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Abstract

Identifiable parent property (IPP) codes are introduced to provide protection
against illegal producing of copyrighted digital material. In this paper we consider
explicit construction methods for IPP codes by means of recursion techniques. The
first method directly constructs IPP codes, whereas the second constructs perfect
hash families that are then used to derive IPP codes. In fact, the first construction
provides an infinite class of IPP codes having the best known asymptotic behavior.
We also prove that this class has a traitor tracing algorithm with a runtime of
O(M) in general, where M is the number of codewords.
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1 Introduction

Codes providing some forms of traceability (TA) to protect copyrighted digital data
against piracy have been extensively studied in the recent years. The weak forms of such
codes are frameproof codes introduced by Boneh and Shaw [4], and secure frameproof
codes [22]. The strong form of codes studied in this paper are identifiable parent
property (IPP) codes which have been introduced by Hollmann, van Lint, Linnartz
and Tolhuizen [16]. Other strong versions of such codes are TA schemes and TA codes
introduced by Chor, Fiat and Naor in [8, 9, 10]. In fact, TA codes turn out to be a
subclass of IPP codes [21].

Combinatorial properties of IPP codes and TA codes have been studied by Staddon,
Stinson and Wei [21], Sarkar, Stinson [19], Barg, et al. [2], and also in [27]. The question
of complexity of traitor tracing algorithms for IPP and TA codes is treated in [20], e.g.
certain classes of TA codes are shown to have a faster tracing algorithm than their



initially known linear runtime by using the list decoding techniques. New results on
bounds of frameproof codes and TA schemes can be found in [18].

Perfect hash families (PHF), due to their significant applications in information re-
trieval, have undergone considerable investigation, see e.g. [7] for an extensive survey.
More recently, perfect hash families have found applications in cryptography, particu-
larly in codes with traceability property [22, 21, 19].

In this paper we focus on explicit construction methods for IPP codes using re-
cursion techniques. We also present a recursive construction for perfect hash families,
from which a new class of IPP codes is derived.

Our first construction provides an infinite class of IPP codes with the best known
asymptotic behavior. In fact, we are able to construct a class of w-IPP codes in which
the length n of the codewords is O((wQ)IOg*(M) (log(M)), where M is the number of
codewords. Moreover, we prove that these codes allow a traitor tracing algorith with
a runtime of O(M) in general. An even faster tracing algorithm for this class can be
achieved. It should be noted that no IPP codes other than TA codes with this property
were known before [21].

The rest of this paper is organized as follows. In Section 2 we present some pre-
liminaries. In Section 3 we describe our first construction, in which the concatenation
technique and the recursive method are combined. We show the asymptotic behavior
of the codes and prove that they have a traitor tracing algorithm with a runtime com-
plexity O(M). In Section 4 we present a double induction method to construct a new
class of perfect hash families. This class is then used to derive an infinite class of IPP
codes which covers a very large set of parameter values.

2 Preliminaries

In this section we give definitions, notation and some basic results for IPP and TA
codes and perfect hash families.

Let @ be an alphabet of size ¢ and let C' C Q™. Then C is called a g-ary code of
length n. If |C| = M, then we call C an (n, M, q) code. The elements of C are called
codewords and each codeword will have the form z = (z1,...,z,), where z; € Q, 1 <
1 < n.

For any subset of codewords Cy C C, the set of descendants of Cy, denoted desc(Cy),
is defined by

desc(Cy) ={z € Q" :z; € {a; :a € Cp}, 1 <i<n}.

Thus desc(Cy) consists of all n-tuples that could be produced by a coalition holding
the codewords in Cy. If z € desc(Cy), then we say that Cy produces z.
Let w be an integer. Define the w-descendant code, denoted desc,,(C), as follows:



desc,(C) = U desc(Cp).
Co(_:C,|Co|§w

Thus desc,, (C) consists of all n-tuples that could be produced by some coalition of
size at most w.

Definition 2.1 Let C be an (n, M,q) code and let w > 2 be an integer. C is called a
(n, M,q,w) — IPP code provided that, for all z € desc,(C), it holds that

N C; # 0.

{i:xedesc(Cy), |C;|<w}

Definition 2.2 Let define I(z,y) = {i : z; = y;} for any x,y € Q™. Suppose C C Q" is
an (n,b,q)-code and w > 2 is an integer. C is called a w-TA code provided that, for alli
and all z € desc(C;), there is at least one codeword y € C; such that |I(z,y)| > |I(z, z)|
for any z € C\ C;.

In fact, T A codes form a subclass of IPP codes, as pointed out in the following
lemma.

Lemma 2.1 ([21], Lemma 1.3) An (n,M,q,w)-TA code is an (n, M, q,w)-IPP code.

The converse of Lemma 2.1 is not true, as it can be easily checked with small
examples, see e.g [21], [20].

The following result is useful, which states that error-correcting codes with “suffi-
ciently large” minimum distance are necessarily T'A codes and IPP codes, [21].

Theorem 2.2 ([21], Theorem 4.4) Any (n,M,q) code C having minimum distance
d > n(1 —1/w?) is an (n, M,q,w)-TA code. In particular, C is an (n, M,q,w)-IPP
code.

A finite set H of n functions h : A — B, where |A| = M > |B| = m, is called an
(n,M,m)-hash family, denoted by (n, M,m) — HF.

Definition 2.3 Let M, m, w be integers such that M > m > w > 2. An (n, M,m)-
hash family H is called an (n, M, m,w)-perfect hash family, denoted (n, M, m,w) —
PHF, if for any subset X C A with | X| = w, there is at least one function h € H such
that h is injective on X.



An (n, M, q)-code C can be depicted as an M xn matrix C on g symbols, where each
row of the matrix corresponds to one of the codewords. Similarly, an (n, M,m) — HF,
‘H, can be presented as an M X n matrix on m symbols, where each column of the
matrix corresponds to one of the function in H.

A direct connection between error-correcting codes and perfect hash families, due
to Alon, is as follows.

Lemma 2.3 [1] Suppose there is an (n, M,q) code C with minimum distance d. Then
there is an (n, M, q,w) — PHF, where

(n — d) (;’) <n.

Proof. Let C be the matrix representation of C. Then C' is an M X n matrix, whose
entries are from a set of ¢ symbols. The condition (M — d) (g’) < N asserts that for any
given n rows, say %1, ..., %y, of C there is at least one column whose w entries in the
TOWS 41, ..., %y are pairwise distinct. Thus C is an (n, M, q,w) — PHF, as desired. W

The following theorem, due to Staddon, Stinson and Wei [21], is useful for our
discussion in the sequel.

Theorem 2.4 ( [21], Theorem 2.8) Let C be an (n, M, q)-code whose matriz repre-
sentation is C. If C is an (n, M, q, | (w+2)?/4])—PHF, then C is an (n, M, q,w)—IPP
code.

3 A construction of IPP codes

Our first construction of IPP codes is carried out in two steps. In the first step we
prove Theorem 3.4 and the crucial Theorem 3.5. In the second step we describe the
construction by making use of Theorem 3.4 and 3.5, and the result is presented in
Theorem 3.6. The asymptotic behavior of these codes is shown in Theorem 3.7. Using
the same method a more general result is obtained, which is formulated in Theorem
3.8. Finally, Theorem 3.9 shows that the codes of Theorem 3.6 have a traitor tracing
algorithm with a runtime of O(M).

We first describe a simple construction for g-ary codes which has been presented by
Bush (1952) [5] for orthogonal arrays.

Let A C Q7 be an (n,Mi,q1) code with minimum distance d; and |Q1| = gq1,
and let B C Q% be an (n, M2, q2) code with minimum distance dy and |Q2| = ¢o.
Let Q = Q1 X Q2. We define a code C over alphabet () as follows. For any pair
of codewords a = (ai,...,a,) € A and b = (by,...,b,) € B we construct a vector



c(a,b) = ((a1,b1),-..,(an,by)) € Q™. Then it is easy to verify that C = {c(a,b) :a €
A,b € B} C Q" is an (n, M1 Ms, q1g2) code with minimum distance d = min {d;,ds}.
Thus we have the following result.

Theorem 3.1 Suppose there exist (n, M1,q1) code and (n, Ma,q2) code with minimum
distance di and do, respectively. Then there exists an (n, M1 Mo, q1q2) code with mini-
mum distance d = min{d,,d>}.

Theorem 3.1 can be used to construct g-ary codes achieving Singleton bound with
equality, namely M DS codes (mazimum distance separable), for which ¢ is not a prime
power. In fact, in the language of orthogonal arrays an (n,M,q) M DS code with
minimum distance d is an OA;(n — d + 1,7, q); here we have M = ¢"~4*1. We record
this special case of Bush construction in the following theorem.

Theorem 3.2 The existence of (n,qt,q1) and (n,qb,q2) MDS codes having the same
minimum distance d = n —t+1 implies the existence of an (n, (q1q2)?, q1q2) M DS code
with minimum distance d.

As a consequence of Theorem 3.2, we have the following corollary.

Corollary 3.3 For any integer n > 2 and s with a prime factorization s = p{* ... pgr
such that n < p{, i=1,...,r, there is an (n, s',s) MDS code, for all 2 <t < n.

Proof. The corollary follows from the existence of (n, (p§*)*, (p*)) M DS (Reed-Solomon)
codes fori=1,...,r. |

By combining Corollary 3.3 and Theorem 2.2 we obtain the following theorem.

Theorem 3.4 Let w > 2 be any given integer. For any integer n > w? and s having
s =py' pZ’“ as its prime factorization with n < pi* for all i =1,...,k there exists an
(n, M,s,w) — IPP code, where M = sI™/®"],

Let A be an (ng, Ma,q2) code over an alphabet Q2 with |Q2] = g2 and let B be an
(n1,92,q1) code over an alphabet @1 with |Q1] = ¢1. Let Q2 = {a1,...,a4} and
let B = {by,...,bg,}. Let § : Q2 — B be the one-to-one mapping defined by
0(a;) = b; for 1 < 4 < go. For any codeword a = (a1,...,a,,) € A we denote by
a = (0(ay),-..,0(an,)) = (by,...by,) the gi-ary sequence of length nino obtained
from a by using 6. The set C = {& = (by,...,bn,)/ a = (a1,...,ayn,) € A} is an
(ning, My, q1) code, called the concatenated code of A and B.

Our next important theorem shows that the concatenation technique works for IPP
codes.



Theorem 3.5 Let A be an (n2, Ma, g2, w) — IPP code and let B be an (n1,q92,q1, w) —
IPP code. Then the concatenated code C of A and B is an (ning, M2, q1,w) — IPP
code.

Proof. Let x = (x1,...,Znn,) € Q7'™?. We partition x into ng blocks x1,...,Xp,
with x; = (z(i,l)mﬂ,...,zml) € Q', 1 <i<mny We will write x = (x1,...,Xp,)-
Specially, if x = ¢ = (by,...,by,) € C, then b;’s are themselves blocks of the partition
of c.

Suppose x € desc(C;), 1 <i <r, where C; C C with |C;| = a; < w. We prove that
Ni<i<, (Ci) # 0, ie. Cis aw— IPP code.

Let C; = {cgi),...,cgg} C C, where cg.i) = (b§i1),...,b§-22). For any 1 < i < r
and any 1 < £ < ngy define Déi) = {bg?, ... ,b((i_)z}, ie. Dy) is the collection of all £t*
blocks of the codewords of C;. In other words Dy) C B is a subset of o; codewords. As
x € desc(C;) by the assumption, we have x, € desc(Dy)) forl1<i<randl</?< no.
Since B is a w — IPP code, we have

N D #0.
1<i<r

Let by € 1 <i<, Déi) be an arbitrary but fixed codeword, i.e. by is a parent of x, in code

B. Set y = (by,...,by,). Let y = (a1,...,an,) € Q™ be the corresponding sequence
obtained from y using 0, i.e. a; = 0~!(b;). In the same way let C; = {égi), ... ,é,ﬁf}} CA
denote the corresponding subset of C;.

Since y € desc(C;) by the construction, we have y € desc(C;) for 1 <4 < r. Hence

yE ﬂ desc(C;).
1<i<r
Since A is a w — IPP code, we have
() Ci#0.

1<i<r

Let z' = (a},...,an,) € Ni<;<,(Ci) be a parent of y in A. Then z' = (b},...,by,) € C;
for 1 <4 <7, where z' the codeword of C corresponding to z’. Therefore

() Ci#0.

1<i<r

Thus C is an w — I PP code. [ |



Remark 3.1 Note that the proof of Theorem 3.5 describes how to identify a traitor.
This fact is used for the proof of Theorem 3.9.

Remark 3.2 Observe that the minimum distance of C in Theorem 3.5 does not satisfy
the condition of Theorem 2.2 and C' is not a w-TA code even when A and B are w-TA
codes, in general. Thus Theorem 3.5 gives a construction of “proper” IPP codes in
the sense that they are not T'A codes.

3.1 An infinite class of w-IPP codes with efficient traitor tracing
algorithm

We are now in a position to describe our first construction.

The construction is carried out by induction on the number of iterations.
Let w > 2 be any integer. Let ng > w? be integer and let sy be an integer with the
prime factorization so = p{*'...p;* such that ng < p{* foralli=1,... k.

For the 1°¢ iteration we choose two codes Cy and C} using Theorem 3.4:
ng

Cy is an (ng, My, sg, w) — IPP code with My = S(Ewﬂ;
]

— * 2
C7 s an (nf, M1, My, w) — IPP code with nj = ny= | and M; = M]"0/"’],

Applying Theorem 3.5 with A replaced by C; and B by Cy we obtain an
ng
(n1, My, so,w) — IPP code C; with n; = ng *nj = ng * now2
Now an (n;_1, M;_1,s9,w) — IPP code C;_; exists by induction for the (i — 1)
iteration. Choose an (n;_;, M;, M; 1, w) — IPP code C; from Theorem 3.4 with

n;-'L n;}Ll
n;_; = n;_Q[w—;w and M, = Mi[jl‘ﬂ ].
Applying Theorem 3.5 with A = C} and B = C;j_1, we then get an (n;, M;, so, w)—IPP
code C; with

el

Ny =M1 %N, _o w2
Thus we obtain the following result.
Theorem 3.6 Let w > 2 be any integer. Let ng > w? be integer and let sy be an integer

with the prime factorization sy = p{* pZ’“ such that ng < pi* foralli =1,...,k. Then,
for all h > 0 there exists an (ny, My, so,w) — IPP code, where

= C M= M g TR
Np =MNp—1*Np_1, h— My » Mp_1 =Np_g »°

7



[ 3
My =sy", and ng=ny"

The asymptotic behavior of the parameters of the codes produced by Theorem 3.6
can be examined by a similar argument, which is demonstrated in [24], pp. 196-197.
In fact, we can show that

np < o (w?)08" (M) (log My,),

for all sufficiently large h, where « is some constant and the function log * : Z1t — Z*
is defined recursively by

log*(1) = 1

log*(n) = log*([logn])+1, ifn>1.
Note that the function log*(n) grows very slowly, e.g. log*(n) <7 for n < 2299938
We have the following result.

Theorem 3.7 For any integer w > 2 and any integer s having the prime factorization
s = pi'...pF with w? < p;t for all i = 1,...,k, there ezists an infinite class of
(n, M, s,w) — IPP codes for which n is O((w?)!°9 M (1og(M)).

As we want to show that the constructed codes in Theorem 3.6 having an efficient
tracing algorithm, we have chosen the starter code as an M DS code. In fact, the
construction works for any starter code. For instance, for given M,q,w > 2, the
probabilistic method in [2] shows the existence of (n', M, q,w) — IPP codes with ¢ > w
and some n'. Thus, if we take this (n', M, q,w) — IPP code as a starter code and carry
out the same recursive construction, then we get a more general result as follows.

Theorem 3.8 For any integer w > 2 and any integer ¢ > w, there exists an infinite
class of (n, M,q,w) — IPP codes for which n is O((wQ)l()g (M) (log(M)).

To our knowledge Theorem 3.7 and 3.8 yield a class of explicit constructed codes
with the best known asymptotic behavior. In fact, Stinson, Wei and Zhu [24] recently
give an explicit construction for an infinite class of perfect hash families (n, M, g, w) —
PHF, in which n is O((wQ)IOg*(M) (log(M)). This class is asymptotically among the
best explicit constructed perfect hash families known in the literature. On the other
hand, an (n, M, q,w)—IPP codeis an (n, M,q,w+1)—PHF, see e.g. [21], and therefore
an (n,M,q,w) — PHF. But the converse is not true: an (n,M,q,w + 1) — PHF
is not an (n,M,q,w) — IPP code in general. This is to say that an (n, M,q,w) —
IPP code is a much stronger structure than an (n, M,q,w) — PHF. Even though,
our constructed /PP codes have the same asymptotic size as that of the best known
explicitly constructed classes of PHF'.



Remark 3.3 It is worth noting that in a recent paper [19], Sarkar and Stinson con-

struct an infinite class of (n, M, ¢, w)-IPP codes for which n is O((w?’)lOg*(M)(log(M)),
for integers ¢ > w > 2 in terms of strong separating hash families.

3.2 An efficient traitor tracing algorithm

For w-IPP codes, a traitor tracing algorithm (TTA) will have a runtime complexity
of size O((Au/)[)), in general. For w-TA codes, however, the runtime of a TTA will be
O(M), (see e.g.[20]) for more information. Therefore, the question of the existence of
w-IPP codes in general with an improved runtime for a TTA was raised in [21].

Here, we show that our constructed w-IPP codes have a TTA with a runtime O(M),
thereby answering the above question affirmatively.

The recursive process of concatenation used to construct w—IPP codes in Theorem
3.6 provides a way to build a TTA for code C; based on the TTA’s of codes C;_1 and
C;. In fact, the proof of Theorem 3.5 describes precisely how a traitor can be traced
back for the code C;. In doing so we assume that the TTA’s for codes C;_; and C} are
known. Let L;_; and L] be the runtime complexity of such a TTA for C;_; and C7,
respectively. Let assume x € desc(Kj) , for j =1,...,r, and K; C C; with |K;| < w,
i.e., x is a pirate word of length n; = n; 1 * n;_, created by r possible coalitions K.
From the proof of Theorem 3.5 we see that the runtime L; of a TTA for code Cj is
given by L; = L; 1 xnj_; + L7. If we start with Cy and C] as w-TA codes, for which
the runtime of their TTAs are O(My) and O(M;), then we have L1 = O(M;), as
|Mo| << |M;i|. Therefore, if C} is a w-TA code for each step of the recursion, then we
have L; = O(M;). Now the codes Cjy and C; in Theorem 3.6 are in fact w-TA codes,
so we have the following result.

Theorem 3.9 For any integer w > 2 and any integer s having the prime factorization
s = pit...ppt with w? < pfi for all i = 1,...,k, there ezists an infinite class of
(n,M,s,w)—IPP codes with n is O((wz)l()g (M) (1og(M)), which have a traitor tracing
algorithm of linear runtime O(M).

In [25, 26], Sudan develops methods for list decoding for certain class of error-
correcting codes. The method has been improved since then. For example, in [13, 14, 15]
Guruswami and Sudan present efficient list decoding algorithms for Reed-Solomon
codes, algebraic-geometric, and certain concatenated codes. It turns out that the
method of list decoding can be applied to traitor tracing algorithms, when the men-
tioned codes are used as T'A-codes. This fact is discussed by Silverberg, Staddon and
Walker in [21] . For instance, the T'A codes based on Reed-Solomon codes will have
traitor tracing algorithms of runtime poly(log M), where M is the size of the codes.
This, in turn, implies that the method can be applied to our constructed IPP codes.



Consequently, if s = ¢ is a prime power and the ingredients of the recursion are Reed-
Solomon codes, then the IPP codes of Theorem 3.9 allow a traitor tracing algorithm
which can run in poly(log M) time.

4 A construction for perfect hash families and IPP codes

The main result in this section is the construction of an infinite class of perfect hash
families by means of a double recursive method. The resulting perfect hash families
are then used to derive IPP codes in view of Theorem 2.4. But we emphasize that our
construction method for perfect hash families presented here is of independent interest.
This construction is a generalization of a construction given in [17]. Moreover, we
would remark that the construction in this section appears to be rather complex, even
though we have attempted to give a clear concise explanation.

4.1 A recursive construction of perfect hash families

We first prove Lemma 4.1 below, which is essential for our purpose.

From now on let g be a prime power. We begin with a description of a collection of
matrices derived from mutually orthogonal latin squares (MOLS) whose symbols are
elements in the finite field ¥, = {0,1,...,q — 1}. For basic facts on MOLS, we refer to
[6].

Let My,...,M4;_1 be a set of ¢ — 1 MOLS, of which the first column is the vector
(0,1,...,g — 1)T. Let My be the ¢ x ¢ matrix whose all ¢ columns are equal to the
vector (0,1,...,¢—1)7 (i.e. each row of My consists of a ¢ time repeating of a symbol).
The collection of My,..., My_1 is equivalent to an orthogonal array OA:(2,q,q) (see,
for example [6, p. 130]) and hence to a Reed-Solomon code RS with parameters
(q’q27Qad =4q—- 1)

For 2 < m < q, set

A= {AO,ma e 7Aq71,m}7

where each matrix Ay, is obtained from M}, by deleting its ¢ — m rightmost columns.

Consider the ¢2 x (m+1) array AP obtained from A by extending each matrix A; ,,,
with the (m + 1)** column (i,4,...,i)T. Then AF is equivalent to the Reed-Solomon
code (m+1,¢%,q,d = m) —RS. By Lemma 2.3 A” is an (m + 1,42, q,w) — PHF with
(%) <m+1.

Conversely, if w is given, we set m = (’5) Then the collection A has the following
crucial property: every subset B of w’ distinct matrices A;, m, ... , Ai,m of A, where
1<w <w-—1, forms an (m,qu’,q,w) — PHF.

This can be easily seen as follows.

Consider B as part of A”. Note that AF has exactly one column more than B, the
(m 4 1)** column. For any given set W of w rows of B, there is a column ¢ in AP,
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such that the symbols of ¢ at the given w rows are pairwise distinct, because A” is

a (m+1,¢% q,w) — PHF. Further, since B is a collection of w' matrices Ay, there

are at least two rows of W belonging to the same matrix in B. This implies that the

column c¢ is not the (m+1)™ column of A”, hence ¢ must be a column of B, as desired.
Thus, we have proved the following result.

Lemma 4.1 Let A be the collection of q matrices {Aom,...,Aq—1,m} just described
above, where each Ap,, is a ¢ X m matriz, whose entries are elements of Fy. Let
m = (g’) Then, any subset B of w' distinct matrices Aiymy -+ Aiym of A, where
1<w <w-—1, forms an (m,q.w',q,w) — PHF.

We are now ready to prove the following theorem.

Theorem 4.2 For any positive integers © > 1, w > 2 and any prime power q > (15)
there exists an (O((i +1)¥~1),¢"*!, q,w) — PHF.

Proof. The proof is by induction on w and 3.

In the following we use n;(w) as an abbreviation for O((i + 1)“~1) and C* for
(ni(w), ¢t q,w) — PHF.

Note that the vector space F; ™! is an (n;(2),¢'™*,¢,2) — PHF, where ny(2) = i+1.
Thus Ci2 exists for all 4 > 1. In other words the statement is valid for w = 2.

Assume that the statement is valid for w — 1 > 2. That means that for every
2 <u < w — 1 there exists an C¥ = (n;(u),q"*!,q,u) — PHF for all i. We prove that
the statement is true for w, i.e. there is an C¥ = (n;(w), ¢, q,w) — PHF for every i.

This is done by induction on 3.

For i = 1 there is a C¥ = (n1(w),q?,q,w) — PHF, where n;(w) = (g’) + 1 and
q > ni(w)—1. In fact, C¥ is obtained from the Reed-Solomon code (n;(w),¢?,q) — RS
by using Lemma 2.3. Assume that C exists for all j <7 — 1.

Let

d?” :( i— lﬂEw 1)

denote the concatenation of DY ; and E! ', which are defined as follows.

Dy L is obtained from C}” ; by repeatlng each of its rows ¢ times.

E’7 1 is obtained from C’w 1 by replacing each symbol j by matrix A;,,, described
in Lemma 4.1.

We depict C as an q.q" x (nj—y (w) +mn;—1 (w — 1).(%) array, where the first n;_1 (w)
columns correspond to DY ; and the remaining n;_i(w — 1).()) columns correspond
to Eg"__ll. And we partition the rows of the array Cq;" into ¢* consecutive blocks, say
By, ..., Bgi, each block B; has g rows.

11



-1
DY, EY

1 i—1
B 1st row of C{* | repeated q times Aa,nw Aa,2)w .. Ani_ 1 (w))w
By 2nd row of C;*; repeated ¢ times A(Z,l),w A(2,2),w - A(Z,ni_l(w)),w
B, q'th row of C% | repeated ¢ times Algi 1w Algi,2)w e Al mi_ 1 (w)w
Array Czw

Remark that the matrix A )., in the table corresponds to the symbol at the entry
(7, k) of the array Ci“i_ll.

Next, we prove that CZ“’ isaw— PHF.

Let r1,...,7y be any given w rows of Cz?”. If ry,..., 7y belong to w different blocks,
say B;,,...,B;,, then from the definition of D}" ; there is at least one column in D}’ ;
containing pairwise distinct symbols in the rows r1,...,7,. Assume that rq,...,7, be-
long to w' blocks, say B;,,...,B; ,, where w' <w—1. As C¥'isan (w—1)— PHF,
there exists a column, say ¢, whose symbols, say j1,...,juw, in the TOwWs i1,..., %, are
pairwise distinct. From the definition of £} El, the symbols ji,..., j, are replaced by
matrices Ajy .-y Aj w (notice that Aj, 4, ... y Aj, w together form a set of (g’) con-
secutive columns of the blocks B, , ..., B; , in Ezw__ll) By Lemma 4.1 Aj w,---,Aj_,w
is an ((%),q.w',q,w) — PHF, so there is a column in E7! having different symbols in

the rows r1,...,7y. Thus C}’ isaw — PHF.

Now recall that C*7' is an ¢* x n;_1(w — 1) array and that E”7' is obtained from
C’Z‘Sl by replacing each entry j € {0,...,qg — 1} of Ci“i_ll by the (¢ x (%))-matrix A; .

Since the first column of each matrix 4;,, is always the vector (0,...,q—1)7, there
are n;_1(w — 1) identical columns in C.

Now let C;” denote the array obtained from 67;” by deleting n; _1(w—1) — 1 of these
identical columns. Then C¥ is an ¢**! x n;(w) array, where

ni(w) = mni—1(w) +ni—1(w—1) x (Z) - (nji—1(w—1) = 1)
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— @) +raw-1((3 ) -1+,

It is obvious that C;’ is an w — PHF, just as @w.
As ni_1(w) = O(* ) and n;—1(w — 1) = O(%2), we have

ni(w) = O(*™ 1) + O(iw—Q)[@’) ~1).

Consequently
ni(w) = O((i +1)¥1).

Hence C¥ is an (O((i + 1)*~1,¢"™!, q,w) — PHF, as desired. [ ]

Remark 4.1 We remark that the case w = 3 and ¢ = 3 in Theorem 4.2 has been
studied by S. S. Martirosyan and S. S. Martirosyan in [17], wherein a recursive algorithm

is presented, which constructs an infinite class of (52,37,3,3) — PHF, for every integer
i>1

4.2 A new class of w-IPP codes

Using Theorem 2.4 and Theorem 4.2 we immediately obtain the following new class of
IPP codes.

Theorem 4.3 For any positive integers i and w > 2 and any prime power q with
2 .
q> (L(w+§) /4J) there exists an (O((i + 1)L@+2*/4=1) ¢i+1 g ) — IPP code.

Proof. By Theorem 4.2 there is an (O((i + 1)L +2?/41=1) git1 0| (4 2)2/4]) —
PHPF'. The theorem then follows from Theorem 2.4. [ |

It is worth noting that at each recursion step the size of the constructed code in
Theorem 4.3 increases much slower than that in Theorem 3.6. Actually, Theorem 4.3
roughly states that w— I PP codes of certain codeword length can be constructed for any
given w and any given code size ¢*. Thus, Theorem 4.3 gives an explicit construction
of TPP codes for a very large set of parameter values.
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