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Abstract

Hyperovals in projective planes turn out to have a link with t-designs. Moti-
vated by an unpublished work of Lonz and Vanstone, we present a construction
for t-designs and s-resolvable t-designs from hyperovals in projective planes of
order 2n. We prove that the construction works for t ≤ 5. In particular, for
t = 5 the construction yields a family of 5-(2n + 2, 8, 70(2n−2− 1)) designs. For
t = 4 numerous infinite families of 4-designs on 2n+ 2 points with block size 2k
can be constructed for any k ≥ 4. The construction assumes the existence of
a 4-(2n−1 + 1, k, λ) design, called the indexing design, including the complete

4-(2n−1 + 1, k,
(
2n−1−3
k−4

)
) design. Moreover, we prove that if the indexing design

is s-resolvable, then so is the constructed design. As a result, many of the
constructed designs are s-resolvable for s = 2, 3. We include a short discussion
on the simplicity or non-simplicity of the designs from hyperovals.
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1 Introduction

An oval in a projective plane of order q is a set of q + 1 points, no three of which
are collinear. A hyperoval O in a projective plane of even order q = 2n is a set of
q + 2 points such that every line of the plane intersects O in either zero or in two
points. It is a well-known fact that if a finite projective plane contains a hyperoval,
then its order must be even. In addition, an oval in a projective plane of even order
can uniquely be extended to a hyperoval. The union of a conic and its nucleus is an
example of a (regular) hyperoval in the Desarguesian projective plane, PG(2, q), q
even.

Lonz and Vanstone showed in an unpublished work that hyperovals can be used
to construct 5-(2n + 2, 6, 15) designs for every integer n ≥ 3, see [8]. Inspired by this
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work we investigate the construction of t-designs by hyperovals in the current paper.
We show that t-designs with t ≤ 5 can be constructed by hyperovals. More precisely,
if for any given k ≥ 4 there exists a 4-(2n−1 + 1, k, λ) design, then there exists a
4-(2n + 2, 2k,Λ) design, where the index Λ depends on n, k, λ. For t = 5, it can be
shown that there exists a 5-(2n + 2, 8, 70(2n−2 − 1)) design for n ≥ 4.

The construction by hyperovals essentially assumes the existence of a certain de-
sign, called the indexing design. In particular, if the indexing t-design is s-resolvable,
then the constructed design is also s-resolvable. The result is interesting regarding the
question of finding s-resolvable t-designs, about which not much is known, see [10, 11].
Actually we have obtained many s-resolvable infinite families of 4- and 5-designs, for
s = 2, 3 with the construction.

The question of simplicity or non-simplicity of the constructed designs by hyper-
ovals remains an open problem, which appears to be very involved. We will discuss
the problem at the end of the paper. However, in the case of the Lonz-Vanstone
5-(2n + 2, 6, 15) design, Jungnickel and Vanstone [6] have proved that when using a
regular hyperoval in PG(2, 2n) this design is neither simple nor a multiple of a 5-design
with a smaller index for n ≥ 4.

We assume that the reader is familiar with the concepts of t-designs and projective
planes. For completeness we include the following definition, see also [10, 11].

Definition 1.1 A t-(v, k, λ)-design (X,B) is said to be s-resolvable, or to have an
s-resolution, with 0 < s < t, if its block set B can be partitioned into N ≥ 2 classes
A1, . . . ,AN such that each (X,Ai) is an s-(v, k, δ) design for i = 1, . . . , N. Each Ai
is called an s-resolution class or simply a resolution class. The set of N classes is
called an s-resolution of the design.

In particular, note that the s-resolvability of the complete k-(v, k, 1) design co-
incides with the concept of large set of s-designs. For more information about s-
resolvable t-designs, see [11] for example.

1.1 Description of the construction

We begin by describing our construction for t-designs from hyperovals.
Let (P ,L) be a projective plane of order q = 2n, with point set P and line set

L. Let O be a hyperoval of (P ,L) consisting of 2n + 2 points of P . Let (X ,B) be a
t-(2n−1 + 1, k, λ) design, called the indexing design.

• For x ∈ P \ O define

Lx = {L ∈ L / x ∈ L and |L ∩ O| = 2}
Πx = {L ∩ O / L ∈ Lx.}

Then |Lx| = 2n−1 + 1 and Πx is a partition of O into (2n−1 + 1) 2-subsets.
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• Conceptually, we consider the (2n−1+1) 2-subsets of Πx as points, sayX1, . . . , X2n−1+1.
Let (Πx,Dx) be a copy of the indexing design (X ,B) defined on Πx and define

D =
⋃

x∈P\O

Dx.

We will prove that for a suitable indexing design (X ,B), the pair (O,D) will
form a t-(2n + 2, 2k,Λ) design, in which each point Xi is replaced by its corre-
sponding two points of the hyperoval.

The Lonz-Vanstone 5-(2n + 2, 6, 15) design in this context corresponds to the
case, where the indexing design (X ,B) is the trivial 3-(2n−1 + 1, 3, 1) design de-
fined on Πx. Thus the blocks of (Πx,Dx) consist of the collection of all 3-subsets
of Πx. Each 3-subset D = {Xi, Xj, Xh} ⊆ Πx with i 6= j 6= h 6= i is a block of
Dx. Expanding Xi, Xj, Xh to their corresponding 2-subsets of the hyperoval will give
D = {a, b, c, d, e, f}, where Xi = {a, b}, Xj = {c, d}, Xh = {e, f}. And the three
lines {a, b}, {c, d}, {e, f} are concurrent at the point x ∈ P \ O.

It is not difficult to see that (O,D) is a 5-(2n + 2, 6, 15) design. This can be seen
as follows. Let a, b, c, d, e ∈ O be any five distinct points of O. There are 15 pairs of
lines (L1, L2) that can be formed in the projective plane from these 5 points, having
their intersection points not in O. Let assume L1 = {a, b}, L2 = {c, d}. Then the
lines L1 and L2 will meet at a point x ∈ P \O. The line {x, e} will meet O at another
point f . And {a, b, c, d, e, f} is a block of D. Hence a, b, c, d, e appear together in 15
blocks of D, as desired.

2 A family of 5− (2n + 2,8,70(2n−2 − 1)) designs

By observing the construction of 5-(2n+2, 6, 15) above, we notice that if the complete
4-(2n−1+1, 4, 1) design is used as the indexing design, then the construction will work
and yields 5-designs with block size 8. We record the result in the following theorem.

Theorem 2.1 There exists a 5-(2n + 2, 8, 70(2n−2 − 1)) design for every n ≥ 4.

Proof. For any given point x ∈ P \O, choose the complete 4− (2n−1 + 1, 4, 1) design
as the indexing design defined on Πx. Note that for this indexing design (Πx,Dx) we
have λ4 = 1, λ3 = (2n−1 − 2).

Let a, b, c, d, e ∈ O be any 5 points. There are two cases to be considered.

• Fixing a pair of lines, say, {a, b} and {c, d}. There are 15 possible choices for
such pairs from the 5 points a, b, c, d, e. Now lines {a, b} and {c, d} intersect
at a unique point x ∈ P \ O. This shows that in this case a, b, c, d, e appear
together 15.λ3 = 15.(2n−1 − 2) times in the blocks of D.
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• Fixing a line, say {a, b}. There are 10 possible choices of such lines from
a, b, c, d, e. There are (2n − 1) points on line {a, b} outside O. The three in-
tersection points of line {a, b} with lines {c, d}, {c, e} and {d, e} have to be
ignored, as they have been treated in the first case above. So, only (2n − 4)
points x on {a, b} outside O need to be considered. Thus a, b, c, d, e appear
together 10.(2n − 4).λ4 = 10.(2n − 4) times in the blocks of D in this case.

Altogether a, b, c, d, e appear

15.(2n−1 − 2) + 10.(2n − 4) = 70(2n−2 − 1)

times in the blocks of D. Thus (O,D) is a 5-(2n+2, 8, 70(2n−2−1)) design, as desired.
2

Remark 2.1 We should remark that the construction of 5-designs from hyperovals
using indexing 5-(2n−1 + 1, k, λ) designs with k ≥ 5 will not work. The reason is as
follows. In determining the index of the constructed design there is a further case
that needs to be considered when k ≥ 5: namely, fixing a point, say a from the
5 points a, b, c, d, e. There are (2n − 3) lines `a through a not containing any of the
points b, c, d, e. The problem is that the number of intersections of `a with lines {b, c},
{b, d}, {b, e}, {c, d}, {c, e}, {d, e}, cannot be uniquely determined (the number can
be 6 or less than 6 depending on the given points b, c, d, e).

3 4-designs from hyperovals

In this section we focus on the case t = 4. In contrast to case t = 5, we will prove
that the construction of 4-designs by hyperovals works for indexing 4-designs with
any given block size k ≥ 4.

Theorem 3.1 Suppose that there exists a 4-(2n−1 + 1, k, λ4) design for k ≥ 4 and
n ≥ 4. Then there exists a 4-(2n + 2, 2k,Λ) design with

Λ =
2(2k − 1)(2k − 3)

(k − 2)(k − 3)
(2n−1 − 1)(2n−2 − 1)λ4.

Proof. For any point x ∈ P \ O, choose a 4-(2n−1 + 1, k, λ4) design as the indexing

design on Πx. Note that for the indexing design (Πx,Dx) we have λ3 = (2n−1−2)
(k−3) λ4,

λ2 =
(2n−1−1

2 )
(k−2

2 )
λ4.

Let a, b, c, d ∈ O be any 4 points. There are three cases to be considered.

• Fixing a pair of lines {a, b} and {c, d}. There are 3 possible choices for such
pairs from the 4 points a, b, c, d. Now lines {a, b} and {c, d} intersect at a unique

point x ∈ P \O. Thus, for this case, a, b, c, d appear together 3.λ2 =
3(2n−1−1

2 )
(k−2

2 )
λ4

times in the blocks of D.
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• Fixing a line {a, b}. There are 6 possible choices of such lines from a, b, c, d.
There are (2n−1) points on line {a, b} outsideO. One of them as the intersection
of {a, b} with {c, d} has to be ignored, as it has been treated in the first case
above. So, (2n − 2) points x ∈ {a, b} \ O need to be considered. Thus, in

this case, a, b, c, d appear together 6.(2n − 2).λ3 = 6(2n−2)(2n−1−2)
(k−3) λ4 times in the

blocks of D.

• Fixing a point a. By reason of symmetry there is one possible choice for this
case. There are (2n − 2) lines `a through a not containing any of the points
b, c, d. There are (2n−1) points x on `a \O. The 3 intersections of `a with lines
{b, c}, {b, d}, {c, d} have to be ignored, as they have been already treated in the
second case above. So, only (2n − 4) points x ∈ `a \ O need to be considered.
Thus, in this case, a, b, c, d, appear (2n−2).(2n−4).λ4 times in the blocks of D.

Altogether a, b, c, d appear

Λ =
3
(
2n−1−1

2

)(
k−2
2

) λ4 +
6(2n − 2)(2n−1 − 2)

(k − 3)
λ4 + (2n − 2)(2n − 4)λ4

=
2(2k − 1)(2k − 3)

(k − 2)(k − 3)
(2n−1 − 1)(2n−2 − 1)λ4

times in the blocks of D. Thus (O,D) is a 4-(2n + 2, 2k,Λ) design, as desired. 2

The following is an immediate corollary of Theorem 3.1, where the indexing design
is the complete 4-(2n−1 + 1, k,

(
2n−1−3
k−4

)
) design.

Corollary 3.2 For k ≥ 4 and n ≥ 4 there exists a 4-(2n + 2, 2k,Λ) design with

Λ =
2(2k − 1)(2k − 3)

(k − 2)(k − 3)
(2n−1 − 1)(2n−2 − 1)

(
2n−1 − 3

k − 4

)
.

As first examples of the application of Theorem 3.1, we consider the 4-(v, k, λ)
designs constructed by Hubaut [5], with the following parameters:

• v = 2n−1 + 1, k = 2m, λ = (2m − 3)
∏m−1

i=2
2n−1−i−1
2m−i−1 , 2 < m < n− 1;

• v = 2n−1 +1, k = 2m+1, λ = (2m+1)
∏m−1

i=2
2n−1−i−1
2m−i−1 , 2 < m < n−1, m - n−1.

Theorem 3.1 with indexing designs as the Hubaut 4-designs gives the following result.

Theorem 3.3 For n ≥ 5 there exist 4-(v, 2k,Λ) designs with the following parame-
ters:

• v = 2n + 2, 2k = 2m+1,

Λ = 2 (2m+1−1)(2m+1−3)
(2m−2)(2m−3) (2n−1−1)(2n−2−1)(2m−3)

∏m−1
i=2

2n−1−i−1
2m−i−1 , 2 < m < n−1;

• v = 2n + 2, 2k = 2m+1 + 2,

Λ = 2 (2m+1+1)(2m+1−1)
(2m−1)(2m−2) (2n−1−1)(2n−2−1)(2m+1)

∏m−1
i=2

2n−1−i−1
2m−i−1 , 2 < m < n−1,

m - n− 1.
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4 s-resolvability of t-designs from hyperovals

In this section we turn our attention to the case where the indexing t-designs are
s-resolvable. In this case, we prove that the t-designs from hyperovals are also s-
resolvable. We present a proof of this statement for 4-designs in Theorem 4.1.

Theorem 4.1 Assume that the indexing 4-(2n−1 + 1, k, λ) design can be partitioned
into m s-(2n−1+1, k, δs) designs, for s = 2 or 3. Then the constructed 4-(2n+2, 2k,Λ)
design from a hyperoval can also be partitioned into m s-(2n+2, 2k,∆s) designs. More
precisely,

• if s = 2, then 2-(2n + 2, 2k,∆2)= 2-(2n + 2, 2k, (2k−1)
(k−1) (2n − 1)2n−1δ2);

• if s = 3, then 3-(2n + 2, 2k,∆3)= 3-(2n + 2, 2k, (2k−1)
(k−2) (2n − 1)(2n−1 − 1)δ3).

Proof. We show that there is a partition of the constructed 4-design into s-designs.
Let

(Πx,D1
x), . . . , (Πx,Dmx ),

denote a partition of the indexing 4-design into m s-designs, i.e. each (Πx,Dix) is a
2-(2n−1 + 1, k, δ2) or 3-(2n−1 + 1, k, δ3) design, i = 1, . . . ,m.

Case s = 2. Note that for a 2-(2n−1 + 1, k, δ2) design we have δ1 = 2n−1

(k−1)δ2.
Let a, b ∈ O be any two points. Two cases need to be considered.

• (I): Fixing the line {a, b}. Since there are (2n − 1) points x ∈ {a, b} \ O, the
points a, b appear (2n − 1).δ1 = (2n − 1).2n−1δ2/(k − 1) times in the blocks of
(O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.

• (II): Fixing a point a. By reason of symmetry there is one possible choice.
There are 2n lines `a through a not containing b. There are (2n − 1) points on
`a \ O which need to be counted. Thus, in case (II), a, b appear

2n.(2n − 1).δ2

times in the block of (O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.

Altogether a, b appear

∆2 =
1

(k − 1)
(2n − 1).2n−1δ2 + 2n(2n − 1).δ2 =

(2k − 1)

(k − 1)
(2n − 1)2n−1δ2

times in the blocks of (O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.
Thus (O,D) has a 2-resolution with m resolution classes consisting of 2-(2n +

2, 2k, (2k−1)
(k−1) (2n − 1)2n−1δ2) designs.

Case s = 3. Note that for a 3-(2n−1 + 1, k, δ3) design we have δ2 = (2n−1−1)
(k−2) δ3.

Let a, b, c ∈ O be any three points. Two cases need to be considered.
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• (I): Fixing a line {a, b}. There are 3 possible choices for such a line. As there
are (2n − 1) points x ∈ {a, b} \ O, the points a, b, c appear together

3.(2n − 1).δ2 = 3(2n − 1)
(2n−1 − 1)

(k − 2)
δ3

times in the blocks of (O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.

• (II): Fixing a point a. By reason of symmetry there is one possible choice.
There are (2n − 1) lines `a through a not containing b or c. There are (2n − 2)
points on `a \ O which need to be considered, since the intersection of `a with
line {b, c} has to be ignored. Thus a, b, c appear

(2n − 1).(2n − 2).δ3

times in the blocks of (O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.

Altogether a, b, c appear

∆3 = 3(2n − 1)
(2n−1 − 1)

(k − 2)
δ3 + (2n − 1)(2n − 2)δ3

=
(2k − 1)

(k − 2)
(2n − 1)(2n−1 − 1)δ3

times in the blocks of (O,D) corresponding to (Πx,Dix), i = 1, . . . ,m.
Thus (O,D) has a 3-resolution with m resolution classes consisting of 3-(2n +

2, 2k, (2k−1)
(k−2) (2n − 1)(2n−1 − 1)δ3) designs. 2

Remark 4.1 As we are interested in s-resolutions with s ≥ 2, we only consider this
case in Theorem 4.1 above. However, a similar result for s = 1 can be proved. More
exactly, if the indexing design 4-(2n−1 + 1, k, λ) can be described as a union of m
disjoint 1-(2n−1 + 1, k, δ1) designs, then the constructed 4-(2n + 2, 2k,Λ) design is a
union of m disjoint

1− (2n + 2, 2k,∆1) = 1− (2n + 2, 2k, (2n + 1)(2n − 1)δ1)

designs.

Theorem 4.1 is still valid for 5-designs constructed from hyperovals, i.e. if the
indexing design is s-resolvable, then so is the constructed 5-design. The proof is
similar. So, we record the following result for s-resolvable 5-designs without the
detail of the proof.

Theorem 4.2 1. The 5−(2n+2, 6, 15) design n ≥ 5, constructed from a hyperoval
can be partitioned into m = (2n−1 − 1)/λmin disjoint 2− (2n + 2, 6, 5.2n−2(2n −
1)λmin) designs, where λmin is the smallest value for which a 2−(2n−1+1, 3, λmin)
design exists.
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2. Assume that 2n−1+1 ≡ 0 (mod 3), n ≥ 4. Then the 5−(2n+2, 8, 70(2n−2−1))
design in Theorem 2.1 can be partitioned into m = (2n−1 − 2)/λmin disjoint
3− (2n + 2, 8, 7

2
.(2n− 1)(2n−1− 1)λmin) designs, where λmin is the smallest value

for which a 3− (2n−1 + 1, 4, λmin) design exists.

Proof.

1. Using a large set LSλmin
(2, 3, 2n−1+1) of the indexing design [7], i.e. the indexing

design can be partitioned into m = (2n−1− 1)/λmin disjoint 2-(2n−1 + 1, 3, λmin)
designs.

2. If 2n−1 + 1 ≡ 0 (mod 3), then using a large set LSλmin
(3, 4, 2n−1 + 1) of the

indexing design [7], i.e. the indexing design can be partitioned into m = (2n−1−
2)/λmin disjoint 3-(2n−1 + 1, 4, λmin) designs.

2

In the following we look at some specific families of 3-resolvable 4-designs as
consequences of Theorems 3.1 and 4.1. It is known that the simple 4-(2n−1 + 1, 5, 5)
design with (n − 1) ≥ 5 odd, constructed by Alltop [1] is 3-resolvable with m =
(2n−1 − 2)/6 resolution classes [10, 11]. Each class is a 3-(2n−1 + 1, 5, 15) design.
Thus, when the indexing design is the Alltop design, we have the following result
from Theorems 3.1 and 4.1.

Theorem 4.3 There exists a 4-(2n + 2, 10, 105(2n−1 − 1)(2n−2 − 1)) design for even
n ≥ 6. The design can be partitioned into (2n−1 − 2)/6 3-designs with parameters
3− (2n + 2, 10, 45(2n − 1)(2n−1 − 1)).

In a series of papers [2, 3, 4] Bierbrauer constructed several interesting infinite
families of simple 4-designs for k = 6, 8, 9 with constant indices. The construction
makes use of the projective general linear group PGL(2, q), q = 2n which has a
sharply 3-transitive action on the projective line X = GF(q) ∪ {∞}. Here are some
parameters of these designs: 4-(2n−1 + 1, 6, λ4), λ = 10, 60, 70, 4-(2n−1 + 1, 8, 35),
4-(2n−1 +1, 9, 84). It turns out, as noted in [11], that all here mentioned 4-designs are
3-resolvable with m = (q − 2)/6 resolution classes. In detail, the 4-(2n−1 + 1, 6, λ4)
design is partitioned into 3-(2n−1 + 1, 6, 2λ4) designs; the 4-(2n−1 + 1, 8, 35) design
into 3-(2n−1 +1, 8, 42) designs and the 4-(2n−1 +1, 9, 84) design into 3-(2n−1 +1, 9, 84)
designs. Hence, from Theorems 3.1 and 4.1 we have the following result.

Theorem 4.4 Let n be an even integer with n ≥ 6 and gcd(n− 1, 6) = 1. Then the
following 3-resolvable 4-designs exist.

1. A 4-(2n + 2, 12, 33
2
λ4(2

n−1 − 1)(2n−2 − 1)) design, λ4 = 10, 60, 70. The de-
sign can be partitioned into (2n−1 − 2)/6 3-designs with parameters 3 − (2n +
2, 12, 11

2
λ4(2

n − 1)(2n−1 − 1)).

2. A 4-(2n + 2, 16, 455(2n−1 − 1)(2n−2 − 1)) design. The design can be partitioned
into (2n−2−2)/6 3-designs with parameters 3−(2n+2, 16, 105(2n−1)(2n−1−1)).

8



3. A 4-(2n + 2, 18, 1020(2n−1− 1)(2n−2− 1)) design. The design can be partitioned
into (2n−1−2)/6 3-designs with parameters 3−(2n+2, 18, 204(2n−1)(2n−1−1)).

Remark 4.2 It is worth remarking that Corollary 3.2 will provide infinitely many
s-resolvable 4-designs. This is the case when the complete indexing designs have a
large set of s-designs with s = 2 or 3.

5 Simplicity or non-simplicity of designs from hy-

perovals

The question regarding whether the designs constructed from hyperovals are simple
or non-simple appears to depend on three components: the underlying projective
planes, the types of hyperovals and the indexing designs. By using regular hyperovals
in PG(2, 2n) the Lonz-Vanstone 5-(2n+2, 6, 15) designs are non-simple, as mentioned
in the introduction. Nevertheless it is not known if the Lonz-Vanstone designs are still
non-simple when other types of hyperovals are used. It seems to be possible to check it
with PG(2, 16) (there are exactly two types of hyperovals) and with PG(2, 32) (exactly
six types of hyperovals), see [9] for example. However, if we focus on hyperoval 4-
designs based on PG(2, 32), much more work needs to be done, since there are many
more indexing 4-(17, k, λ) designs to be considered. Thus, in this direction finding an
answer to the question seems to be difficult because indexing designs are innumerable,
and hyperovals and projective planes of order 2n for n ≥ 5 are still far away from being
classified. On the other side, when k is not small there might exist a combinatorial
argument to show the simplicity of the hyperoval designs without employing the
structure of the involved components. Moreover, since the construction by hyperovals
produces designs in abundance, we believe that the following conjecture should be
true.

Conjecture: There exist simple designs from hyperovals.

6 Conclusion

We have studied a construction of t-designs and s-resolvable t-designs by using hy-
perovals in projective planes of order 2n. It is proven that 4- or 5-designs can be
constructed and particularly there exist infinitely many 4-designs with any even block
size. The question of simplicity or non-simplicity of designs from hyperovals remains
an open problem.
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