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Abstract

It turns out that Latin squares which are hard to approximate by a
polynomial are suitable to be used as a part of block cipher algorithms.
In this paper we state basic properties of those Latin squares and
provide their construction.

1 Introduction and motivation

Let Z, be the ring of integers taken mod 7. In this paper we use F(n) for
the set of all polynomial functions f : Z, X Z, — Z,, f(z,y) = ap + ajoz +
ao1y + axx? + a11xy + agey® + . .., and L(n) for the set of all Latin squares
of order n with the symbol set {0,1,...,n — 1}.

One of the basic parts of any block cipher algorithm (BCA), or substitution
- permutation network (SPN), is a (quasigroup) composition of a piece of
plaintext, say z, and a part of a round key, say k. One of the simplest
examples is probably the Vernam cipher. Another example is the so called
Extended Feistel Cipher [Canda, Trung-2002], the round structure of which
is visualized in Fig. 1. The symbols &, ®,H represent (quasi)group opera-
tions.

In [Grosek, Satko, Nemoga—2000] and related papers, the authors showed
that using quasigroups instead of groups allows more options to gain ideal
parameters for some cryptographic primitives.



Figure 1: Round Structure

Consider the following scenario: An attacker has access to outputs from
a composition z * k of messages £ and round keys k, both belonging to a
quasigroup (5, *) where S = {0,1,...,n — 1}. Then his/her aim is to find
a polynomial function f € F(n) such that for all z,y € S, z xy = f(z,y)-
Thus, from the point of view of a designer, just the opposite is required - to
use a quasigroup which is hard to approximate by a polynomial in F(n).
The main goal of this paper is to formalize the notion of those quasigroups,
state some of their properties and provide their construction.

We will understand the Cayley table of a quasigroup (5, %), S = {0,1,...,n—
1}, as a Latin square L = L(¥;;) € L(n) with £;; = i x j. Therefore the no-
tions of a quasigroup and a Latin square will be freely interchanged in the
paper. Since it is more natural and handy to express definitions and re-
sults concerning the topic in the language of Latin squares, the notion of a
quasigroup will be used only sporadically.

If there is a polynomial function f € F(n) such that, for all z,y € S,
xxy = Lyy = f(z,y) then the Latin square L = L(¢;;) (the quasigroup (S, *))
will be called polynomial, otherwise we call L ((S,*)) non-polynomial. A
simple example of a polynomial quasigroup is the quasigroup (.9, *) with the
operation * defined by

zxy=azx+by+c modn,

where ged(a,n) = ged(b,n) = 1.

To be able to measure "how far” a Latin square L = L(¢;;) € L(n) is from
a polynomial one we introduce some more notation. For f € F(n) we use
c(L, f) to be the number of pairs (7, j) for which ¢;; = f(,7). Further, we
define ¢(L) = max c¢(L, f) where the maximum runs over all f € F(n) and
say that c¢(L) is the coincidence number of L. We call f € F(n) a best
polynomial approximation of L if ¢(L, f) = ¢(L). Finally, we call a Latin
square L most non-polynomial if ¢(L) < ¢(L') for all L' € £(n). Thus, a
Latin square L is most non-polynomial if L has the smallest coincidence
number of all squares in L(n).



Example 1.1 It has been found, by an exhaustive computer search, that
fo € F(6), fo(z,y) = 4+ 3z + 3y is a best polynomial approximation of
the Latin square L given below. Hence, ¢(L, fo) = ¢(L) = 12. The cells in
which L and fj coincide are typeset in bold.
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2 Non-polynomial Latin squares

In this section we show that, given a Latin square L € £(n), we can decide
in a finite time whether L is polynomial and find its polynomial function or
its best polynomial approximation. Further we show that nearly all Latin
squares in £(n) are non-polynomial.

Let n = p{'p5? ... p)* be the prime number factorization of n. With respect

to the global Euler-Fermat theorem [Schwarz—1981], for any = € Z,, we have

xmaxai—l—)\(n) = gMaxai  odm

where A is the Carmichael function. This implies that to each f € F(n)
there exists f* € F(n) so that f(z,y) = f*(z,y) for all z,y € Z,, and the
degree of f* < w, where w = A(n) + maxa; — 1. Therefore, to determine
whether a Latin square is polynomial, and to find its polynomial function or
its best polynomial approximation it is sufficient to calculate the coincidence
number ¢(L, f) only for a finite number of polynomials f. More precisely, the
number of polynomials one needs to test equals the number of polynomials
f € F(n) with maximum degree at most w. However, the total number
of polynomials in F(n) of the maximum degree at most w is n™ where
m=(14+2+ .+ (w+1)) = Ld2wil)

We recall now that the Carmichael function A can be bounded from above
by the Euler totient function ¢. Then

(w+2)(w+1)

2
Since on average ¢(n) ~ fr—g, we have ¢(n)?/2 ~ 0.20n2. This yields

~ (w+1)%/2 = (A\(n) + max a;)%/2 < ¢(n)?/2.

(w+2)(w+1)
n?t 2 ~ exp{0.20n? In(n)}.



Thus, it is needed to calculate the coincidence number ¢(L, f) for approxi-
mately exp{2n?In(n)} functions in F(n). Therefore this exhaustive search
for a larger value of n is unrealistic.

Further, it follows from the above discussion that the number of distinct
polynomials (we consider two polynomials f and g distinct if there is at least
one pair (z,y) so that f(z,y) # g(z,y)) in F(n) is at most n™. Thus, the
number of polynomial Latin squares in £(n) is at most of that order as well.
As the total number of Latin squares in £(n) is more than n!(n —1)!...2!1!
(see, e.g. [Dénes, Keedwell-1974], [Godsil, McKay-1990]), nearly all Latin
squares are non-polynomial.

We emphasize that in the case n = p”, p being a prime, a similar question
about polynomial interpolation over the field GF(p") is trivial. To any Latin
square L = L(¢;;) of order p" there exists a unique polynomial f such that
for all 4, j, f(4,5) = £;;. This polynomial is given by

n—1n—1

Fay) =) > 1-(@-w" 1= (y-v)"")luw. (2.1)

u=0 v=0

Thus any Latin square of size n = p”, p prime, is polynomial over the field
GF(p"). This immediately implies that each Latin square of a prime power
order n is polynomial over GF(p").

3 Totally non-polynomial Latin square.

As mentioned above, the aim of a designer of a block cipher algorithm is to
find a Latin square which is hard to approximate polynomially. Hypotheti-
cally, a most non-polynomial Latin square might possess a row or a column
that is polynomial, which would significantly simplify breaking the cipher
for an attacker, e.g. using a chosen plaintext attack, or related keys attack.
Therefore, from a block cipher prospective, the designer is interested to con-
struct a Latin square L with the property that no row and no column of L
is polynomial.

Formally, a permutation 7 of the set {0,1,...,n — 1} is polynomial if there is
a polynomial U(z) € Z,[z] so that U(z) = () for all z € Z,, otherwise 7 is
called non-polynomial. Since each row/column of a Latin square L € L(n)
is a permutation of {0,1,...,n — 1} we will speak of a polynomial (non-
polynomial) row/column of L in the sense of the above definition.

Now we are ready to define what is meant by a totally non-polynomial Latin
square, and in what follows we focus on Latin squares with this property.

Definition 3.1 A Latin square L is called totally non-polynomial if each
row and each column of L is non-polynomial.

To construct a totally non-polynomial Latin square L with a small coinci-
dence number ¢(L) we now focus on permutations that are “far” from being
polynomial.



Definition 3.2 Let w be a permutation on the set {0,1,...,n—1}. Then a
set J C {0,1,...,n — 1} is called a non-polynomial support of w if for each
polynomial U(x) € Z,[z] we have U(j) = w(j) for at most one element of
jed.

We start with a simple lemma which provides a fundamental ingredient for
our construction of a totally non-polynomial Latin square.

Lemma 3.3 Let J # O be a non-polynomial support of a permutation w
on {0,1,....,n — 1}, and h € {0,1,...,n — 1}. Then the permutation S on
{0,1,...,m — 1} given by B(z) = w(z + h) for all z € {0,1,....,n — 1} has
a non-polynomial support J' of size |J'| = |J|. In particular, there is a
permutation § on {0,1,...,n — 1} with a non-polynomial support J' so that
|J| = |J'|, and 0 € J'.

The sum and the difference of two elements of {0, 1,...,n — 1} in the lemma
and its proof are taken mod n.

Proof. Let J be a non-polynomial support of w. Set J' = {y, there is z €
J,y = z—h}. To see that J' is a non-polynomial support of 3, suppose by the
way of contradiction that there is a polynomial U(z) € Z,[z] and u,v € J'
so that U(u) = B(u) and U(v) = B(v). Set V(z) = U(z — h). Obviously,
V(z) € Z,[z] as well. Further, u,v € J' implies u + h,v + h € J. However,
V(u+h) =U(u) = f(u) = n(u+h) and V(v+h) =U(v) = f(v) = n(v+h)
contradict the assumption that J is a non-polynomial support of 7. Thus,
J' is a non-polynomial support of 8. As |J/| = |J|, the proof of the first part
of the statement is complete. To see the second part, set h = b, where b is
an element of J. |

Now we are ready to describe a construction of totally non-polynomial Latin
squares. Recall that the sum of two elements of {0,1,...,n — 1} is taken
mod n.

Construction 3.4 Let m be a permutation on {0,1,....,n — 1} and let L =
L(4;;) be an n x n array.

Step 1. The first row of L is formed by =, i.e. £o; = 7(j).
Step 2. Fori >0 and j =0,1,...,n—1, £;; = n(i + j).

It is easy to see that L defined above is a Latin square. Such a Latin square
is known as back circulant. We use L(7) to denote the Latin square obtained
by the above construction. As each row of L is a cyclic shift of 7, Lemma,
3.3 guarantees that if  is a non-polynomial permutation each row of L(r) is
totally non-polynomial and has a non-polynomial support of the same size



as m does. Clearly, L(r) is symmetric, hence we have the same property for
its columns. Hence L(7) is totally non-polynomial.
To estimate the coincidence number of L we state:

Theorem 3.5 Let J be a non-polynomial support of a permutation © on
{0,1,...,n — 1}. Then the coincidence number c¢(L(w)) < n(n —|J| +1).

Proof. Let f € F(n) be a best polynomial approximation of L(x). Then,
by the definition of the non-polynomial support, for each s =0,1,...,n—1,
fli,z) € Zy,|z] coincides with at most n —|J|+ 1 elements in the i-th row of
L(m). Thus, f coincides with at most n(n — |J|+ 1) elements of L(), hence
c(L(m)) < n(n—|J| +1). [ ]

To get Latin squares with small coincidence number, in the rest of the section
we deal with non-polynomial permutations that are hard to approximate.
The next theorem provides, for a general natural number n, a sufficient
condition for a set to be a non-polynomial support.

Theorem 3.6 Let J C {0,1,...,n—1} and 7 be a permutation on {0,1,...,
n — 1} such that the following condition holds:

(A) for each z,y € J,xz # vy, there is a non-trivial divisor d = d(z,y) of n
so that x =y mod d and 7(z) Z 7(y) mod d.

Then J is a non-polynomial support of .

Proof. Let there exist a polynomial U(z) € Z,[z],U(z) = Y p_, arz®, and
Z,Yy € Zn, x # Y, so that U(z) = m(x) and U(y) = 7(y). By [Schwarz—1981]
we may assume that w is a finite number. Then U(z)—U(y) = > j_, ax(zF—
y*) mod n. By the condition (A), z = y mod d, d being a non-trivial
divisor of n, that is, x = rd 4+ y, where r is a natural number. Applying
the binomial theorem we get z* — y* = (rd + y)* — ¢* = Zlebz-di =
dS K bdi T, where b; € Z,. Hence, U(z)-U(y) = d .V, cpdF ! = w(z)—
m(y) mod n, and ¢ € Z,. Since d|n we necessarily have d|(7(z) — 7(y)), a
contradiction with our assumption 7(z) #Z 7(y) mod d. This completes the
proof. |

The next theorem shows that for each n there is a permutation with rela-
tively large non-polynomial support.

Theorem 3.7 Let n = p{'p3?...pe*, k > 2, where p1,pa, ..., py are distinct
primes, and pf* < pg? < .- < pg’“. Then there exists a permutation ©™ on
{0,1,2,...,n — 1} with a non-polynomial support of size p$* p5* ...pzi’ll.



It turns out that it is very handy for our purpose to use a one-to-one repre-
sentation of z € Z,, by means of a k—tuple (z mod p*,z mod p3?,..., z
mod p;*). Here in fact we are utilizing a well-known fact, namely the Chi-
nese Remainder Theorem, that two rings Z, and Zpi“l X Zpgz X ...szk are
isomorphic and the mapping  — (z mod pi*,z mod p3?,...,z mod p;*)
is their isomorphism. For the sake of simplicity we will write shortly z = (z
mod p*,z mod p3?,...,z mod p}*), and use (z); for the i-th coordinate
of z in the representation. Clearly, for z,y € Z,, = y mod pj* iff

(@)i = ()i

Proof. Consider the set J C Zy, J = {(a1,a2,---,a5-1,0),0 < a; < p} —
1,i = 1,2,...,k — 1}. Hence |J| = p{*pS2...p, " ". Further, let 7 be a
permutation on {0,1,...,n — 1} so that if z = (a1,a9,...,a5_1,0) then
w(x) = (0,a1,4a2,...,ax—1). Note that as (7(z))i+1 = (2)i;,1 =1,2,...,k—1,
we have (m(z))iy1 < p{ < p;ii'. This means that the k-tuple m(z) =
(0,a1,a9,...,a5_1) is a representation of a number y € Z,.

Let z,y € J,z # y. Then there is an index i,1 <1 < k—1 so that (z); # (y);-
Let j be the largest index with the property. This implies that (z); # (v);
and (z);+1 = (y)j+1. In turn this implies that (7(x));+1 # (7(y))j+1. Hence
z =y mod p?fll and 7(z) Z 7(y) mod pc-!fll, i.e. J satisfies the condition
(A) of Theorem 3.6. Therefore J is a non-polynomial support of 7. As J is

of size p{ipy? ... p,*7" the proof is complete. [ |

As an immediate consequence of Theorem 3.5 and 3.7 we get

Corollary 3.8 Let n = p{'p5”...pp*, k > 2, where p1,pa,...,py are dis-
tinct primes, and p7* < p§? < ... < pg*. Then there is a Latin square

L € L(n) with ¢(L) < n(n — pg—k +1).
k

Although we believe that Theorem 3.7 gives a permutation with the largest
possible non-polynomial support among all permutations on {0, 1, ..., n —1},
we are able to provide some evidence in this regard only for n being a
square free number. To be able to do so first we state a necessary and
sufficient condition for a set to be a non-polynomial support in this case.
This condition is similar to the condition (A) in Theorem 3.6.

Theorem 3.9 Let n be a square free number, n = pipa...px, where the pis
are distinct primes. Let w be a permutation on {0,1,2,...,n —1}. Then a
set J C {0,1,2,...,n— 1} is a non-polynomial support of 7 iff the following
condition holds:

(A?) for each z,y € J, x # y, there is i = i(z,y) so that =y mod p;
and w(z) # m(y) mod p;.

We start by stating a result of Ding et al. that is a key ingredient of our
proof.



Theorem 3.10 (Theorem 4.3.1 in [Ding, Pei, Salomaa—1996] ) Let n be a
square free number, n = pips . ..pg, the pis primes, and let B; € {0,1,2,...,
n—1} fori € I C {0,1,2,...,n — 1}. Then there is a polynomial U(z) €
Zn|x] such that U(i) = B; for alli € I iff i =37 mod ps for some s,1 < s <
k, and i,j € I, implies that 3; = B; mod p,.

Proof. (of Theorem 3.9)

Sufficiency. Suppose, by the way of contradiction, that there exists a poly-

nomial U(z) € Z,[z] and there are z,y € J,z # y, so that U(z) = n(x)

and U(y) = m(y). As z,y € J the condition (A’) implies that there exists

i so that z =y mod p; and n(z) #Z n(y) mod p;. However, in such a case

Theorem 3.10 states that 7(z) = 7(y) mod p;, a contradiction.

Necessity. Let z,y € J,z # y. As J is a non-polynomial support of 7w there

is no U(x) € Zy[z] so that U(z) = n(x) and U(y) = w(y). Theorem 3.10

implies that there is an i so that £ = y mod p; and 7(z) Z m(y) mod p;.
|

We strongly believe that the following is true:

Conjecture 3.11 Let n be a square free number, n = pips...pr, k > 2,
where p1 < po < ... < pg, are primes. Let J be a non-polynomial support of
a permutation m on {0,1,2,...,n — 1}. Then |J| < pip2...pk—1-

As a support for the conjecture we state:

Theorem 3.12 Let n be a square free number, n = p1ps...pg, where p; <
. < pr,k < 4, are primes, and let J be a non-polynomial support of a
permutation © on {0,1,...,n —1}. Then |J| < pipa...pg_1-

Proof. We prove the theorem for k¥ = 2 and k = 3 only. The proof for
k = 4 uses the same ideas as in the case of k£ = 3 but it is very involved and
distinguishes many cases, and therefore is omitted.

k = 2. By Lemma 3.3 we assume that (0,0) € J. Thus, by Theorem 3.9,
for each z € J, either (z); = 0 or (z)2 = 0, i.e. either J C {(0,a2),0 <
ag < pp—1} or J C {(a1,0),0 < a3 < p; —1}. In the latter case clearly
|J| < p1. In the former case (7(x))1 # (w(y))1 for all z,y € J,z # y. As
0 < (w(z))1 < p1 the proof follows.

k = 3. By Lemma 3.3 we may assume that (0,0,0) € J, and, by Theorem
3.9 (z); = 0 for at least one coordinate. Set A1 = {(0,a2,a3),0 < ay <
p2—1,0 < a3 < p3—1}, Ay = {(a1,0,a3),0 < a1 <p1—1,0 < a3 < p3—1},
and Az = {(a1,a2,0),0 < a1 < p; — 1,0 < ag < py — 1}. We consider two
cases.

I. There is an 4,1 <% < 3, so that J C A;. For J C Ajs the proof is obvious
as |As| = p1pe. Suppose now that J C A;. For 0 < a < p; — 1, we define
Jo = A{z € J,(7(z))1 = a}. Clearly, |J| = |Jo| + |J1| + ... + |Jp,—1| as the



Jls are pairwise disjoint. Thus, it suffices to show that |J;| < po for all
z':0,1,...,p1—1.

Let z = (0,29, 23) € J,y = (0,y2,y3) € J be so that z9 # y9, and x3 # y3.
Then, by Theorem 3.9, (7(z))1 # (w(y)):. Hence, if (w(u)); = (w(v)): for
some u = (0, ug,u3) € J,v = (0,v9,v3) € J, then either uy = vy or ug = vs,
and consequently, for each i = 0,1,...,p; — 1, either J, C {(0,c,as), where
c is a fixed number, and 0 < a3 < p3g — 1}, or J;, C {(0, az,c), where c is a
fixed number, and 0 < ag < pa —1}. In the former case Theorem 3.9 implies
(m(x))2 # (7(y))2 for all z,y € J,,x # y, which in turn implies |J;| < po. In
the latter case |J;| < p2 as the first and the third coordinates of all numbers
in J, are fixed.

For J C A, the proof is analogous.

II. J Z Az for 1 = 1,2,3. Put B1 = {(al,0,0),l < a < P1 — 1}, B2 =
{(07 az, 0)7 1<as <py— 1}1 and B3 = {(01 0, a3)1 0<a3<p3— 1} Suppose
first that J C U}_;B;. Then J N B; # () for i = 1,2, 3.

Let z = (21,0,0) € J,(w(x))2 = a, let y = (0,y2,0) € J,(w(y))1 = b, and
finally let z = (0,0, 23) € J,7n(z) = (¢,d,e), and v = (0,0,v3) € J,w(v) =
(f,9,h). Then, by Theorem 3.9, it is ¢ # b # f, d # a # g, and either
c# f,or d# g. Therefore, |J N B3| < (p1 — 1)(p2 — 1), and in aggregate,
|[J| =|J N Bi|+[J N Ba|+[JNBs| < (pr—1)+(p2—1)+((pr—1)(p2—1)) =
mp2 — L.

Finally, assume that J ¢ Ule B;. Suppose z = (0,a,b) € J,a # 0 # b.
(The cases y = (a,0,b) € J and z = (a,b,0) € J,a # 0 # b will be omitted
as they can be treated in an analogous way). If there is y = (¢,0,d) € J,c #
0, then Theorem 3.9 implies b = d, and JN (A1 \ (A2 UA43)) = {(0,a2,b),1 <
a9 S P2 — 1} as well as Jﬂ(AQ\(Al UA3)) = {(al,O,b), 1 S al S pP1— 1} and
JNAs = @. Therefore, J C {(0,a2,b),1 < as < py—1}U{(a1,0,b),1 <a; <
p1—1} UB3. The only difference between this case and the case J C U?Zl B;
is that in the latter b = 0. As this fact has not been used in the proof, we
are done with the last case as well. |

We finish this paper with two remarks concerning a general natural number
n. The first is concerned with the coincidence number of a Latin square L()
obtained by the construction described in this paper. We believe that the
upper bound on ¢(L(7)) given in Corollary 3.8 is far from a tight one, that
is, we believe that the construction provides a Latin square with much lower
coincidence number than indicated by the corollary. As an evidence we turn
the reader’s attention to the Latin square L in Example 1.1. It is easy to
see that L = L(n) for m = (0,2,5,1,4,3). We have verified by an exhaustive
computer search that 12 = ¢(L()) < ¢(L(n")) for all permutations 7’ on the
set {0,1,...,5}. On the other hand, by Corollary 3.8, for any permutation 7’
we get as an upper bound only ¢(L(7')) < 24. We believe that the reason is
the following: If f(z,y) € F(n) is a best polynomial approximation of L(m)
then f(0,y) € Z, is by far not the best polynomial approximation of the



permutation 7. By Theorem 3.12, for each permutation 7 on {0,1,2,3,4,5}
there is a polynomial U(z) € Z,[z] that coincides with 7 in at least 4 of 6
arguments. On the other hand, a best polynomial approximation of L(r)
coincides with 7 in only 2 positions.

The second one is rather technical. Our construction of a non-polynomial
support in Theorem 3.7 is based on the mapping

(al,ag, A ,ak_l,O) — (0,&1,(12,... ,(J,k_l).

It is not difficult to see that one may use another mapping

k-1

(a1,a2,...,a5—1) = (Z a; mod p1,a1,a2,...,05_1).
i=1

This is nothing but a very poor “linear code with a control sum”. Unfortu-
nately we are unable to make use of the fact.
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