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Abstract

An extending theorem for s-resolvable t-designs is presented, which may be
viewed as an extension of Qiu-rong Wu’s result. The theorem yields recursive
constructions for s-resolvable t-designs, and mutually disjoint ¢-designs. For
example, it can be shown that if there exists a large set LS[29](4, 5, 33), then
there exists a family of 3-resolvable 4-(5 + 29m, 6, 5m(1 + 29m)) designs for
m > 1, with 5 resolution classes. Moreover, for any given integer h > 1, there
exist (5 -2" — 5) mutually disjoint simple 3-(3 + m(5 - 2" — 3),4,m) designs for
all m > 1. In addition, we give a brief account of ¢-designs derived from the
result of Wu.
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1 Introduction

In [11] Teirlinck presented a recursive construction method for large sets LS[n](¢,t +
1,v), and also mentioned (on page 351) that the result was implicit in his earlier paper
[10], but it is by no means obvious. In [4] Khosrosvshahi and Ajoodani-Namini gave a
theorem for extending t-designs for k = ¢+ 1, whose application to large sets provided
the same result as that of Teirlinck. Shortly after, Qiu-rong Wu [14] generalized the
construction for any k > ¢t + 1 and obtained a striking result on extending t-designs
and large sets. Based on Wu’s result, Kramer, Magliveras and O’Brien [5] proved
among others the existence of large sets LS[3](4,6,9m + 5) for any m > 1. And
Kreher [7] showed the existence of LS[2](6,8, 16m + 23) for all m > 0. In the present
paper we are interested in simple s-resolvable t-designs and we will prove an extending
theorem for s-resolvable t-designs along the lines of the extending theorem of Wu. It
should be mentioned that a general method for constructing t-designs was presented
in [12], in which s-resolvable t-designs play a crucial role, and the first investigation
of these designs was recently given in [13].



We recall a few basic definitions. A t-design, denoted by t-(v, k, ), is a pair (X, B),
where X is a v-set of points and B is a collection of k-subsets of X, called blocks, such
that every t-subset of X is a subset of exactly A blocks of B. A t-design is called
simple if no two blocks are identical, otherwise, it is called non-simple. All designs
in this paper are simple designs. For any fixed subset Y of X with |Y| = u < ¢,
define By = {B\Y : Y C Be€ B}. Then (X \VY,By)isa (t —u)-(v—uk —u,\)
design, called a derived design of (X, B). It is well-known that a ¢-(v, k, ) design is
also an s-(v, k, \s) design for 0 < s < ¢, where \; = A(;’:j)/(';:j) If B is the set of all
k-subsets of X, then (X,B) is a t-(v, k, (Z:i)) design, called the complete design or
the trivial design. A t-(v, k, \) design (X, B) is said to be s-resolvable, for 0 < s < t,
if its block set B can be partitioned into N > 2 classes Ay, ..., Ay such that each
(X, A4;) is an s-(v,7,d) design for ¢ = 1,...,N. Each A; is called an s-resolution
class or simply a resolution class and the set of NV classes is called an s-resolution
of (X, B). If the complete k-(v, k, 1) design is t-resolvable with N resolution classes,
where each class is a t-(v, k, \) design, then we say that there exists a large set of size
N of t-designs denoted by LS[N](t, k,v) or by LS\(t, k,v) to emphasize the value \.
Moreover, if there is an LS[N](t, k,v), then there is an LS[N|(t — u, k —u,v —u), for
u <t.

For more information about s-resolvable t-designs with 1 < s < t we refer the
reader to [12, 13]. It should be remarked that s-resolvable t-designs have been used
in the construction of ¢-designs [12].

2 The main theorem of Wu and a proposition of
Teirlinck

We begin by recalling the main extending theorem for ¢-designs of Qiu-rong Wu in
[14] and a proposition of Teirlinck about large sets in [11].

Theorem 2.1 (Wu) Suppose that there exist

(i) simplet-(vi,k, \1) and t-(va, k, A2) designs Dy and Do such that (U;\—lt) = % =
Z; k—t k—t

(i) LS[n](k—2,k—1,v1 —1) and LS|n|(k — 2,k —1,v9 — 1), where n is an integer
such that zn is an integer.

Then there exists a simple t-(vy + vy —k+1,k, \) design D3 with A = z(”ﬁv";;_]iﬂft).

Corollary 2.2 (Wu) Suppose that there exist a simple t-(v,k, \) design with z =
ﬁ and a large set LS[n](k — 2,k — 1,v — 1), where n is an integer such that zn is
k—t

v—t+m(v—k+1)

i )) design,

an integer. Then there exists a simple t-(v+m(v—k+1), k, z(
for any m > 0.

Proposition 2.3 (Teirlinck) If there exists a large set LS[n](t,t+ 1,v), then there
exists a large set LS[n](t,t + 1,0 +m(v —t)) for any positive integer m.
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Note that Proposition 2.3 is Proposition 9 given in [11], where Teirlinck also mentioned
that it was implicitly in [10].

3 An Extending Theorem for s-resovable t-designs

Theorem 3.1 Let Dy and Do be simple t-(vi, k, A1) and t-(vg, k, Xo) designs respec-
tively such that (’\—1) = <)‘—2) = z. Suppose that

vy —t vg—t
k—t k—t

(i) Dy and Dy are both s-resolvable with N resolution classes and z = %, where

u, n are positive integers;
(ii) there exist LS[n|(k — 2,k — 1,v; — 1) and LS[n](k — 2,k — 1,v9 — 1).

Then there exists a simple s-resolvable t-(vy + vy — k + 1, k, \) design D3 with N
resolution classes, where A = z(”1+”2k__]z+1_t)

The following simple lemma is needed for the proof of Theorem 3.1.

Lemma 3.2 Let (X, D) be at-(v,k,\) design such that z = (v’}t) = %, where N, u,
k—t

n are positive integers. Suppose that (X, D) is s-resolvable with N resolution classes,

where each class is an s-(v, k,ds) design. Then 2’ = (ffss) =2
k—s

Proof. First note that A\, = Ag,ﬁzig. Since (X, D) is a disjoint union of N designs
with parameters s-(v, k, d;), we have As = No3. Thus

5s:§:g(v—t) (=)

N n\k—t (';:5)

ufv—s
0 = — .
n(k—s)
03

Hence 2/ = -2 = %, a
G=)

This simplifies to

Proof.  (of Theorem 3.1)

The proof consists of two parts. Part 1 is the construction of D3. Part 2 is the
proof of s-resolvability of Ds. Part 1 is the proof of Theorem 2.1, given by Qui-rong
Wu in [14]. In order to follow the proof in Part 2 we need to describe the construction
of D3 in Part 1.

Part 1: Construction of Ds.

Let X ={1,2,...,v1+vs—k+1}. Define X; = {1,2,...,v1—j}, j=0,1,...,k—
Land Y, ={1+2—j,n1+3—4,...,uu+ve—k+1}, j=1,2,... k.
Note that X; UY,; = X \ {vy +1—j}, for 0<j<k.



Partition P,(X) into (k + 1) classes: Cy,...,Cy, as follows. Cy = Pi(Xy), Cr =
Py(Yy),and for 0 < j <k, C; ={AUA", Ae P_;(X;), A € P;(Y;)}.

Let Py(X) ={T1, 1>, ... ,T(v1+1)2t—k+1)} be the set of all t-subsets of X, and let n;;
denote the number of blocks B € C; containing 7;. Then

k

vit+v—k+1-1
Sy = (MY 1)
§=0

The main idea is to construct a collection B; of k-subsets of X from C; such that any
t-subset T; of X is contained in zn;; blocks in B; for j =0,..., k. Thus by equation

1), (X,U5y B;) is a t-(vy + vy — k + 1, k, 2(" T2 K71 design.
j=0"*1J k—t

The description of B; is as follows. Consider two cases (a): j = 0,k and (b):
0<j<k.

Case (a): 7 =0, k.
By is a collection of k-subsets of X such that (Xo, By) is a copy of the t-(vy, k, A1)
design D;. By is a collection of k-subsets of Yy such that (Yj, By) is a copy of the
t-(ve, k, Ay) design Ds.

Then it is clear that if 7; C X, then zn;g = A;. Thus 7; is contained in zn;q
blocks of By. Similarly, if 7; C Y}, then T} is contained in zn;; blocks of Bj.

Case (b): 0 < j < k.

The construction of B;, 0 < j < k, is based on the large sets LS[n](k—2,k—1,v; —1)
and LS[n](k — 2,k — 1,v9 — 1) and their derived large sets. First, consider X; =
{1,2,...,0; — 1}. Let (X3, A11), (X1, A21),..., (X1, An1) be a large set of (k — 2)-
(v — 1,k — 1,2=2=1) designs. Now X; \ X; = {v1 —j+Lvi —j+2,...,0 — 1}
Deleting the points v;1 — 7+ 1,v1 — 7+ 2,...,v; — 1 gives the corresponding derived
designs (Xj, A1), (Xj, As2), ..., (Xj, A, ;) which form a large set of (k — 1 — j)-
(vy — 5,k — 7, %) designs.

Similarly, consider Y,y = {vi —k+ 3,01 —k+4,...,01 — k + vy + 1}. Let
Y1, A1) Yeon, A )5 (Y1, Ay p) be alarge set of (b —2)-(vy — 1,k —
1, W*T'H) designs. By deleting the points vy + 3 — k,v1 +4 —k,...,v1 +1 —
we obtain the corresponding derived designs (Y}, A} ;), (Y}, A5 ;), ..., (Yj, A, ;) which
form a large set of (j — 1)-(va — k + j, 7, ”_Tk_l) designs.

Let o be any given permutation on {1,2,...,n}, define a subset C; ) of C; as
follows.

C(jyo) = U Ai,j © Az/y(i),jv
i=1

where A, ; ¥ A/U(i),j ={AUA :Aec A, A€ A;(i)j}. Then it is shown that T}
is contained in n;;/n blocks in Cf; ) for every i. Finally, let m = zn = Nu and let

01,09, ...,0, be m permutations on {1,2,...,n} witho; = (12---n)", i =1,2... m.
Define -
B; = JClo
i=1



Then T; is contained in m(n;;/n) = zn;; blocks of B,. Cases (a) and (b) together
show that (X, U?:o B;) is the desired design Ds.

Part 2: Resolvability of Dj.

Let (X(), 8071), (Xo, 6072), <oy (Xo, BO,N) be an s-resolution of D1 = (X(), Bo), with
By = UY, By; and each (Xo,By,) is an s-(v1, k,6,) design. Let D) denote the s-
(v1, k, 1) design.

Similarly, let (Yx, Bi1), (Y, Bi2), - - -, (Y, Bk n) be an s-resolution of Dy = (Y}, By)
with By, = Ul]\il By and each (Y, By;) is an s-(vg, k, d2) design. Let DY denote the
s-(ve, k, d2) design.

61 d2 U

By Lemma 3.2 we have 2’ = ) = ) =z,
k—s k—s
Let P = {0y,09,...,0,} be the set of m = zn = Nu permutations on {1,2,...,n}

with oy = (12---n),, i = 1,...,m. Let P = P, U P, U---U Py be a partition of P
with |Pj| =ufori=1,..., N.
In Part 1, for 1 < j < k we have

B = |JCha
=1

N

- U U o

i=1 heP;
N

= UBs
=1

where B;; := Upep Clion)- Here (X, U?:o B;) is the constructed t-(v; + vo — k +
1,k, z(“ﬁviﬂzﬂ_t)) design Ds.

Define Dz(f) = (X, U?:o Bj;) fori=1,..., N. Then Déi) is the design constructed
from the pair D] = (X,By;) and D) = (X, By;), and thus Déi) has parameters s-
(v +ve —k+ 1,k 2 (”lﬂf_ksﬂfs)). Since D:(),l), - ,D:(,)N) are pairwise disjoint, they
form an s-resolution of Ds. The proof is complete. O

The next corollary providing a statement about large sets is an immediate conse-
quence of Theorem 3.1.

Corollary 3.3 Suppose there are large sets LS[n|(t, k,v1), LS[n|(t, k,vs), LS[n](k—
2,k—1,v1—1) and LS[n|(k—2,k—1,vo—1). Then there exists a large set LS[n|(t, k, v1+
Vo — k? —I— 1)

Proof. Here D; and Dy are the complete k-(vy,k,1) and k-(ve, k, 1) designs hav-

ing both a t-resolution with n resolution classes. The constructed design Dj is the
complete k-(vy + vy — k+ 1, k, 1) design having again a t-resolution with n classes. O

Remark that Corollary 3.3 is Theorem 2 in [14], which is the main theorem for
large sets of [14].



Corollary 3.4 Suppose that there exists an s-resolvable t-(v, k, \) design with N res-

olution classes such that z = UL) = %, where u, n are positive integers. If there

k—t

exists an LS[n|(k — 2,k —1,v — 1), then there exists an s-resolvable t-(v +m(v —k +
1), k, z(”_“r";(_”t_k“))) design with N resolution classes for any m > 0.

Proof.  From the existence of an LS[n](k — 2,k —1,v — 1) by assumption, it follows
that there exists an LS[n](k—2, k—1,v—14+m(v—k+1)) for any m > 0, by Proposition
2.3. Consider two starting steps of a recursion using Theorem 3.1. For m = 0, take
Dy = Dy, where D is an s-resolvable t-(v, k, \) design. Applying Theorem 3.1 gives

an s-resolvable t-(v +v — k + 1, k, z(”ﬂkkt+1 ")) design. For m = 1, take D, as an

s-resolvable t-(v+v—k+1, k Z(UH’IJFrl ")) design. Large sets LS[n](k—2,k—1,v—1)
and LS[n|(k — 2,k — 1,0+ (v — k)) exist for m = 0,1. Thus Theorem 3.1 gives an
s-resolvable t-(v +2(v — k+ 1),k z(”+2(”k k:rl ")) design. Hence, using Theorem 3.1

recursively will complete the proof. O

A simple form of Corollary 3.4 for large sets is as follows.

Corollary 3.5 Suppose that there exist large sets LS[n](t, k,v) and LS|n|(k—2,k —
1,v —1). Then there exist large sets LS[n|(t,k,v+m(v —k + 1)) for all m > 0.

An immediate consequence of Theorem 3.1 for mutually disjoint ¢-designs can be
expressed as follows.

Corollary 3.6 Let Dy and Dy be the union of N mutually disjoint t-(vi,k, \1) and

t-(va, k, \o) designs respectively such that X2~ = N2 — N“ , where u, n are positive
() ()

—t

integers. Suppose that there exist LS[n|(k — 2,k — 1 , U1 — 1) and LS[n|(k — 2,k —

1,v9 — 1). Then there exist N mutually disjoint t-(vy + vy — k + 1, k, \) designs with
A — 2(v1+v27k+17t)
n k—t :

In this context Corollary 3.4 becomes

Corollary 3.7 Suppose that there exist N mutually disjoint t-(v,k, \) designs such
that z = (N’\) = MU where u, n are positive integers. If there exists an LS[n](k—2, k—
k—t

v—t+m(v—Fk+1
1,v—1), then there exist N mutually disjoint t-(v+m(v—k+1),k,2(*7F k( o )))
designs for any m > 0.

4 Applications

First of all, we show the existence of simple 3-resolvable 4-(34,6,75) and 4-(35,7,31 -
25) designs with N = 5 resolution classes. Consider 3-resolvable 4-(33,5,5) and 4-
(33,6, 70) designs, both having N = 5 resolution classes. The former is constructed by
Alltop and the latter by Bierbrauer, see [13]. Next, employ Corollary 4.3 of [13] which

states that if there exist s-resolvable t-designs with parameters t-(v, k —1, )\Ekfl)) and
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t-(v, k, )\Ek)) having the same number of resolution classes, such that AEI:I) —AED =

/\gk)7 then there exists an s-resolvable t-(v + 1, k, )\El:l)) design. It is clear that the
condition of the corollary is satisfied for the 4-(33,5,5) and 4-(33, 6, 70) designs, thus
we obtain a 4-(34,6,75) design.

Now consider a 3-resolvable 4-(34,7,700) design with N = 5 resolution classes in
Theorem 6.1 of [13]. Again, applying Corollary 4.3 of [13] to the 4-(34,6,75) and
4-(34,7,700) designs will give a 3-resolvable 4-(35,7,31 - 25) design.

We record this result in the following proposition.

Proposition 4.1 There exist simple 3-resolvable 4-designs with N = 5 resolution
classes having parameters 4-(34,6,75) and 4-(35,7,31 - 25).

Now, by using these 4-(33,5,5), 4-(34,6,75), and 4-(35, 7, 31-25) designs for Corollary
3.4, we may state the following.

Proposition 4.2 1. Ifthere exists an LS[29](3,4, 32), then there exists a 3-resolvable
4-(4 + 29m, 5,5m) design for any m > 1.

2. If there exists an LS[29](4,5,33), then there exists a 3-resolvable 4-(5+29m, 6, Sm(1+
29m)) design for any m > 1.

3. If an LS[29](5,6,34) exists, then there exists a 3-resolvable 4-(6+29m, 7, gm(2+§9m))
design for any m > 1.

The existence of any infinite family of 3-resolvale 4-designs in Proposition 4.2 thus
reduces to the existence of a single large set. Hence the following problem is a great
challenge.

Open problem 4.1 Does there exist any of the following large sets LS[29](3,4,32),
LS[29](4, 5,33), LS[29](5,6,34)7

Note that LS[29](4,5,33), LS[29](3,4,32) and LS[29](2,3,31) are the derived
large sets of LS[29](5,6,34). Among these large sets, only LS[29](2,3,31) is known
to exist.

A derived design of the 4-(33, 5, 5) design above is a 2-resolvable 3-(32, 4, 5) design.
Since an LS[29](2,3,31) exists, we obtain the following result by Corollary 3.4.

Theorem 4.3 There exists a 2-resolvable 3-(3 4+ 29m, 4,5m) design with N =5 res-
olution classes for any m > 1.

We now show an interesting example of mutually disjoint 3-designs by using Corol-
lary 3.7. In [3] Etzion and Hartman show that for v = 5-2", h > 1, there exist 5-2"—5
mutually disjoint 3-(5 - 2",4,1) Steiner quadruple systems. However, the existence of
a large set of 3-(5- 2" 4,1) designs remains an open problem for h > 2. For h = 1,
i.e., v = 10, Kramer and Mesner show in [6] that the maximal number of mutually
disjoint 3-(10,4,1) designs is 5. In other words, there is no large set of 3-(10,4, 1)
designs.



Since there are N = 5-2" -5 mutually disjoint 3-(5-2",4,1) designs for any given
h > 1, we have z = (ﬁv,’)) = Nu — 525 1 addition, since LS[5-2" —3](2,3,5-2" 1)

n ~ 52h—
k—t
exists, Corollary 3.7 yields 5 - 2" — 5 mutually disjoint 3-designs with parameters
3-(3+m(5-2" —3),4,m) for all m > 1. Thus we have

Theorem 4.4 For any given integer h > 1, there exist N = 5 - 2" — 5 mutually
disjoint simple 3-(3 + m(5 - 2" — 3),4,m) designs for all m > 1.

5 Some series of t-designs from Wu’s result

Closer inspection of the literature reveals that works related to the result of Wu have
focused on large sets rather than on finding ¢-designs. Here we include a short account
of simple ¢-designs for ¢ = 4,5 concerning the latter case.

1. There exist simple 4-(18,5, h2) designs for h = 1,2,3 with z := ﬁ =4
k—t
Further there is a LS[7](3,4,17) [2]. Using Corollary 2.2 we obtain a 4-(4 +
14m, 5, h2m) design for every m > 1.
2. There exist simple 5-(33,6, h4) designs for h = 1,2,3 with z := ﬁ =
k—t
Further there is a LS[7](4,5,32) [8]. From Corollary 2.2 we obtain a 5-(5 +
28m, 6, hdm) design for every m > 1.

~s

Using the following result of Teirlinck [9]: an LS, (3,4, v) exists if v = 0 mod
3, we can derive more infinite classes of simple 4-designs from Corollary 2.2.
Here are two examples.

3. There exist simple 4-(31,5, h3) designs for h = 1,2, 3,4, as derived designs of 5-

(32,6, h3) designs [1], with z := (U%t) = 2. Since there exists a LSy, (3,4, 30) =
k—t
LS19](3,4,30), Corollary 2.2 gives a 4-(4 + 27m, 5, h3m) design for any m > 1.

4. There exist simple 4-(37,5, h3) designs for h = 3,4 with z := (vft) = 1 Since
k—t
thereis a LS, . (3,4,36) = LS[11](3,4, 36) we have a 4-(4+33m, 5, h3m) design
for any m > 1.

In summary, we obtain the following.

Theorem 5.1 There exist the following simple infinite series of t-designs with pa-
rameters:

4-(4+14m,5,h2m), h=1,2,3, m > 1.
5-(5 + 28m, 6, hdm), h = 1,2,3, m > 1.
4-(4+27m,5,h3m), h =1,2,3,4, m > 1.
4-(4 +33m,5,h3m), h = 3,4, m > 1.



In general, using Corollary 2.2 and Teirlinck’s result [9], we can prove the following.

Theorem 5.2 Let v be a positive integer with v = 1 mod 3. Suppose that there exists
a simple 4-(v,5, X) design. Then, there exists a simple 4-(4+m(v —4),5, Am) design
for any m > 1.

Proof.  Let Apin denote the smallest possible value for which a 3-(v—1,4, Apin) design
exists. From the assumption there is a 3-(v — 1,4, \) design. Thus A = h\y;,. Since

v—1=0mod 3, there is an LSy, (3,4,v — 1) = LS[N|(3,4,v — 1), where N = =%,
Now for the 4-(v,5,\) design we have z := (U’Et) = ﬁ = % Hence Corollary 2.2
k—t

gives a 4-(4 +m(v — 4),5, Am) design for any m > 1. O

Furthermore, there exist large sets LS, . (4,5,20u + 4) if ged(w,30) = 1, and
LSg0(4,5,60u+4) if ged(u, 60) = 1 or 2 [11]. Similarly, we obtain the following result
by using these large sets.

Theorem 5.3 1. If there exists a simple 5-(v,6,\) design for v = 20u + 5 and
ged(u, 30) = 1, then there exists a simple 5-(5+m(v —5),6, Am) design for any
m > 1.

2. If there ezists a simple 5-(v, 6, \) design for v = 60u+5 and ged(u,60) =1 or 2,
then there exists a simple 5-(5 +m(v —5),6,\m) design for any m > 1.

6 Conclusion

The main result of the paper presents an extending theorem for s-resolvable t-designs
along the lines of the extending theorem for ¢-designs and large sets of Qiu-rong Wu.
A particular feature of the method is that it will produce an infinite series of t-designs
having s-resolutions on the basis of a single pair of an appropriate s-resolvable t-design
and a specific large set. Another consequence of the result is a recursive construction
for mutually disjoint ¢-designs.

References

[1] M. ARAYA, M. HARADA, V. D. TONCHEV, AND A. WASSERMANN, Mutually
disjoint designs and new 5-designs derived from groups and codes, J. Combin.
Des. 18, 305-317 (2010).

[2] Y. M. CHEE AND S. .S MAGLIVERAS, A few more large sets of t-designs, J.
Combin. Des. 6, 293-308 (1998).

[3] T. ETziON AND A. HARTMAN, Towards a large set of Steiner quadruple systems,
SIAM J. Disc. Math. 4, 182-195 (1991).

[4] G. B. KHOSROVSHAHI AND S. AJOODANI-NAMINI, Combining t-designs, J.
Combin. Theory A 58, 26-34 (1991).



[5]

[10]

[11]

[12]

[13]

[14]

E. S. KRAMER, S. S. MAGLIVERAS, AND E. A. O’BRIEN, Some new large
sets of t-designs, Australas. J. Combin. 7, 189-193 (1993).

E. S. KRAMER AND D. M. MESNER, Intersections among Steiner systems, J.
Combin. Theory A 16, 273-285 (1974).

D. L. KREHER, An infinite family of (simple) 6-designs, J. Comb. Des. 1, 277—
280 (1993).

R. LAUE, S. S. MAGLIVERAS, AND A. WASSERMANN, New large sets of t¢-
designs, J. Combin. Des. 9, 40-59 (2001).

L. TEIRLINCK, On large sets of disjoint quadruple systems, Ars Combin. 17,
173-176 (1984).

L. TEIRLINCK, Non-trivial ¢-designs without repeated blocks exist for all ¢, Dis-
cret. Math. 65, 301-311 (1987).

L. TEIRLINCK, Locally trivial ¢-designs and ¢-designs without repeated blocks,
Discret. Math. 77, 345-356 (1989).

TRAN VAN TRUNG, A recursive construction for simple ¢-designs using resolu-
tions, Des. Codes Cryptogr. 86, 1185-1200 (2018).

TRAN VAN TRUNG, Recursive construction for s-resolvable t-designs, Des. Codes
Cryptogr. 87, 2835-2845 (2019).

QIU-RONG WU, A note on extending t-designs, Australas. J. Combin. 4, 229-235
(1991).

10



