An extending theorem for s-resolvable t-designs

Tran van Trung
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Thea-Leymann-Straße 9, 45127 Essen, Germany

Abstract

An extending theorem for s-resolvable t-designs is presented, which may be viewed as an extension of Qiu-rong Wu's result. The theorem yields recursive constructions for s-resolvable t-designs, and mutually disjoint t-designs. For example, it can be shown that if there exists a large set $L S[29](4,5,33)$, then there exists a family of 3 -resolvable $4-\left(5+29 m, 6, \frac{5}{2} m(1+29 m)\right)$ designs for $m \geq 1$, with 5 resolution classes. Moreover, for any given integer $h \geq 1$, there exist $\left(5 \cdot 2^{h}-5\right)$ mutually disjoint simple $3-\left(3+m\left(5 \cdot 2^{h}-3\right), 4, m\right)$ designs for all $m \geq 1$. In addition, we give a brief account of t-designs derived from the result of Wu.

Mathematics Subject Classification: 05B05
Keywords: s-resolvable t-design, extending theorem.

1 Introduction

In [11] Teirlinck presented a recursive construction method for large sets $L S[n](t, t+$ $1, v)$, and also mentioned (on page 351) that the result was implicit in his earlier paper [10], but it is by no means obvious. In [4] Khosrosvshahi and Ajoodani-Namini gave a theorem for extending t-designs for $k=t+1$, whose application to large sets provided the same result as that of Teirlinck. Shortly after, Qiu-rong Wu [14] generalized the construction for any $k \geq t+1$ and obtained a striking result on extending t-designs and large sets. Based on Wu's result, Kramer, Magliveras and O'Brien [5] proved among others the existence of large sets $L S[3](4,6,9 m+5)$ for any $m \geq 1$. And Kreher [7] showed the existence of $L S[2](6,8,16 m+23)$ for all $m \geq 0$. In the present paper we are interested in simple s-resolvable t-designs and we will prove an extending theorem for s-resolvable t-designs along the lines of the extending theorem of Wu . It should be mentioned that a general method for constructing t-designs was presented in [12], in which s-resolvable t-designs play a crucial role, and the first investigation of these designs was recently given in [13].

We recall a few basic definitions. A t-design, denoted by $t-(v, k, \lambda)$, is a pair (X, \mathcal{B}), where X is a v-set of points and \mathcal{B} is a collection of k-subsets of X, called blocks, such that every t-subset of X is a subset of exactly λ blocks of \mathcal{B}. A t-design is called simple if no two blocks are identical, otherwise, it is called non-simple. All designs in this paper are simple designs. For any fixed subset Y of X with $|Y|=u \leq t$, define $\mathcal{B}_{Y}=\{B \backslash Y: Y \subset B \in \mathcal{B}\}$. Then $\left(X \backslash Y, \mathcal{B}_{Y}\right)$ is a $(t-u)$ - $(v-u, k-u, \lambda)$ design, called a derived design of (X, \mathcal{B}). It is well-known that a $t-(v, k, \lambda)$ design is also an s - $\left(v, k, \lambda_{s}\right)$ design for $0 \leq s \leq t$, where $\lambda_{s}=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}$. If \mathcal{B} is the set of all k-subsets of X, then (X, \mathcal{B}) is a $t-\left(v, k,\binom{v-t}{k-t}\right)$ design, called the complete design or the trivial design. A t - (v, k, λ) design (X, \mathcal{B}) is said to be s-resolvable, for $0<s<t$, if its block set \mathcal{B} can be partitioned into $N \geq 2$ classes $\mathcal{A}_{1}, \ldots, \mathcal{A}_{N}$ such that each $\left(X, \mathcal{A}_{i}\right)$ is an s - (v, j, δ) design for $i=1, \ldots, N$. Each \mathcal{A}_{i} is called an s-resolution class or simply a resolution class and the set of N classes is called an s-resolution of (X, \mathcal{B}). If the complete k - $(v, k, 1)$ design is t-resolvable with N resolution classes, where each class is a $t-(v, k, \lambda)$ design, then we say that there exists a large set of size N of t-designs denoted by $L S[N](t, k, v)$ or by $L S_{\lambda}(t, k, v)$ to emphasize the value λ. Moreover, if there is an $L S[N](t, k, v)$, then there is an $L S[N](t-u, k-u, v-u)$, for $u \leq t$.

For more information about s-resolvable t-designs with $1<s<t$ we refer the reader to $[12,13]$. It should be remarked that s-resolvable t-designs have been used in the construction of t-designs [12].

2 The main theorem of Wu and a proposition of Teirlinck

We begin by recalling the main extending theorem for t-designs of Qiu-rong Wu in [14] and a proposition of Teirlinck about large sets in [11].

Theorem 2.1 (Wu) Suppose that there exist
(i) simple $t-\left(v_{1}, k, \lambda_{1}\right)$ and $t-\left(v_{2}, k, \lambda_{2}\right)$ designs D_{1} and D_{2} such that $\frac{\lambda_{1}}{\binom{v_{1}-t}{k-t}}=\frac{\lambda_{2}}{\binom{v_{2}-t}{k-t}}=$
z;
(ii) $L S[n]\left(k-2, k-1, v_{1}-1\right)$ and $L S[n]\left(k-2, k-1, v_{2}-1\right)$, where n is an integer such that $z n$ is an integer.

Then there exists a simple $t-\left(v_{1}+v_{2}-k+1, k, \lambda\right)$ design D_{3} with $\lambda=z\binom{v_{1}+v_{2}-k+1-t}{k-t}$.
Corollary $2.2(\mathbf{W u})$ Suppose that there exist a simple $t-(v, k, \lambda)$ design with $z=$ $\frac{\lambda}{\binom{v-t}{k-t}}$ and a large set $L S[n](k-2, k-1, v-1)$, where n is an integer such that $z n$ is an integer. Then there exists a simple $t-\left(v+m(v-k+1), k, z\binom{v-t+m(v-k+1)}{k-t}\right)$ design, for any $m>0$.

Proposition 2.3 (Teirlinck) If there exists a large set $L S[n](t, t+1, v)$, then there exists a large set $L S[n](t, t+1, v+m(v-t))$ for any positive integer m.

Note that Proposition 2.3 is Proposition 9 given in [11], where Teirlinck also mentioned that it was implicitly in [10].

3 An Extending Theorem for s-resovable t-designs

Theorem 3.1 Let D_{1} and D_{2} be simple $t-\left(v_{1}, k, \lambda_{1}\right)$ and $t-\left(v_{2}, k, \lambda_{2}\right)$ designs respectively such that $\frac{\lambda_{1}}{\binom{\nu_{1}-t}{k-t}}=\frac{\lambda_{2}}{\binom{\lambda_{2}-t}{k-t}}=z$. Suppose that
(i) D_{1} and D_{2} are both s-resolvable with N resolution classes and $z=\frac{N u}{n}$, where u, n are positive integers;
(ii) there exist $L S[n]\left(k-2, k-1, v_{1}-1\right)$ and $L S[n]\left(k-2, k-1, v_{2}-1\right)$.

Then there exists a simple s-resolvable $t-\left(v_{1}+v_{2}-k+1, k, \lambda\right)$ design D_{3} with N resolution classes, where $\lambda=z\binom{v_{1}+v_{2}-k+1-t}{k-t}$.

The following simple lemma is needed for the proof of Theorem 3.1.
Lemma 3.2 Let (X, \mathcal{D}) be a $t-(v, k, \lambda)$ design such that $z=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}$, where N, u, n are positive integers. Suppose that (X, \mathcal{D}) is s-resolvable with N resolution classes, where each class is an $s-\left(v, k, \delta_{s}\right)$ design. Then $z^{\prime}=\frac{\delta_{s}}{\binom{v-s}{k-s}}=\frac{u}{n}$.

Proof. First note that $\lambda_{s}=\lambda\left(\begin{array}{c}\left(\begin{array}{c}v-s \\ t-s \\ k-s \\ t-s\end{array}\right)\end{array}\right.$. Since (X, \mathcal{D}) is a disjoint union of N designs with parameters $s-\left(v, k, \delta_{s}\right)$, we have $\lambda_{s}=N \delta_{3}$. Thus

$$
\delta_{s}=\frac{\lambda_{s}}{N}=\frac{u}{n}\binom{v-t}{k-t} \frac{\binom{v-s}{t-s}}{\binom{k-s}{t-s}} .
$$

This simplifies to

$$
\delta_{s}=\frac{u}{n}\binom{v-s}{k-s} .
$$

Hence $z^{\prime}=\frac{\delta_{3}}{\left(\begin{array}{l}v-s \\ k-s)\end{array}\right.}=\frac{u}{n}$.
Proof. (of Theorem 3.1)
The proof consists of two parts. Part 1 is the construction of D_{3}. Part 2 is the proof of s-resolvability of D_{3}. Part 1 is the proof of Theorem 2.1, given by Qui-rong Wu in [14]. In order to follow the proof in Part 2 we need to describe the construction of D_{3} in Part 1.

Part 1: Construction of D_{3}.
Let $X=\left\{1,2, \ldots, v_{1}+v_{2}-k+1\right\}$. Define $X_{j}=\left\{1,2, \ldots, v_{1}-j\right\}, j=0,1, \ldots, k-$ 1 , and $Y_{j}=\left\{v_{1}+2-j, v_{1}+3-j, \ldots, v_{1}+v_{2}-k+1\right\}, j=1,2, \ldots, k$.

Note that $X_{j} \cup Y_{j}=X \backslash\left\{v_{1}+1-j\right\}$, for $0<j<k$.

Partition $P_{k}(X)$ into $(k+1)$ classes: C_{0}, \ldots, C_{k}, as follows. $C_{0}=P_{k}\left(X_{0}\right), C_{k}=$ $P_{k}\left(Y_{k}\right)$, and for $0<j<k, C_{j}=\left\{A \cup A^{\prime}, A \in P_{k-j}\left(X_{j}\right), A^{\prime} \in P_{j}\left(Y_{j}\right)\right\}$.

Let $P_{t}(X)=\left\{T_{1}, T_{2}, \ldots, T_{\left({ }_{v_{1}+v_{2}-k+1}\right)}\right\}$ be the set of all t-subsets of X, and let $n_{i j}$ denote the number of blocks $B \in{ }_{C}^{t}$ containing T_{i}. Then

$$
\begin{equation*}
\sum_{j=0}^{k} n_{i j}=\binom{v_{1}+v_{2}-k+1-t}{k-t} \tag{1}
\end{equation*}
$$

The main idea is to construct a collection \mathcal{B}_{j} of k-subsets of X from C_{j} such that any t-subset T_{i} of X is contained in $z n_{i j}$ blocks in \mathcal{B}_{j} for $j=0, \ldots, k$. Thus by equation (1), $\left(X, \bigcup_{j=0}^{k} \mathcal{B}_{j}\right)$ is a $t-\left(v_{1}+v_{2}-k+1, k, z\binom{v_{1}+v_{2}-k+1-t}{k-t}\right)$ design.

The description of \mathcal{B}_{j} is as follows. Consider two cases (a): $j=0, k$ and (b): $0<j<k$.
Case (a): $j=0, k$.
\mathcal{B}_{0} is a collection of k-subsets of X_{0} such that $\left(X_{0}, \mathcal{B}_{0}\right)$ is a copy of the t - $\left(v_{1}, k, \lambda_{1}\right)$ design D_{1}. \mathcal{B}_{k} is a collection of k-subsets of Y_{k} such that $\left(Y_{k}, \mathcal{B}_{k}\right)$ is a copy of the $t-\left(v_{2}, k, \lambda_{2}\right)$ design D_{2}.

Then it is clear that if $T_{i} \subset X_{0}$, then $z n_{i, 0}=\lambda_{1}$. Thus T_{i} is contained in $z n_{i, 0}$ blocks of \mathcal{B}_{0}. Similarly, if $T_{i} \subset Y_{k}$, then T_{i} is contained in $z n_{i, k}$ blocks of \mathcal{B}_{k}.

Case (b): $0<j<k$.
The construction of $\mathcal{B}_{j}, 0<j<k$, is based on the large sets $L S[n]\left(k-2, k-1, v_{1}-1\right)$ and $L S[n]\left(k-2, k-1, v_{2}-1\right)$ and their derived large sets. First, consider $X_{1}=$ $\left\{1,2, \ldots, v_{1}-1\right\}$. Let $\left(X_{1}, \mathcal{A}_{1,1}\right),\left(X_{1}, \mathcal{A}_{2,1}\right), \ldots,\left(X_{1}, \mathcal{A}_{n, 1}\right)$ be a large set of $(k-2)$ -$\left(v_{1}-1, k-1, \frac{v_{1}-k-1}{n}\right)$ designs. Now $X_{1} \backslash X_{j}=\left\{v_{1}-j+1, v_{1}-j+2, \ldots, v_{1}-1\right\}$. Deleting the points $v_{1}-j+1, v_{1}-j+2, \ldots, v_{1}-1$ gives the corresponding derived designs $\left(X_{j}, \mathcal{A}_{1, j}\right),\left(X_{j}, \mathcal{A}_{2, j}\right), \ldots,\left(X_{j}, \mathcal{A}_{n, j}\right)$ which form a large set of $(k-1-j)$ ($\left.v_{1}-j, k-j, \frac{v_{1}-k-1}{n}\right)$ designs.

Similarly, consider $Y_{k-1}=\left\{v_{1}-k+3, v_{1}-k+4, \ldots, v_{1}-k+v_{2}+1\right\}$. Let $\left(Y_{k-1}, \mathcal{A}_{1, k-1}^{\prime}\right),\left(Y_{k-1}, \mathcal{A}_{2, k-1}^{\prime}\right), \ldots,\left(Y_{k-1}, \mathcal{A}_{n, k-1}^{\prime}\right)$ be a large set of $(k-2)-\left(v_{2}-1, k-\right.$ $1, \frac{v_{2}-k-1}{n}$) designs. By deleting the points $v_{1}+3-k, v_{1}+4-k, \ldots, v_{1}+1-j$ we obtain the corresponding derived designs $\left(Y_{j}, \mathcal{A}_{1, j}^{\prime}\right),\left(Y_{j}, \mathcal{A}_{2, j}^{\prime}\right), \ldots,\left(Y_{j}, \mathcal{A}_{n, j}^{\prime}\right)$ which form a large set of $(j-1)-\left(v_{2}-k+j, j, \frac{v_{2}-k-1}{n}\right)$ designs.

Let σ be any given permutation on $\{1,2, \ldots, n\}$, define a subset $C_{(j, \sigma)}$ of C_{j} as follows.

$$
C_{(j, \sigma)}=\bigcup_{i=1}^{n} \mathcal{A}_{i, j} \uplus \mathcal{A}_{\sigma(i), j}^{\prime},
$$

where $\mathcal{A}_{i, j} \uplus \mathcal{A}_{\sigma(i), j}^{\prime}=\left\{A \cup A^{\prime}: A \in \mathcal{A}_{i, j}, A^{\prime} \in \mathcal{A}_{\sigma(i), j}^{\prime}\right\}$. Then it is shown that T_{i} is contained in $n_{i j} / n$ blocks in $C_{(j, \sigma)}$ for every i. Finally, let $m=z n=N u$ and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ be m permutations on $\{1,2, \ldots, n\}$ with $\sigma_{i}=(12 \cdots n)^{i}, i=1,2 \ldots, m$. Define

$$
\mathcal{B}_{j}=\bigcup_{i=1}^{m} C_{\left(j, \sigma_{i}\right)} .
$$

Then T_{i} is contained in $m\left(n_{i, j} / n\right)=z n_{i, j}$ blocks of \mathcal{B}_{j}. Cases (a) and (b) together show that $\left(X, \bigcup_{j=0}^{k} \mathcal{B}_{j}\right)$ is the desired design D_{3}.

Part 2: Resolvability of D_{3}.
Let $\left(X_{0}, \mathcal{B}_{0,1}\right),\left(X_{0}, \mathcal{B}_{0,2}\right), \ldots,\left(X_{0}, \mathcal{B}_{0, N}\right)$ be an s-resolution of $D_{1}=\left(X_{0}, \mathcal{B}_{0}\right)$, with $\mathcal{B}_{0}=\bigcup_{i=1}^{N} \mathcal{B}_{0, i}$ and each $\left(X_{0}, \mathcal{B}_{0, i}\right)$ is an $s-\left(v_{1}, k, \delta_{1}\right)$ design. Let D_{1}^{\prime} denote the s $\left(v_{1}, k, \delta_{1}\right)$ design.

Similarly, let $\left(Y_{k}, \mathcal{B}_{k, 1}\right),\left(Y_{k}, \mathcal{B}_{k, 2}\right), \ldots,\left(Y_{k}, \mathcal{B}_{k, N}\right)$ be an s-resolution of $D_{2}=\left(Y_{k}, \mathcal{B}_{k}\right)$ with $\mathcal{B}_{k}=\bigcup_{i=1}^{N} \mathcal{B}_{k, i}$ and each $\left(Y_{k}, \mathcal{B}_{k, i}\right)$ is an $s-\left(v_{2}, k, \delta_{2}\right)$ design. Let D_{2}^{\prime} denote the s - $\left(v_{2}, k, \delta_{2}\right)$ design.

By Lemma 3.2 we have $z^{\prime}=\frac{\delta_{1}}{\binom{v_{1}-s}{k-s}}=\frac{\delta_{2}}{\binom{v_{2}-s}{k-s}}=\frac{u}{n}$.
Let $P=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ be the set of $m=z n=N u$ permutations on $\{1,2, \ldots, n\}$ with $\sigma_{i}=(12 \cdots n)^{i}, i=1, \ldots, m$. Let $P=P_{1} \cup P_{2} \cup \cdots \cup P_{N}$ be a partition of P with $\left|P_{i}\right|=u$ for $i=1, \ldots, N$.

In Part 1, for $1<j<k$ we have

$$
\begin{aligned}
\mathcal{B}_{j} & =\bigcup_{i=1}^{m} C_{\left(j, \sigma_{i}\right)} \\
& =\bigcup_{i=1}^{N} \bigcup_{h \in P_{i}} C_{\left(j, \sigma_{h}\right)} \\
& =\bigcup_{i=1}^{N} \mathcal{B}_{j, i}
\end{aligned}
$$

where $\mathcal{B}_{j, i}:=\bigcup_{h \in P_{i}} C_{\left(j, \sigma_{h}\right)}$. Here $\left(X, \bigcup_{j=0}^{k} \mathcal{B}_{j}\right)$ is the constructed t - $\left(v_{1}+v_{2}-k+\right.$ $\left.1, k, z\binom{v_{1}+v_{2}-k+1-t}{k-t}\right)$ design D_{3}.

Define $D_{3}^{(i)}:=\left(X, \bigcup_{j=0}^{k} \mathcal{B}_{j, i}\right)$ for $i=1, \ldots, N$. Then $D_{3}^{(i)}$ is the design constructed from the pair $D_{1}^{\prime}=\left(X, \mathcal{B}_{0, i}\right)$ and $D_{2}^{\prime}=\left(X, \mathcal{B}_{k, i}\right)$, and thus $D_{3}^{(i)}$ has parameters s -$\left(v_{1}+v_{2}-k+1, k, z^{\prime}\binom{v_{1}+v_{2}-k+1-s}{k-s}\right)$. Since $D_{3}^{(1)}, \ldots, D_{3}^{(N)}$ are pairwise disjoint, they form an s-resolution of D_{3}. The proof is complete.

The next corollary providing a statement about large sets is an immediate consequence of Theorem 3.1.

Corollary 3.3 Suppose there are large sets $L S[n]\left(t, k, v_{1}\right), L S[n]\left(t, k, v_{2}\right), L S[n](k-$ $\left.2, k-1, v_{1}-1\right)$ and $L S[n]\left(k-2, k-1, v_{2}-1\right)$. Then there exists a large set $L S[n]\left(t, k, v_{1}+\right.$ $\left.v_{2}-k+1\right)$.

Proof. Here D_{1} and D_{2} are the complete $k-\left(v_{1}, k, 1\right)$ and $k-\left(v_{2}, k, 1\right)$ designs having both a t-resolution with n resolution classes. The constructed design D_{3} is the complete k - $\left(v_{1}+v_{2}-k+1, k, 1\right)$ design having again a t-resolution with n classes.

Remark that Corollary 3.3 is Theorem 2 in [14], which is the main theorem for large sets of [14].

Corollary 3.4 Suppose that there exists an s-resolvable $t-(v, k, \lambda)$ design with N resolution classes such that $z=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}$, where u, n are positive integers. If there exists an $L S[n](k-2, k-1, v-1)$, then there exists an s-resolvable $t-(v+m(v-k+$ 1), $\left.k, z\binom{v-t+m(v-k+1)}{k-t}\right)$ design with N resolution classes for any $m>0$.

Proof. From the existence of an $L S[n](k-2, k-1, v-1)$ by assumption, it follows that there exists an $L S[n](k-2, k-1, v-1+m(v-k+1))$ for any $m \geq 0$, by Proposition 2.3. Consider two starting steps of a recursion using Theorem 3.1. For $m=0$, take $D_{2}=D_{1}$, where D_{1} is an s-resolvable $t-(v, k, \lambda)$ design. Applying Theorem 3.1 gives an s-resolvable $t-\left(v+v-k+1, k, z\binom{v+v-k+1-t}{k-t}\right)$ design. For $m=1$, take D_{2} as an s-resolvable $t-\left(v+v-k+1, k, z\binom{v+v-k+1-t}{k-t}\right)$ design. Large sets $L S[n](k-2, k-1, v-1)$ and $L S[n](k-2, k-1, v+(v-k))$ exist for $m=0,1$. Thus Theorem 3.1 gives an s-resolvable $t-\left(v+2(v-k+1), k, z\binom{v+2(v-k+1)-t}{k-t}\right)$ design. Hence, using Theorem 3.1 recursively will complete the proof.

A simple form of Corollary 3.4 for large sets is as follows.
Corollary 3.5 Suppose that there exist large sets $\operatorname{LS}[n](t, k, v)$ and $L S[n](k-2, k-$ $1, v-1)$. Then there exist large sets $L S[n](t, k, v+m(v-k+1))$ for all $m \geq 0$.

An immediate consequence of Theorem 3.1 for mutually disjoint t-designs can be expressed as follows.

Corollary 3.6 Let D_{1} and D_{2} be the union of N mutually disjoint $t-\left(v_{1}, k, \lambda_{1}\right)$ and $t-\left(v_{2}, k, \lambda_{2}\right)$ designs respectively such that $\left.\frac{N \lambda_{1}}{\left(v_{1}-t\right.} \begin{array}{c}-t\end{array}\right)=\frac{N \lambda_{2}}{\binom{v_{2}-t}{k-t}}=\frac{N u}{n}$, where u, n are positive integers. Suppose that there exist $L S[n]\left(k-2, k-1, v_{1}-1\right)$ and $L S[n](k-2, k-$ $\left.1, v_{2}-1\right)$. Then there exist N mutually disjoint $t-\left(v_{1}+v_{2}-k+1, k, \lambda\right)$ designs with $\lambda=\frac{u}{n}\binom{v_{1}+v_{2}-k+1-t}{k-t}$.

In this context Corollary 3.4 becomes
Corollary 3.7 Suppose that there exist N mutually disjoint $t-(v, k, \lambda)$ designs such that $z=\frac{N \lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}$, where u, n are positive integers. If there exists an $L S[n](k-2, k-$ $1, v-1)$, then there exist N mutually disjoint $t-\left(v+m(v-k+1), k, \frac{u}{n}\binom{v-t+m(v-k+1)}{k-t}\right)$ designs for any $m>0$.

4 Applications

First of all, we show the existence of simple 3-resolvable 4-(34, 6, 75) and 4-(35, 7, 31. 25) designs with $N=5$ resolution classes. Consider 3-resolvable 4- $(33,5,5)$ and 4 $(33,6,70)$ designs, both having $N=5$ resolution classes. The former is constructed by Alltop and the latter by Bierbrauer, see [13]. Next, employ Corollary 4.3 of [13] which states that if there exist s-resolvable t-designs with parameters $t-\left(v, k-1, \lambda_{t}^{(k-1)}\right)$ and
$t-\left(v, k, \lambda_{t}^{(k)}\right)$ having the same number of resolution classes, such that $\lambda_{t-1}^{(k-1)}-\lambda_{t}^{(k-1)}=$ $\lambda_{t}^{(k)}$, then there exists an s-resolvable $t-\left(v+1, k, \lambda_{t-1}^{(k-1)}\right)$ design. It is clear that the condition of the corollary is satisfied for the $4-(33,5,5)$ and $4-(33,6,70)$ designs, thus we obtain a $4-(34,6,75)$ design.

Now consider a 3 -resolvable 4 - $(34,7,700)$ design with $N=5$ resolution classes in Theorem 6.1 of [13]. Again, applying Corollary 4.3 of [13] to the $4-(34,6,75)$ and 4 - $(34,7,700)$ designs will give a 3-resolvable 4 - $(35,7,31 \cdot 25)$ design.

We record this result in the following proposition.
Proposition 4.1 There exist simple 3-resolvable 4-designs with $N=5$ resolution classes having parameters 4-(34, 6, 75) and 4-(35, 7, 31•25).

Now, by using these $4-(33,5,5), 4-(34,6,75)$, and $4-(35,7,31 \cdot 25)$ designs for Corollary 3.4 , we may state the following.

Proposition 4.2 1. If there exists an $L S[29](3,4,32)$, then there exists a 3 -resolvable $4-(4+29 m, 5,5 m)$ design for any $m \geq 1$.
2. If there exists an $L S[29](4,5,33)$, then there exists a 3 -resolvable $4-\left(5+29 m, 6, \frac{5}{2} m(1+\right.$ $29 m)$) design for any $m \geq 1$.
3. If an $L S[29](5,6,34)$ exists, then there exists a 3 -resolvable $4-\left(6+29 m, 7, \frac{5}{3} m\left({ }_{2}^{2+29 m}\right)\right)$ design for any $m \geq 1$.

The existence of any infinite family of 3-resolvale 4-designs in Proposition 4.2 thus reduces to the existence of a single large set. Hence the following problem is a great challenge.

Open problem 4.1 Does there exist any of the following large sets $L S[29](3,4,32)$, $L S[29](4,5,33), L S[29](5,6,34)$?

Note that $L S[29](4,5,33), \operatorname{LS}[29](3,4,32)$ and $L S[29](2,3,31)$ are the derived large sets of $L S[29](5,6,34)$. Among these large sets, only $L S[29](2,3,31)$ is known to exist.

A derived design of the $4-(33,5,5)$ design above is a 2-resolvable $3-(32,4,5)$ design. Since an $L S[29](2,3,31)$ exists, we obtain the following result by Corollary 3.4.

Theorem 4.3 There exists a 2-resolvable $3-(3+29 m, 4,5 m)$ design with $N=5$ resolution classes for any $m \geq 1$.

We now show an interesting example of mutually disjoint 3-designs by using Corollary 3.7. In [3] Etzion and Hartman show that for $v=5 \cdot 2^{h}, h \geq 1$, there exist $5 \cdot 2^{h}-5$ mutually disjoint $3-\left(5 \cdot 2^{h}, 4,1\right)$ Steiner quadruple systems. However, the existence of a large set of $3-\left(5 \cdot 2^{h}, 4,1\right)$ designs remains an open problem for $h \geq 2$. For $h=1$, i.e., $v=10$, Kramer and Mesner show in [6] that the maximal number of mutually disjoint $3-(10,4,1)$ designs is 5 . In other words, there is no large set of $3-(10,4,1)$ designs.

Since there are $N=5 \cdot 2^{h}-5$ mutually disjoint $3-\left(5 \cdot 2^{h}, 4,1\right)$ designs for any given $h \geq 1$, we have $z=\frac{N \lambda}{\binom{v-t}{k-t}}=\frac{N u}{n}=\frac{5 \cdot 2^{h}-5}{5 \cdot 2^{h}-3}$. In addition, since $L S\left[5 \cdot 2^{h}-3\right]\left(2,3,5 \cdot 2^{h}-1\right)$ exists, Corollary 3.7 yields $5 \cdot 2^{h}-5$ mutually disjoint 3 -designs with parameters $3-\left(3+m\left(5 \cdot 2^{n}-3\right), 4, m\right)$ for all $m \geq 1$. Thus we have

Theorem 4.4 For any given integer $h \geq 1$, there exist $N=5 \cdot 2^{h}-5$ mutually disjoint simple $3-\left(3+m\left(5 \cdot 2^{h}-3\right), 4, m\right)$ designs for all $m \geq 1$.

5 Some series of t-designs from Wu's result

Closer inspection of the literature reveals that works related to the result of Wu have focused on large sets rather than on finding t-designs. Here we include a short account of simple t-designs for $t=4,5$ concerning the latter case.

1. There exist simple $4-(18,5, h 2)$ designs for $h=1,2,3$ with $z:=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{h}{7}$. Further there is a $L S[7](3,4,17)$ [2]. Using Corollary 2.2 we obtain a $4-(4+$ $14 m, 5, h 2 m)$ design for every $m \geq 1$.
2. There exist simple $5-(33,6, h 4)$ designs for $h=1,2,3$ with $z:=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{h}{7}$. Further there is a $L S[7](4,5,32)$ [8]. From Corollary 2.2 we obtain a $5-(5+$ $28 m, 6, h 4 m$) design for every $m \geq 1$.
Using the following result of Teirlinck [9]: an $L S_{\lambda_{\text {min }}}(3,4, v)$ exists if $v \equiv 0 \bmod$ 3 , we can derive more infinite classes of simple 4-designs from Corollary 2.2. Here are two examples.
3. There exist simple 4 - $(31,5, h 3)$ designs for $h=1,2,3,4$, as derived designs of 5 $(32,6, h 3)$ designs [1], with $z:=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{h}{9}$. Since there exists a $L S_{\lambda_{\text {min }}}(3,4,30)=$ $L S[9](3,4,30)$, Corollary 2.2 gives a $4-(4+27 m, 5, h 3 m)$ design for any $m \geq 1$.
4. There exist simple $4-(37,5, h 3)$ designs for $h=3,4$ with $z:=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{h}{11}$. Since there is a $L S_{\lambda_{\min }}(3,4,36)=L S[11](3,4,36)$ we have a $4-(4+33 m, 5, h 3 m)$ design for any $m \geq 1$.

In summary, we obtain the following.
Theorem 5.1 There exist the following simple infinite series of t-designs with parameters:

1. $4-(4+14 m, 5, h 2 m), h=1,2,3, m \geq 1$.
2. $5-(5+28 m, 6, h 4 m), h=1,2,3, m \geq 1$.
3. $4-(4+27 m, 5, h 3 m), h=1,2,3,4, m \geq 1$.
4. $4-(4+33 m, 5, h 3 m), h=3,4, m \geq 1$.

In general, using Corollary 2.2 and Teirlinck's result [9], we can prove the following.
Theorem 5.2 Let v be a positive integer with $v \equiv 1 \bmod 3$. Suppose that there exists a simple $4-(v, 5, \lambda)$ design. Then, there exists a simple $4-(4+m(v-4), 5, \lambda m)$ design for any $m \geq 1$.

Proof. Let $\lambda_{\min }$ denote the smallest possible value for which a 3- $\left(v-1,4, \lambda_{\min }\right)$ design exists. From the assumption there is a $3-(v-1,4, \lambda)$ design. Thus $\lambda=h \lambda_{\min }$. Since $v-1 \equiv 0 \bmod 3$, there is an $L S_{\lambda_{\text {min }}}(3,4, v-1)=L S[N](3,4, v-1)$, where $N=\frac{v-4}{\lambda_{\min }}$. Now for the $4-(v, 5, \lambda)$ design we have $z:=\frac{\lambda}{\binom{v-t}{k-t}}=\frac{\lambda}{v-4}=\frac{h}{N}$. Hence Corollary 2.2 gives a $4-(4+m(v-4), 5, \lambda m)$ design for any $m \geq 1$.

Furthermore, there exist large sets $L S_{\lambda_{\text {min }}}(4,5,20 u+4)$ if $\operatorname{gcd}(u, 30)=1$, and $L S_{60}(4,5,60 u+4)$ if $\operatorname{gcd}(u, 60)=1$ or $2[11]$. Similarly, we obtain the following result by using these large sets.

Theorem 5.3 1. If there exists a simple $5-(v, 6, \lambda)$ design for $v=20 u+5$ and $\operatorname{gcd}(u, 30)=1$, then there exists a simple $5-(5+m(v-5), 6, \lambda m)$ design for any $m \geq 1$.
2. If there exists a simple $5-(v, 6, \lambda)$ design for $v=60 u+5$ and $\operatorname{gcd}(u, 60)=1$ or 2 , then there exists a simple $5-(5+m(v-5), 6, \lambda m)$ design for any $m \geq 1$.

6 Conclusion

The main result of the paper presents an extending theorem for s-resolvable t-designs along the lines of the extending theorem for t-designs and large sets of Qiu-rong Wu. A particular feature of the method is that it will produce an infinite series of t-designs having s-resolutions on the basis of a single pair of an appropriate s-resolvable t-design and a specific large set. Another consequence of the result is a recursive construction for mutually disjoint t-designs.

References

[1] M. Araya, M. Harada, V. D. Tonchev, and A. Wassermann, Mutually disjoint designs and new 5 -designs derived from groups and codes, J. Combin. Des. 18, 305-317 (2010).
[2] Y. M. Chee and S. .S Magliveras, A few more large sets of t-designs, J. Combin. Des. 6, 293-308 (1998).
[3] T. Etzion and A. Hartman, Towards a large set of Steiner quadruple systems, SIAM J. Disc. Math. 4, 182-195 (1991).
[4] G. B. Khosrovshahi and S. Ajoodani-Namini, Combining t-designs, J. Combin. Theory A 58, 26-34 (1991).
[5] E. S. Kramer, S. S. Magliveras, and E. A. O’Brien, Some new large sets of t-designs, Australas. J. Combin. 7, 189-193 (1993).
[6] E. S. Kramer and D. M. Mesner, Intersections among Steiner systems, J. Combin. Theory A 16, 273-285 (1974).
[7] D. L. Kreher, An infinite family of (simple) 6-designs, J. Comb. Des. 1, 277280 (1993).
[8] R. Laue, S. S. Magliveras, and A. Wassermann, New large sets of t designs, J. Combin. Des. 9, 40-59 (2001).
[9] L. Teirlinck, On large sets of disjoint quadruple systems, Ars Combin. 17, 173-176 (1984).
[10] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t, Discret. Math. 65, 301-311 (1987).
[11] L. Teirlinck, Locally trivial t-designs and t-designs without repeated blocks, Discret. Math. 77, 345-356 (1989).
[12] Tran van Trung, A recursive construction for simple t-designs using resolutions, Des. Codes Cryptogr. 86, 1185-1200 (2018).
[13] Tran van Trung, Recursive construction for s-resolvable t-designs, Des. Codes Cryptogr. 87, 2835-2845 (2019).
[14] Qiu-rong Wu, A note on extending t-designs, Australas. J. Combin. 4, 229-235 (1991).

