j), (Yj,A′2,j), . . . , (Yj,A′n,j) which

form a large set of (j − 1)-(v2 − k + j, j, v2−k−1
n

) designs.
Let σ be any given permutation on {1, 2, . . . , n}, define a subset C(j,σ) of Cj as

follows.

C(j,σ) =
n⋃
i=1

Ai,j ] A′σ(i),j,

where Ai,j ] A′σ(i),j = {A ∪ A′ : A ∈ Ai,j, A′ ∈ A′σ(i),j}. Then it is shown that Ti
is contained in nij/n blocks in C(j,σ) for every i. Finally, let m = zn = Nu and let
σ1, σ2, . . . , σm be m permutations on {1, 2, . . . , n} with σi = (12 · · ·n)i, i = 1, 2 . . . ,m.
Define

Bj =
m⋃
i=1

C(j,σi).
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Then Ti is contained in m(ni,j/n) = zni,j blocks of Bj. Cases (a) and (b) together

show that (X,
⋃k
j=0 Bj) is the desired design D3.

Part 2: Resolvability of D3.

Let (X0,B0,1), (X0,B0,2), . . . , (X0,B0,N) be an s-resolution of D1 = (X0,B0), with

B0 =
⋃N
i=1 B0,i and each (X0,B0,i) is an s-(v1, k, δ1) design. Let D′1 denote the s-

(v1, k, δ1) design.
Similarly, let (Yk,Bk,1), (Yk,Bk,2), . . . , (Yk,Bk,N) be an s-resolution ofD2 = (Yk,Bk)

with Bk =
⋃N
i=1 Bk,i and each (Yk,Bk,i) is an s-(v2, k, δ2) design. Let D′2 denote the

s-(v2, k, δ2) design.
By Lemma 3.2 we have z′ = δ1

(v1−s
k−s )

= δ2

(v2−s
k−s )

= u
n
.

Let P = {σ1, σ2, . . . , σm} be the set of m = zn = Nu permutations on {1, 2, . . . , n}
with σi = (12 · · ·n)i, i = 1, . . . ,m. Let P = P1 ∪ P2 ∪ · · · ∪ PN be a partition of P
with |Pi| = u for i = 1, . . . , N.

In Part 1, for 1 < j < k we have

Bj =
m⋃
i=1

C(j,σi)

=
N⋃
i=1

⋃
h∈Pi

C(j,σh)

=
N⋃
i=1

Bj,i,

where Bj,i :=
⋃
h∈Pi

C(j,σh). Here (X,
⋃k
j=0 Bj) is the constructed t-(v1 + v2 − k +

1, k, z
(
v1+v2−k+1−t

k−t

)
) design D3.

Define D
(i)
3 := (X,

⋃k
j=0 Bj,i) for i = 1, . . . , N. Then D

(i)
3 is the design constructed

from the pair D′1 = (X,B0,i) and D′2 = (X,Bk,i), and thus D
(i)
3 has parameters s-

(v1 + v2 − k + 1, k, z′
(
v1+v2−k+1−s

k−s

)
). Since D

(1)
3 , . . . , D

(N)
3 are pairwise disjoint, they

form an s-resolution of D3. The proof is complete. 2

The next corollary providing a statement about large sets is an immediate conse-
quence of Theorem 3.1.

Corollary 3.3 Suppose there are large sets LS[n](t, k, v1), LS[n](t, k, v2), LS[n](k−
2, k−1, v1−1) and LS[n](k−2, k−1, v2−1). Then there exists a large set LS[n](t, k, v1+
v2 − k + 1).

Proof. Here D1 and D2 are the complete k-(v1, k, 1) and k-(v2, k, 1) designs hav-
ing both a t-resolution with n resolution classes. The constructed design D3 is the
complete k-(v1 + v2− k+ 1, k, 1) design having again a t-resolution with n classes. 2

Remark that Corollary 3.3 is Theorem 2 in [14], which is the main theorem for
large sets of [14].
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Corollary 3.4 Suppose that there exists an s-resolvable t-(v, k, λ) design with N res-
olution classes such that z = λ

(v−t
k−t)

= Nu
n

, where u, n are positive integers. If there

exists an LS[n](k− 2, k− 1, v− 1), then there exists an s-resolvable t-(v+m(v− k+
1), k, z

(
v−t+m(v−k+1)

k−t

)
) design with N resolution classes for any m > 0.

Proof. From the existence of an LS[n](k − 2, k − 1, v − 1) by assumption, it follows
that there exists an LS[n](k−2, k−1, v−1+m(v−k+1)) for anym ≥ 0, by Proposition
2.3. Consider two starting steps of a recursion using Theorem 3.1. For m = 0, take
D2 = D1, where D1 is an s-resolvable t-(v, k, λ) design. Applying Theorem 3.1 gives
an s-resolvable t-(v + v − k + 1, k, z

(
v+v−k+1−t

k−t

)
) design. For m = 1, take D2 as an

s-resolvable t-(v+v−k+1, k, z
(
v+v−k+1−t

k−t

)
) design. Large sets LS[n](k−2, k−1, v−1)

and LS[n](k − 2, k − 1, v + (v − k)) exist for m = 0, 1. Thus Theorem 3.1 gives an
s-resolvable t-(v + 2(v − k + 1), k, z

(
v+2(v−k+1)−t

k−t

)
) design. Hence, using Theorem 3.1

recursively will complete the proof. 2

A simple form of Corollary 3.4 for large sets is as follows.

Corollary 3.5 Suppose that there exist large sets LS[n](t, k, v) and LS[n](k− 2, k−
1, v − 1). Then there exist large sets LS[n](t, k, v +m(v − k + 1)) for all m ≥ 0.

An immediate consequence of Theorem 3.1 for mutually disjoint t-designs can be
expressed as follows.

Corollary 3.6 Let D1 and D2 be the union of N mutually disjoint t-(v1, k, λ1) and
t-(v2, k, λ2) designs respectively such that Nλ1

(v1−t
k−t )

= Nλ2

(v2−t
k−t )

= Nu
n

, where u, n are positive

integers. Suppose that there exist LS[n](k − 2, k − 1, v1 − 1) and LS[n](k − 2, k −
1, v2 − 1). Then there exist N mutually disjoint t-(v1 + v2 − k + 1, k, λ) designs with
λ = u

n

(
v1+v2−k+1−t

k−t

)
.

In this context Corollary 3.4 becomes

Corollary 3.7 Suppose that there exist N mutually disjoint t-(v, k, λ) designs such
that z = Nλ

(v−t
k−t)

= Nu
n

, where u, n are positive integers. If there exists an LS[n](k−2, k−

1, v− 1), then there exist N mutually disjoint t-(v+m(v− k+ 1), k, u
n

(
v−t+m(v−k+1)

k−t

)
)

designs for any m > 0.

4 Applications

First of all, we show the existence of simple 3-resolvable 4-(34, 6, 75) and 4-(35, 7, 31 ·
25) designs with N = 5 resolution classes. Consider 3-resolvable 4-(33, 5, 5) and 4-
(33, 6, 70) designs, both having N = 5 resolution classes. The former is constructed by
Alltop and the latter by Bierbrauer, see [13]. Next, employ Corollary 4.3 of [13] which

states that if there exist s-resolvable t-designs with parameters t-(v, k−1, λ
(k−1)
t ) and
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t-(v, k, λ
(k)
t ) having the same number of resolution classes, such that λ

(k−1)
t−1 −λ

(k−1)
t =

λ
(k)
t , then there exists an s-resolvable t-(v + 1, k, λ

(k−1)
t−1 ) design. It is clear that the

condition of the corollary is satisfied for the 4-(33, 5, 5) and 4-(33, 6, 70) designs, thus
we obtain a 4-(34, 6, 75) design.

Now consider a 3-resolvable 4-(34, 7, 700) design with N = 5 resolution classes in
Theorem 6.1 of [13]. Again, applying Corollary 4.3 of [13] to the 4-(34, 6, 75) and
4-(34, 7, 700) designs will give a 3-resolvable 4-(35, 7, 31 · 25) design.

We record this result in the following proposition.

Proposition 4.1 There exist simple 3-resolvable 4-designs with N = 5 resolution
classes having parameters 4-(34, 6, 75) and 4-(35, 7, 31 · 25).

Now, by using these 4-(33, 5, 5), 4-(34, 6, 75), and 4-(35, 7, 31·25) designs for Corollary
3.4, we may state the following.

Proposition 4.2 1. If there exists an LS[29](3, 4, 32), then there exists a 3-resolvable
4-(4 + 29m, 5, 5m) design for any m ≥ 1.

2. If there exists an LS[29](4, 5, 33), then there exists a 3-resolvable 4-(5+29m, 6, 5
2
m(1+

29m)) design for any m ≥ 1.

3. If an LS[29](5, 6, 34) exists, then there exists a 3-resolvable 4-(6+29m, 7, 5
3
m
(
2+29m

2

)
)

design for any m ≥ 1.

The existence of any infinite family of 3-resolvale 4-designs in Proposition 4.2 thus
reduces to the existence of a single large set. Hence the following problem is a great
challenge.

Open problem 4.1 Does there exist any of the following large sets LS[29](3, 4, 32),
LS[29](4, 5, 33), LS[29](5, 6, 34)?

Note that LS[29](4, 5, 33), LS[29](3, 4, 32) and LS[29](2, 3, 31) are the derived
large sets of LS[29](5, 6, 34). Among these large sets, only LS[29](2, 3, 31) is known
to exist.

A derived design of the 4-(33, 5, 5) design above is a 2-resolvable 3-(32, 4, 5) design.
Since an LS[29](2, 3, 31) exists, we obtain the following result by Corollary 3.4.

Theorem 4.3 There exists a 2-resolvable 3-(3 + 29m, 4, 5m) design with N = 5 res-
olution classes for any m ≥ 1.

We now show an interesting example of mutually disjoint 3-designs by using Corol-
lary 3.7. In [3] Etzion and Hartman show that for v = 5·2h, h ≥ 1, there exist 5·2h−5
mutually disjoint 3-(5 · 2h, 4, 1) Steiner quadruple systems. However, the existence of
a large set of 3-(5 · 2h, 4, 1) designs remains an open problem for h ≥ 2. For h = 1,
i.e., v = 10, Kramer and Mesner show in [6] that the maximal number of mutually
disjoint 3-(10, 4, 1) designs is 5. In other words, there is no large set of 3-(10, 4, 1)
designs.
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Since there are N = 5 ·2h−5 mutually disjoint 3-(5 ·2h, 4, 1) designs for any given

h ≥ 1, we have z = Nλ

(v−t
k−t)

= Nu
n

= 5·2h−5
5·2h−3 . In addition, since LS[5 ·2h−3](2, 3, 5 ·2h−1)

exists, Corollary 3.7 yields 5 · 2h − 5 mutually disjoint 3-designs with parameters
3-(3 +m(5 · 2n − 3), 4,m) for all m ≥ 1. Thus we have

Theorem 4.4 For any given integer h ≥ 1, there exist N = 5 · 2h − 5 mutually
disjoint simple 3-(3 +m(5 · 2h − 3), 4,m) designs for all m ≥ 1.

5 Some series of t-designs from Wu’s result

Closer inspection of the literature reveals that works related to the result of Wu have
focused on large sets rather than on finding t-designs. Here we include a short account
of simple t-designs for t = 4, 5 concerning the latter case.

1. There exist simple 4-(18, 5, h2) designs for h = 1, 2, 3 with z := λ

(v−t
k−t)

= h
7
.

Further there is a LS[7](3, 4, 17) [2]. Using Corollary 2.2 we obtain a 4-(4 +
14m, 5, h2m) design for every m ≥ 1.

2. There exist simple 5-(33, 6, h4) designs for h = 1, 2, 3 with z := λ

(v−t
k−t)

= h
7
.

Further there is a LS[7](4, 5, 32) [8]. From Corollary 2.2 we obtain a 5-(5 +
28m, 6, h4m) design for every m ≥ 1.

Using the following result of Teirlinck [9]: an LSλmin
(3, 4, v) exists if v ≡ 0 mod

3, we can derive more infinite classes of simple 4-designs from Corollary 2.2.
Here are two examples.

3. There exist simple 4-(31, 5, h3) designs for h = 1, 2, 3, 4, as derived designs of 5-
(32, 6, h3) designs [1], with z := λ

(v−t
k−t)

= h
9
. Since there exists a LSλmin

(3, 4, 30) =

LS[9](3, 4, 30), Corollary 2.2 gives a 4-(4 + 27m, 5, h3m) design for any m ≥ 1.

4. There exist simple 4-(37, 5, h3) designs for h = 3, 4 with z := λ

(v−t
k−t)

= h
11

. Since

there is a LSλmin
(3, 4, 36) = LS[11](3, 4, 36) we have a 4-(4+33m, 5, h3m) design

for any m ≥ 1.

In summary, we obtain the following.

Theorem 5.1 There exist the following simple infinite series of t-designs with pa-
rameters:

1. 4-(4 + 14m, 5, h2m), h = 1, 2, 3, m ≥ 1.

2. 5-(5 + 28m, 6, h4m), h = 1, 2, 3, m ≥ 1.

3. 4-(4 + 27m, 5, h3m), h = 1, 2, 3, 4, m ≥ 1.

4. 4-(4 + 33m, 5, h3m), h = 3, 4, m ≥ 1.
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In general, using Corollary 2.2 and Teirlinck’s result [9], we can prove the following.

Theorem 5.2 Let v be a positive integer with v ≡ 1 mod 3. Suppose that there exists
a simple 4-(v, 5, λ) design. Then, there exists a simple 4-(4 +m(v− 4), 5, λm) design
for any m ≥ 1.

Proof. Let λmin denote the smallest possible value for which a 3-(v−1, 4, λmin) design
exists. From the assumption there is a 3-(v − 1, 4, λ) design. Thus λ = hλmin. Since
v− 1 ≡ 0 mod 3, there is an LSλmin

(3, 4, v− 1) = LS[N ](3, 4, v− 1), where N = v−4
λmin

.

Now for the 4-(v, 5, λ) design we have z := λ

(v−t
k−t)

= λ
v−4 = h

N
. Hence Corollary 2.2

gives a 4-(4 +m(v − 4), 5, λm) design for any m ≥ 1. 2

Furthermore, there exist large sets LSλmin
(4, 5, 20u + 4) if gcd(u, 30) = 1, and

LS60(4, 5, 60u+4) if gcd(u, 60) = 1 or 2 [11]. Similarly, we obtain the following result
by using these large sets.

Theorem 5.3 1. If there exists a simple 5-(v, 6, λ) design for v = 20u + 5 and
gcd(u, 30) = 1, then there exists a simple 5-(5 +m(v− 5), 6, λm) design for any
m ≥ 1.

2. If there exists a simple 5-(v, 6, λ) design for v = 60u+5 and gcd(u, 60) = 1 or 2,
then there exists a simple 5-(5 +m(v − 5), 6, λm) design for any m ≥ 1.

6 Conclusion

The main result of the paper presents an extending theorem for s-resolvable t-designs
along the lines of the extending theorem for t-designs and large sets of Qiu-rong Wu.
A particular feature of the method is that it will produce an infinite series of t-designs
having s-resolutions on the basis of a single pair of an appropriate s-resolvable t-design
and a specific large set. Another consequence of the result is a recursive construction
for mutually disjoint t-designs.

References

[1] M. Araya, M. Harada, V. D. Tonchev, and A. Wassermann, Mutually
disjoint designs and new 5-designs derived from groups and codes, J. Combin.
Des. 18, 305–317 (2010).

[2] Y. M. Chee and S. .S Magliveras, A few more large sets of t-designs, J.
Combin. Des. 6, 293–308 (1998).

[3] T. Etzion and A. Hartman, Towards a large set of Steiner quadruple systems,
SIAM J. Disc. Math. 4, 182–195 (1991).

[4] G. B. Khosrovshahi and S. Ajoodani-Namini, Combining t-designs, J.
Combin. Theory A 58, 26–34 (1991).

9



[5] E. S. Kramer, S. S. Magliveras, and E. A. O’Brien, Some new large
sets of t-designs, Australas. J. Combin. 7, 189–193 (1993).

[6] E. S. Kramer and D. M. Mesner, Intersections among Steiner systems, J.
Combin. Theory A 16, 273–285 (1974).

[7] D. L. Kreher, An infinite family of (simple) 6-designs, J. Comb. Des. 1, 277–
280 (1993).

[8] R. Laue, S. S. Magliveras, and A. Wassermann, New large sets of t-
designs, J. Combin. Des. 9, 40-59 (2001).

[9] L. Teirlinck, On large sets of disjoint quadruple systems, Ars Combin. 17,
173–176 (1984).

[10] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t, Dis-
cret. Math. 65, 301–311 (1987).

[11] L. Teirlinck, Locally trivial t-designs and t-designs without repeated blocks,
Discret. Math. 77, 345–356 (1989).

[12] Tran van Trung, A recursive construction for simple t-designs using resolu-
tions, Des. Codes Cryptogr. 86, 1185–1200 (2018).

[13] Tran van Trung, Recursive construction for s-resolvable t-designs, Des. Codes
Cryptogr. 87, 2835–2845 (2019).

[14] Qiu-rong Wu, A note on extending t-designs, Australas. J. Combin. 4, 229–235
(1991).

10


