Symmetric Block Ciphers Based on Group Bases

Valér Canda', Tran van Trung?, Spyros Magliveras®, Tamds Horvath*

1,2 3 4
Institute for Experimental Mathematics Department of Computer Secunet AG
University of Essen Science and Engineering Steubenstrasse 53
Ellernstrasse 29, 45326 Essen, Germany University of Nebraska 45138 Essen, Germany
!valer@exp-math.uni-essen.de, Lincoln NE 68588, USA horvath@secunet.de
21’.rung©e:vcp—ma1:h .uni-essen.de spyros@helios.unl.edu

Abstract: We introduce a new family of symmetric block ciphers based on group bases. The main
advantage of our approach is its full scalability. It enables us to construct, for instance, a trivial 8-bit
Caesar cipher as well as a strong 256-bit cipher with 512-bit key, both from the same specification. We
discuss the practical aspects of the design, especially the choice of carrier groups, generation of random
group bases and an efficient factorization algorithm. We also describe how the cryptographic properties
of the system are optimized, and analyze the influence of parameters on its security. Finally we present
some experimental results regarding the speed and security of concrete ciphers from the family.

1 Introduction

A good block cipher should possess several properties. In addition to security and efficiency, which are essential,
there are other important attributes like gemerality, scalability and theoretical foundations. In what follows we
discuss these properties in more detail.

A block cipher can be characterized by two basic parameters: the block length n and the key length k&, both
expressed as a number of bits. For each of the 2¥ possible keys, the cipher defines a bijective mapping between the
2" plaintext blocks and the 2" ciphertext blocks. As the plaintext and ciphertext spaces are usually the same, we
can view an n-bit block cipher as defining a permutation on a set of 2" elements for each possible key. A simple
key-indexed lookup table containing all 64-bit numbers in random order would implement a very strong 64-bit block
cipher, without any additional algorithm. Unfortunately, such an implementation would take so much memory, that
it would not be applicable for any practical use. Almost all modern block ciphers simulate such a large lookup
random table using smaller tables (S-Boxes) in combination with other transformations. The goal is to make the
dependence between the plaintext, ciphertext and key so complex that it is virtually indistinguishable from the
random case.

As 2" elements can be permuted in 2"! different ways, a “perfect” n-bit block cipher could accept keys of length
up to |log2(2™!)| bits. This means a 1683-bit key for n = 8 and approximately a 10%!-bit key for n = 64. Of
course, no one needs such long keys and it would be extremely impractical to use them. These large numbers show,
however, the strong potential of block ciphers and the restricted generality of current systems which use by design
a fixed key-length or fixed S-boxes. These ciphers are in our opinion not flexible enough. They are constrained to
one specific configuration and the functions defined by them might be far from random permutations.

Another frequent drawback of block ciphers is a small or totally missing scalability. Because of the unprecidented

growth rate of computer power available to the public, it is highly desirable to have choices for some basic parameters

of the cipher. If our ciphers were fully scalable, we could just adapt the values of these parameters, when some new,
amazing breakthrough in processor or memory technology occurs. The values of the parameters n and k could be
easily changed without a complete redesign of the cipher and we would not be forced to throw away all research on
the properties of the cipher, starting again from the beginning.

For example, the block length of DES is 64 bits. If we wish to create a 128-bit version of DES, we would have
to design new, larger S-Boxes. As the design of good S-Boxes is by far a non-trivial task [1], the properties of the
new DES could be quite different. This, in fact, would be a totally new cipher. Another cipher - IDEA [2] - has
a very plain structure and its block length might be doubled simply by increasing the length of each of the four
subblocks from 16 to 32 bits. The fact, however, that 2'¢ + 1 is a prime number is essential to the functionality of
IDEA. Since 232 4 1 is not a prime, the double version would not work well. In contrast to DES and IDEA there
are already some nice examples of well-founded scalable designs available like RC5 [12], RC6 [13] or Rijndael [14].

Each new cipher should be studied extensively, perhaps for several years, before it is deemed trustworthy and
is presented for widespread use. If the cipher is based on a strong theoretical foundation, we can gain a better
understanding of possible failures, cryptanalytic attacks, etc., and we have stronger tools with which to analyze the
new algorithm. Therefore, a cipher based on strong mathematical foundations will either be rejected outright, or if
it appears workable, there should be a reasonable chance for it to have provable reliability and trustworthiness.

All in all, we think that an ideal cipher should not only be secure and fast but also theoretically well-founded,
general, and scalable. In this paper we present a new family of fully scalable block ciphers which is quite general.
Our approach enables the construction of a range of ciphers, from a tiny toy cipher to a large, secure one. The
idea on which the encryption is based is a mapping of group elements between two random group bases. A subject
which does not know the two secret bases is not able to recover the mapping. We discuss the selection of suitable
carrier groups, the generation of random group bases which enable an efficient factorization and the optimization
of the cryptographic properties of the system. Finally, we discuss the security, speed and memory requirements of

a concrete software implementation.

2 The Principle of Encryption

The ciphers we propose utilize group theory [3]. Although we focus our attention on permutation groups, it is also
possible to construct a cryptosystem based on any carrier group in other representation forms. By a permutation
of n symbols we understand a bijective function p : Z,, — Z,. The Cartesian representation of p is the vector
[p(0),p(1),...,p(n—1)]. This is the usual way to represent permutations in computers. Operation * on permutations
is defined as follows: [p(0),...,p(n —1)] % [¢(0),...,q(n —1)] = [¢(p(0)),...,q(p(n — 1))]. The basic notion needed
for the ciphers proposed in this paper is the idea of a Group Basis.

Definition 2.1 Group Basis
Let G be a finite group. A group basis for G is an ordered collection = (Bo, B1,...,By_1) of ordered subsets
B; = (bi0,bi1, ... bir;—1) of G such that each element p € G can be expressed uniquely as a product of the form:

p = bO,xo) bl,xl e bw—l,xw_la bimci E Bz

The B; are called the blocks of 3, the vector of block lengths r = (r9,71,...,7w—1) is called the type of 8
and the number w the dimension of 8. Each p € G corresponds to a unique indezx vector © = (zg,Z1,...,Tw—1),
where z; € Z,,. The space of all index vectors is X = Z,, X Zy, X --- X Z,, _,. The index set X has cardinality
| X|=ro- 71 ry—1 =G|

A basis 8 describes a bijective mapping f: X — G as follows:

ﬂ(w) = B(‘TO?‘Tl? . 'ax’w—l) = bO,mo : b1,$1 e b'w—l,.tw_1 :p

When computing p = (x) we say that p is composed from factors b;.z;- Computing the inverse function z = 7' (p)
is called factorizing p with respect to 3.

It should be noticed that the concept of group basis in this paper strongly differs from the notion base given in
the standard literature of group theory (see e.g. [3]). For more discussion of group bases defined here (also called

logarithmic signatures in [5]) the reader is referred to [5] and [6].

Example 2.1 A Group Basis for G = S3
G ={[0,1,2], [0,2,1], [1,0,2], [1,2,0], [2,0,1], [2,1,0]}

g
Bl [0721]-] bl,l
[0,1,2] | b1
BO [17250] b0,2
[2701]-] bO,l
[0,1,2] | boo
w=2,1=(3,2), Figure 2.1 A Coordinate System
p= [15052] = [2705 1] * [0527 1] = bO,l * bl,l;

Bp)=(1,1) ==

One can think of a group basis as a kind of w-dimensional discrete coordinate system as illustrated on the Figure
2.1. The six permutations of G might be seen as points in a 2-dimensional space. Any one of the six points can be

! of two points, one from each axis. The two axes, the first with three and the second

expressed as a unique sum
with two points, correspond to the two blocks of 3.

The crucial property of group bases from the cryptographic point of view is that there is an enormous number
of different group bases for a given group. We denote the set of all bases that generate G by Bg. For example,
the tiny group S3 of our example has 924 different bases. 6! of them are one-dimensional bases of type (6) and
21.23.3! + 31.32.2! of them are two-dimensional bases of types (2,3) and (3,2). Later we will describe how all these

bases can be generated. The most basic version of a secret-key cryptosystem based on group bases is defined as

follows:

T Addition of points in this discrete geometry is defined by means of vectors as:
(z1,y1) + (z2,y2) = (1 + 22 mod 3, y1 + y2 mod 2). Note that while this is a commutative operation, operation * in S3 is not. This
is only an illustrative example.

Definition 2.2 A Block Cipher Based on Group Bases
Let G be a finite group, called the carrier group. Let X : Zjg) — G be any fized bijective function. The plaintext
and ciphertext spaces for the cipher are the same: P = C = Zq|. The key space is the set K = Ba X Bg.

Let k = (51,582), k € K be a secret key. Let © € P be a plaintext and y € C the corresponding ciphertext. The

encryption function ey, : P — C is defined by the rule

o1

y=er(@) =27 (B(6 (M)

and the decryption function dy : C — P is defined as

~ 1

z=di(y) =X (BB (A®))))-

In other words, we take two random group bases for G, 3; and (s, and each time we want to encrypt some
p € G, we have to find such p’ € G which has the same coordinates in 5 as p has in ;. The function A only defines
a unique numbering of the group elements.

Again, for a better visualization, we take a simple example with geometric coordinates (Example 2.2). There
are 16 numbered points in the space, thus we can encrypt and decrypt the plaintexts and ciphertexts from Zqg.
Suppose, we want to encrypt plaintext point 14. First we find the coordinates of the point 14 with respect to basis
B1. The corresponding index vector is (2,3). Now we compose the point, which has the same coordinates in 5, this

gives us point 10. Therefore e(g, 3,)(14) = 10. The complete table for ey, is displayed on the right hand side.

Example 2.2 A Mapping of Points Between Two Bases

B, B, [c]
K

+-@-@0 © :
12

2 ® 0 ® © :
: 15
NONONONO) i
: 3

0 -O—O—C—0@ i
0 1 2 3 B —

In a real-world application the dependencies become much more complex. A 64-bit cipher can use for instance
two 8-dimensional bases with 256 elements on each “axis”. Moreover, the carrier group will not necessarily be

commutative.

3 Implementation Aspects

3.1 The Carrier Group G and Function \

The size of the plaintext and ciphertext space depends directly on the order of the carrier group G. We are only
interested in groups whose order is a power of two, the so called 2-groups or binary groups. More precisely, we should
have |G| = 28 for a natural number k, because only ciphers whose blocks fit exactly in k bytes are interesting for
a practical use. Note that |Sp,| = m! # 2™ for any m > 2. Therefore the symmetric group Sy, is not suitable for a

carrier group.

3.1.1 Group Z3

n—times
The simplest available 2-group is the elementary abelian group Z3 = m It contains the permutations
of 2n symbols in form p = [ag, a1, ... az,—1] where for each pair of symbols asy, aspt1, k € Zy, either aq, = 2k and
ask+1 = 2k + 1, or else asr = 2k + 1 and asp41 = 2k.

The permutations of ZJ can be represented very efficiently with our so called compact representation. The
compact representation of a p = [ag,a1,...a2,-1], p € ZY is the binary vector x = (xo,x1,...2,_1) where z; =0
if and only if as; = 2¢. Otherwise x; = 1. In other words, the i-th bit of the compact representation indicates,
whether the elements as; and as;11 have been swapped or not. In terms of memory requirements the compact
representation is optimal, as it is impossible to represent the 2" elements in less than n bits. Another benefit
of the compact representation is that it makes it possible to multiply permutations very fast. Note that if x;
is the compact representation of p; and xo of ps, then x; XOR x5 is the compact representation of the product
p1 * p2. The operation x in Z7 is commutative and linear. Last but not least, the compact representation of the
permutations fulfills the role of the function A from Definition 2.2. If we consider the vector (zo,z1,...2,—1) as a
binary representation of a natural number, we have a unique numbering of all permutations in the group.

The group basis for Z% of the form a = (Ao,...,A,—1), where each block A; contains two permutations in
i—1 times n—1i times

—N —N
compact representation, the identity (00...0) and a single swap on the i-th place (0...0 1 0...0), is called

n times
the canonical basis for Z%. The one-element set ¢; = {i} is called the set of key bit positions for block A;.

3.1.2 Group H, X H;

In contrast with Z3, the most complex 2-group is Hs, the largest binary subgroup of S,. When n = 2%, the order
of H, is 22°~'. M, is also known as the Sylow 2-subgroup of Sss.

Definition 3.1 Sylow 2-subgroup #, of the symmetric group S,,, n = 2°.
The group Hs is defined recursively as follows:

[] Hl = Z2

o H, = (Hs—l X Hs—l) - s, fO'I" s> 1.

The permutation representation 7, of the Zy appearing in Hs, contains two permutations of 2° elements, the
identity ¢ and the involution 75, which swaps the two halves {0,1,...,2571 — 1} with {2571 ... 2% — 1}, each of
length 2°~!. For example 7; = {[0,1],[1,0]}, 7> = {[0, 1,2, 3],[2, 3,0, 1]}, etc.

Example 3.1 H; and a; for s = 1,2, 3.
Hy=Ti = {[0,1],[1,01} Ha =22 =2

Hy = (Hl X Hl) T = {[07 1v273]7 [170v273]7 [07 1v372]v [1v0v372]a |H2| = 222_1 =38
[2,3,0,1],[2,3,1,0],[3,2,0,1],[3,2,1,0]}

Mz = (Ho x Hz) - T3 = {[0,1,2,3,4,5,6,7),...[7,6,5,4,3,2,1,0]} |13 = 22° 1 = 128

Each H, has a unique canonical basis as which contains 2° — 1 blocks each consisting of two permutations. Each

block A; has one key bit position ¢; = {i}. An «; is constructed recursively as follows:

45670123
A |l01234567
01236745
As |l01234567 Iy | L
2301 01234576 To_q |11
A, |l0123 A4 l01234567
10 0132 01235467 Jo_1|as_1
M A o1 @24 o123 @A l01234567 Qs
1023 23014567
Ao |lo123 A, |l01234567 as—1|Js—1
01324567
A ||l01234567
10234567
Ao |l01234567

Here, I, is defined as (0,1,...2° — 1), I, = 2° + I, = (25,25 +1,...2°t1 — 1) and J, denotes a (257! — 2) x 2% array
each row of which is equal to I;. Analogously, Jy =25+ J,.

Definition 3.2 The compact representation of elements in ;.
Let h be a permutation from Hs. The binary vector a3 (h) = (2o, %1, ... Tw—1), w = 2° — 1, is called the compact

representation of h.

Again, the compact representation is optimal in term of memory requirements. In general, we can say that
each h € H, can be uniquely represented by a (2° — 1)-bit binary number. The multiplication of permutations in
Hs is a non-linear and non-commutative operation. It can be performed directly and efficiently in the compact
representation [6].

As already mentioned, the preferred order of the carrier group should be a number in form 28%, where k& € N.
However, the order of H, is 22°~' and 2° — 1 # 8k. Thus the real-world ciphers will be based on a group whose
compact representation is one bit longer. This can simply be achieved by using a slightly modified group Hs x H1
instead of Hs. The compact representation grows by one bit to the desired 2° and the multiplication stays in principle
the same as in H, only the highest bit must be handled (XOR-ed) separately. The multiplication operation continues
to be non-commutative and non-linear. From now on we suppose that all permutations and all group bases are
stored and manipulated only in the compact representation.

We have presented the two most extreme examples for permutation 2-groups, the simplest Z7, which is commu-
tative, and the most complex H, X H;. In principle any other 2-group can be used in an appropriate representation.
New 2-groups for our cryptographic purposes can be constructed from the available ones by taking wreath products,

direct products, extensions and their combinations [6].

3.2 Key Generation

A key for our cryptosystem consists of two randomly chosen group bases. This approach ensures an extremely high

upper limit of the scalable key space. Because the bases can hardly be entered manually by the user, we need a

mechanism for generating random bases. Possibly, in cases where a fixed key length is expected, the bases could be
generated from a binary key of fixed length or from a pass-phrase, in conjunction with the use of a pseudo-random
number generator, which in turn is based on a subsystem implementing a fixed version of our system.

In general, not every basis enables a fast factorization. An efficient factorization algorithm is only known for so
called transversal group bases [5], [6]. Therefore we want to generate only bases of this kind. The Basis Generation

Algorithm (BGA) starts from the canonical basis @ and carries out the following four steps:

1. The commutative block shuffle operation randomly changes the order of the blocks by multiple swaps of two
adjacent blocks. Two blocks B; = (bio,...bir;) and Biy; = (biy1,0,...bit1,,,,) can be swapped only if

bi’j * bz’-l—l,k = bi—i—l,k * bi7j for j € Ly, and k € Zﬁ'+1'

2. The block fusion operation replaces two randomly chosen, adjacent blocks B; = (b;,- .-, bir;—1) having the
set of key bit positions ¢; and Bj = (bjo,.-.,bj.r;—1), j = i + 1, having the key bit positions ¢; by a single
longer block Bj = B; x Bj = (biym * bjn : m € Z,,, n € Z,;) having the key bit positions ¢; = ¢;|J¢;.
Note that block fusion changes the type of the basis from 7 = (10,71, .., 7, Tit1,Tit2, - -, Tw—1) tO 7/ =

(ro,T1,-«-sTi * Tix1,Tit2, - - -, Tw—1) and decreases the dimension of the basis from w to w — 1.

3. The randomization operation replaces each b; ; € B;, i € {1,2,...,w—1},j € Zy, by b} ; = b; ; *HZ_:IO k.1, 5

where lj, € Z,, is chosen randomly for every combination of 4, j and k.

4. The element shuffle operation randomly changes the order of the elements within each block.

Each step can be skipped or carried out several times. If 3 € Bg then each 3’ generated from the 8 by any
combination of these steps is also in Bg. Moreover, BGA preserves transversality, so all bases generated from the
transversal a will enable a fast factorization. For instance, the basis # in Example 2.2 was created from 3, by a
block shuffle (the axes By and B are exchanged) and an element shuffle (the indices of the points on each axis are
shuffled). Block fusion and randomization were not applied there.

The complete key generation scheme from the pass-phrase to the pair of group bases might look as follows:

Figure 3.1 Key generation
[——
[
Pass-phrase k-bit K
P Hash 2= PRNG
(seed) |

PRN seq.

BGA ——»

A k-bit hash value is extracted from the pass-phrase which was entered by the user. For example a Cyclic
Redundancy Code with a primitive polynomial of degree k41 might be used for obtaining the k-bit hash. Optionally,
the k-bit binary key K can be generated or entered directly. The length of K is freely scalable, theoretically up
to several tens of thousands of bits. In practice, lengths of about 64 to 256 bits will be used. Key K is passed as
a seed to a pseudo-random number generator which delivers pseudo-random numbers to the BGA. The generator

PRNG is a sensitive part of an implementation and must be chosen very carefully. (See also Section 4.1.)

3.3 Fast Factorization

Suppose G is a 2-group, |G| = 2", and § = (By,...,B,_1) a transversal, w-dimensional basis of G of type
r = (ro,...Tw—1). Each block B; = (b;0,...,bir,—1) contains r; permutations, where 7; = 2™i. The set ¢; =
{¢i1,---,¢im;}, contains the key bit positions for B;. Let KB; : 2" — 2™ be a function which extracts the key
bits from a binary vector, K Bj(ao,...,an-1) = (ac; 5.5 0c; .)-

The factorization of a permutation p € G is performed level-wise. First, the highest coordinate z,, 1 is obtained

-1

w12, 18 Passed to the lower level and

from p,, = p as described below, then the intermediate result p,,_1 = pw*b

the process continues in the same way until the lowest level, where an x(is obtained and py = p; * bo_,;o is equal to
the identity permutation in G.
Let p; = (ao,.--,an—1) € 2" be an input to a factorization step. The index x;—; is obtained as z;—1 =

Fi—1(KB;_1(p;)), where F; : 2™ — 2™ ig a bijection such that F;(k) = j if and only if KB;(b; ;) = k.
One should remark that although there is a similarity between the factorization with respect to a transversal
group basis and the Schreier-Sims algorithm working on strong generating sets, they are not equivalent. The concept

of group basis is more general than the strong generating set. For comparison see the works [4] and [5].

3.4 Extensions of the Basic System

The cryptosystem introduced in Definition 2.2 demonstrates the basic principle of encryption based on group bases,
the mapping of elements from one basis to another. However, even if we use a non-commutative carrier group with
multi-dimensional bases, the cryptographic properties of this mapping will not be sufficient. In the following we
present two effective techniques which extend the basic setup and improve the confusion as well as the diffusion [7]

of the cipher.

3.4.1 Bit Reversing

During encryption a permutation p € G is factorized with respect to the first basis § and the resulting coordinates
z; are passed to the composition in the second basis 3. Let us suppose for a moment, that both 8 and 3’ are of
the same type, this makes the problem more obvious.

Because both bases are randomized, we can consider each factorization and composition level as a kind of an
S-Box, which increases the confusion. As shown on the left side of Figure 3.2, each of the indices x; has been
influenced by a different number of S-Boxes. While zy passed all eight, 23 went only through two S-Boxes. That
means that some parts of the information contained in p have been “scrambled” much less than other ones. This is
an undesirable property, because “parts of the information” are not fully protected. Moreover, if G is a commutative
group (such as Z5), a large part of the ciphertext will not depend on z3 at all. So diffusion is also reduced.

For this reason, we propose a bit reversing of the index vector x before the start of composition. Note that bit
reversing is better than a simple index vector component reversing, because the bases are not necessarily of the

same type. The new encryption and decryption functions are:

where the function R : 2" — 2" reverses the order of the bits of a binary vector. R(bg,b1,...,bn—1) =

(bp—1,bn—2,...,b0), b; € {0,1}. The effect of R is illustrated on the right hand side of Figure 3.2.

Figure 3.2 Effect of Bit Reversing

B, . B B, B
00111010 01000011 oo111010] | , , , 00000000

B; [o01101111 oo110010| Bs B; |o1101221] + i it 00000100| Bj
10011010 10101001 10011010| * 00000000
01000101 11110010 01000101 00001100
10110110 01101100 10110110 00001000
01010101 01110001 01010101 00000100

B, (10000111 01001000| B) B, (10000111 00011000| Bj
01010011 01100101 01010011 00001000
10010100| ! 00001101 10010100 01001100
10000100 01111100 10000100 01010100
11000001 01010000 11000001 00001100

B, [o1000001 ooo11000| Bj B; [o01000001 01001000 Bj
00000101 00001000 00000101 01100101
11000100 01001100 11000100 | X 00001101
10000001 01010100 10000001 01111100
01000000 00000100 01000000 01110000

By [01000001 ooooo100] Bo By [01000001 oo1z0010] B3
00000001 00000000 00000001 10101001
00000000 00001100 00000000 11110010
01000000 00001000 01000000 01101100
00000000 00000000 00000000 00011100

c

Now every index passes exactly five S-Boxes resulting in a balanced confusion of all components. The length of
the index vectors © = zol||z1]|...||Tw,—1 and ¥y = yol||y1l| .- . ||yws—1 is the same |z| = |y| = n, even if the bases

and B’ are not of the same type. So bit reversing can be used in this case as well.
3.4.2 Non-Linear Diffusive Transformation

At each factorization level the input p; is divided by a factor b;_1 ,,_, from the current basis block. Only a small
part, namely the key bits, of p; determines which factor will be taken. Because multiplication and division of
permutations in the compact form of Z3 are defined as a simple bit-wise XOR, a change of a single non-key bit of p;
affects only a single bit of p; ;. Consequently diffusion at each factorization step is weak. Even worse, factorization
in Z73 is a linear function. Although factorization in # is not linear and its diffusion is the best among all 2-groups,
it is still not strong enough from the cryptographic point of view. This is because the higher order bits of a product
depend only on the higher order bits of multiplicands.

Fortunately, both the weak diffusion and linearity can be compensated by a simple extension of group bases.
Figure 3.2 shows the idea on a geometric analogy to the group bases of Z3. Basis A was obtained from the canonical
ay by two fusing By with By and By with B3. An element shuffle of A resulted in basis B and applying a further
randomization created C. In all three cases the factor B;[z;] of any point depends only on its vertical position, the
horizontal position does not play any role. The points having the same factors in By lie on parallel horizontal lines

(surfaces).

Example 3.2 Linear And Non-Linear Bases

By|—o—e -o—o By —o—o -o—e
ce-0--0-o- ce-0--0-o-
2
! !
il s|-e-—e-e-e- Ly e e e
Qe 00—
1 — B 1le B
A p2——= "0 B p— 0
53— 53—

However, one can also construct other, more complex bases. For instance, in basis D, the factor B;[z;] depends
on both the vertical and the horizontal position of a point. The lines, connecting the points having the same factor
in By, are no longer horizontal. Moreover, in bases E and F' the surfaces are not even linear. This can be seen as a
generalization from an orthogonal two-dimensional coordinate system to a more general geometric coordinatization.
(e.g. radial etc.)

Translated back to group bases, before each factorization step the key bits of an intermediate result p; (as
defined in Section 3.3) will be made dependent on all bits of p;. A non-linear hash function T; : 2" — 2™
from n to m; bits will be used for that purpose. Let ¢; = {c¢i1,...,¢im;} be a set of key bit positions for
block B; and let SB; : 2™ x 2™ — 2" be a function which sets the key bits of a binary vector to a specified
value, SB;((ao,...,an-1),(d1,...,dpn;)) = (€o,...,en—1), such that e; = a; for all j ¢ ¢; and e, , = dj, for all
k=1,...,m;. A preprocessing step will be then defined as follows: p; = SB;_1(p;,T(p;)).- The definition of the
factorization step is the same as in Section 3.3, with the exception that the transformed value p} is processed instead
of the original p;.

In the cases A, B,C of our example, KB; : 24 — 22 extracted two key bits from a 4-bit word (compact
representation of a p € Z3), KB (ao,a1,a2,a3) = (az,a3), and Fy : 22 — 22 found the appropriate factor in By,
Fi(az,a3) = z1. In the extended version (cases D, E, F) z; depends on all four bits of p. In case C, T : 2% — 22
is defined by Ti(ag,a1,a2,a3) = (ag,a1) + (as,as), in case D by Ti(ag,a1,a2,a3) = (ag,a1) XOR (az,a3) and in
case E as Ti(ap,a1,a2,a3) = ROTL(ap,a1) + (az,as). Many other functions are also possible. In general, the hash

function T should possess at least the following four properties:

e each bit of the output should be dependent on each bit of the input
e cach output bit should be balanced?
e the function should not be linear

e composite function SB(p, T (p)) must be invertible

However, one can also use stricter criteria, similar to those used in the construction of an n x m; S-Box [1].
When using a proper 7', the avalanche effect in the cipher will be very strong, because every single factorization or
composition step ensures that the avalanche criterion is fulfilled. In [11] the author defines the term ezcess avalanche
factor for iterative ciphers. If we think of every factorization or composition step of our non-iterative ciphers as a
“round”, then the value of an analogue of the EAF will be equal to w; + wsy, where w; are the dimensions of used

bases.

2An output bit is balanced if ng & n1, where n, is the number of inputs for which the output bit is equal to a.

10

4 Security Aspects

The security, speed and memory requirements of our ciphers depend strongly on the concrete configuration. The

most important parameters are:

e the order of the carrier group (affects the block length),
e the extent of block fusion (affects the size of “S-Boxes” and the number of “rounds”),
e the function T used,

e and the randomness of the group bases.

By implementations, where i) the carrier group has large order (e.g. 2'28), ii) the extent of block fusion is
reasonably large (e.g. 12 key bits per block), iii) a sensible non-linear T was chosen and iv) the bases were

generated directly from some physical source of “true” random numbers, a high degree of security is ensured.

4.1 The Pseudo-Random Number Generator

A key in our cryptosystem consists of two secret group bases, alternatively speaking, of two sets of several, large,
key dependent S-Boxes of special structure. As the algorithm itself is simple and public, a possible attack would
try to reconstruct the bases, using a chosen plaintext attack or similar techniques.

If an implementation uses a PRNG for generating the bases, the properties of the PRNG are crucial for the security
of the cipher. The number of possible initial states of the generator, i.e. the size of the generator’s seed, must
be reasonably high, because it directly bounds the real key space of the cryptosystem, which must be exhausted
in a brute force attack. Of course, we cannot use a simple 32-bit linear congruential generator, unless we want
to construct a weak cipher. The size of the generator’s seed is just one of the many measures that determine the
quality of the PRNG from a cryptographic point of view. The PRNG needs to pass non-trivial randomness tests, like
the Maurer Test [8], the Diehard suite [9], etc. Otherwise some attacks based on dependencies within the bases
might be possible.

In our opinion, the lagged Fibonacci generator with Liischer’s approach [10] is a proper example of an acceptable
PRNG. For instance, using lags (37,100) with a word length of 32 bits, the generator passes all statistical tests, the

2131 These values can be

size of its seed can be scaled up to 3200 bits and the period of the generated sequence is
further improved by changing the lags.

Finally, a comment should be made about a brute force attack on a cipher using BGA. The time needed for
generating bases (usually less than one second) is negligible for the legal user, who generates the key once, but it is

a big problem for an attacker, who tries all possible keys. When trying, say, 264 different keys, with a delay of 500

ms per key, a brute-force attack is infeasible.

4.2 Block Fusion

The average length of blocks is also very important for the security of the system. Let 2" be the order of the group
G and let = be a divisor of n. When BGA merges = adjacent blocks k-2, k-z+1,... . k-z+x—1,0f ap k €[0, 2 —1],

we say that a block fusion to extent x was performed. (z is equal to the number of key bits per block.) The number

11

of adjacent blocks merged needs not necessarily be constant for all fused z-tuples. In this case the average fusion
extent can be computed by x = 7, where w is the dimension of the basis after block fusion.

For instance the canonical basis ag4 has 64 blocks with two permutations in each block. Each permutation in the
compact form is 64 bits long, so the whole basis fits in 1 KB of memory. If we perform a fusion to extent 4, we obtain
a basis with 16 blocks of 16 permutations (2 KB), a fusion to extent 8 creates 8 blocks of 256 permutations (16 KB),
etc. The fusion to extent 64, would result in one block of 264 permutations (227 TB). Of course, the higher the
extent of block fusion, the more secure the cipher. In the extreme case x = n we obtain a full random permutation
of 2™ elements, which is the strongest n-bit cipher available. On the other hand, the memory requirements are
growing exponentially with 2 and the quality of the PRNG becomes more critical. The more PRNs are generated,
the higher the probability, that some weakness of the PRNG might be exploited. For the reasons above a tradeoff

between security and memory load must be found. The values between 8 and 16 key bits per block would be

appropriate for practical use.

4.3 Simplified Variants

For speed optimization one could use some simplified variants from our general family of block ciphers, e.g. by
taking simple 7', using fixed key bits positions or fixed base-block size. However, one should be careful about it,
because some of these simplifications might compromise the security. For example, it is not clear whether it is
secure to use a BGA without block shuffling in combination with the Z% carrier group. The fixed key bits positions
enable faster implementation, but given a concrete transformation 7' it might be possible to construct a differential
which passes w — 1 factorization steps. Consequently a differential attack might be possible. However, to be able
to break the cipher an attacker would have to completely reconstruct both secret group bases which are several

kilobytes long. This does not seem to be a practical attack even for a simplified cipher.

5 Experimental results

We implemented a scalable software version of the proposed algorithm. We used two carrier groups, the Hs x H,
supporting block lengths 8, 16, 32, 64, 128 and 256 bits, as well as the ZZ, supporting all block lengths from 32 to
512 bits, divisible by 32. We used a fixed key length of 128 bits given by the number of possible initial states of the

PRNG.

5.1 Throughput

Both algorithms were implemented in C++ and tested on a Pentium II machine running at 350 MHz. As expected,
the first carrier group was less suitable for a software implementation. The multiplication of permutations from
HsxH;y in the compact representation is a bit-oriented recursive algorithm not very well supported by the instruction
set of the processors. To make the factorization faster, we precomputed the inverses of all permutations in the
group bases. So we actually stored four instead of two bases. The required memory space was about 90 KB. The
throughput of the 64-bit version without transformation 7' was about 75 KB/s and with a simple transformation

only 50 KB/s. When we used the Cartesian representation of permutations, speeds rose to 275 KB/s without a

12

T, and 100 KB/s with a transformation. The memory requirements were about 900 KB. Even if some tighter
optimization techniques were to improve the speeds by a factor of 2 to 4, the values achieved by the software
implementation can not be considered as very satisfactory. A simplified hardware version of the algorithm with its
own special multipliers running at a clock rate of 45 MHz achieves speeds above 20 MB/s according to [6], so the
group Hs X H; is definitely more suitable for a hardware implementation.

Our second implementation used Z% as carrier group. The multiplication of permutations in this commutative
group is much faster than in H,; x H;. We used a simplified BGA without block shuffle and with the fixed fusion
length 8 blocks, which made the factorization even more efficient. A non-linear transformation 7' was used at each
level of the factorization and composition operations. The 64-bit version occupied 18 KB and encrypted at a rate of
2 MB per second. The 128-bit version with memory requirements 69 KB achieved about 1.5 MB/s and the 256-bit
version ran at 1 MB/s occupying 270 KB of memory. Again some speed improvements by a factor of 2 to 3 might
be possible after a strong optimization effort. These results confirmed that Z7% is much more efficient than Hs x H;,
at least in software.

Unfortunately, the encryption speeds measured by ZI are approximately 2 to 7 times slower than the speeds
of recent fast block ciphers. Even if we consider some minor possible optimizations, the achieved speeds are not

satisfactory.

5.2 Randomness

We used a general statistical approach to estimate the quality of encryption. Similar methods have already been
used in several works, for example in [15]. Of course, this approach can not replace a deep analysis of the cipher, but
it at least gives us a good estimate of cipher’s quality. In our tests we encrypted a large amount of highly redundant
non-periodic data (e.g. a sequence of blocks, containing n-bit binary representation of a counter sequence 0, 1, 2,
...), and tested the output for randomness. The idea of the testing approach is the following: The cipher must
provide strong diffusion, so even small changes between the adjacent input blocks must result in big and random
looking changes in the output blocks. Further, the cipher must provide a strong confusion, so a systematic and
highly redundant input sequence must be encrypted into a sequence which can not be distinguished from a true
random one by any statistical tests. The output sequences were tested by the DieHard suite of statistical tests [9].
The tests were carried out for many different keys.

The data were encrypted using the carrier group Z% and the bases were generated with the lagged (37, 100)
Fibonacci Generator with Liitscher’s approach. The fixed number of key bits per block was set to 8. Here is a

C-like definition of one of the non-linear transformations used, T : 2" — 28, n =8k, k € \:

byte T(vector p)
byte sum = 0;
for i=0 to n/8-1
sum = rotr3(sum + p[il);
return sum;

The p[i] are the 8-bit segments (bytes) of the n-bit binary vector p and the function rotr3 performs a 3-bit

right rotation of an 8-bit value.

13

Each test from the DieHard suite evaluates the quality of the input with a so called p-value, p € [0,1]. Good
results should lie between 0.001 and .999. The tests with results below 10~% or above 1 — 107% are considered as
failed. However, one must keep in mind that even a true random number generator generates sometimes a sequence,
which “fails” the test, since all sequences, even the “less random” ones, appear with the same probability.

We carried out 4400 tests for each configuration and counted the number of significant results among these tests.
A result was considered as significant (or suspect), if the value p was below 0.001 or above 0.999. The average ratio
of significant results, measured by our cipher, was 0.0024 for block length 64 bits and 0.0025 for 128 bits. In our
opinion the results can be considered as satisfactory. For instance, the cipher IDEA, which is regarded as one of
the most secure 64-bit, ciphers today, achieved on average 0.0029 of significant results by the same test. An output

of a simple linear congruential generator produced 0.5036 of significant results.

6 Conclusions

We have introduced a new framework for constructing block ciphers based on group bases. Our approach enables
to design a simple weak cipher, which can be deeply analyzed and examined, as well as a large, strong one. Even
the full symmetric group of degree 2™ can be realized from the same specification.

In contrast to Feistel networks, our ciphers are not iterative. Instead of several repetitions of a uniform round,
a specific number of factorization and composition steps are carried out. The security can be scaled through the
average fusion extent instead of the number of rounds. As the key of the cipher is in fact a random pair of group
bases, the potential size of the key space is much larger than by the “classical” ciphers. In practice the group bases
will be generated from some fixed-size seed value, so they can be viewed as a set of random key-dependent S-Boxes
with a special structure.

The block length, key length and security level of the ciphers are scalable. Some other components of the cipher,
which affect the speed and memory requirements, are also variable. The system has been optimized for maximal
confusion, diffusion and non-linearity. The results of statistical tests were very satisfactory. Nevertheless, the
cryptosystem is still too new to allow us to make strong statements about its security. Some attacks based on the
special structure of the group bases may be possible as well as attacks targeting the special properties of used PRNG.
The presence of a mathematical foundation lets us hope that a deeper theoretical analysis of the cryptosystem will
be possible.

There are still some open questions about the new design, for instance:

e Compared to the fast modern block ciphers the proposed ciphers are rather slow. Is it possible to significantly

improve their speed?

e Although the general design appears to be very robust, it is not clear whether it is also true for the simplified

variants (e.g. using fixed key bits positions, fixed base block length, etc.). How is their resistance to the
differential and the linear cryptanalysis?

e What is the minimal block fusion extent, which provides a strong security?

Research on these problems is likely to be the subject of some future work on this area.

14

References

[1] C. Adams, S. Tavares, Structured design of cryptographically good S-Boxes,
in Journal of Cryptology, 3 (1990).

[2] X. Lai, On the Design and security of block ciphers,
in ETH Series in Information Processing, 1 (1992).

[3] J. D. Dixon, B. Mortimer, Permutation groups,
Springer Verlag, (1996).

[4] C. C. Sims, Computation with permutation groups,
in Proc. Second Sympos. on Symbolic and Algebraic Manipulation, Assoc. Comput. Mach., (1971).

[5] S. S. Magliveras, N. D. Memon, The algebraic properties of cryptosystem PGM,
in Journal of Cryptology, 5 (1992), pp 167-183.

[6] T. Horvath, Cryptosystem TST - Ph.D. thesis,
in University of Essen, Germany, (1998),
http://www.exp-math.uni-essen.de/~trung/tst/.

[7] C. E. Shannon, Communication theory of secrecy systems,
in Bell System Technical Journal, 28 (1949), pp 656-715.

[8] U. M. Maurer, A universal statistical test for random bit generators,
in Journal of Cryptology, (1992), pp 89-105.

[9] G. Marsaglia, Diehard - battery of tests,
(1997), http://stat.fsu.edu/~geo/diehard.html, http://www.helsbreth.org/random/diehard.html.

[10] D. E. Knuth, The art of computer programming, 3-rd Edition
Addison Wesley, (1998), pp 27-29, 35, 186-188.

[11] A. Folmsbee, AES Java technology comparisons
Second AES Candidate Conference, (1999),
http://csre.ncesl.nist.gov/encryption/aes/roundl/conf2 /papers/folmsbee.pdf.

[12] R. L. Rivest, The RC5 encryption algorithm
Fast Software Encryption: Second International Workshop, 1008 (1995), pp 86-96,
http://theory.lcs.mit.edu/~rivest/rc5rev.ps.

[13] R. L. Rivest, M. J. B. Robshaw, R. Sidney, Y. L. Yin, The RC6 block cipher
The First AES Candidate Conference, (1998),
http://theory.lcs.mit.edu/~rivest /rc6.ps.

[14] J. Daemen, V. Rijmen, AES proposal: Rijndael
The First AES Candidate Conference, (1998),
http://www.esat.kuleuven.ac.be/~rijmen/rijndael /rijndaeldocV2.zip.

[15] J. Soto, L. Bassham, Randomness testing of the AES finalist candidates
The Third AES Candidate Conference, (2000),
http://csre.nist.gov/encryption/aes/round2/conf3 /papers/30-jsoto.pdf.

15

