On non-polynomial Latin squares

Otokar Grošek, Peter Horák and Tran van Trung

O. Grošek

Department of Mathematics, Slovak University of Technology, 812 19 Bratislava, Slovakia grosek@kmat.elf.stuba.sk

P. Horák

Interdisciplinary Arts & Sciences, University of Washington at Tacoma, 87402 Tacoma WA, USA horak@u.washington.edu

Tran van Trung
Institut für Experimentelle Mathematik, Universität Duisburg-Essen,
Ellernstraße 29, 45326 Essen, Germany
trung@exp-math.uni-essen.de

Keywords Latin squares, polynomial approximation, block ciphers

Abstract

It turns out that Latin squares which are hard to approximate by a polynomial are suitable to be used as a part of block cipher algorithms. In this paper we state basic properties of those Latin squares and provide their construction.

1 Introduction and motivation

Let Z_n be the ring of integers taken $\mod n$. In this paper we use $\mathcal{F}(n)$ for the set of all polynomial functions $f: Z_n \times Z_n \to Z_n$, $f(x,y) = a_0 + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + \ldots$, and $\mathcal{L}(n)$ for the set of all Latin squares of order n with the symbol set $\{0, 1, \ldots, n-1\}$.

One of the basic parts of any block cipher algorithm (BCA), or substitution - permutation network (SPN), is a (quasigroup) composition of a piece of plaintext, say x, and a part of a round key, say k. One of the simplest examples is probably the Vernam cipher. Another example is the so called Extended Feistel Cipher [Čanda, Trung-2002], the round structure of which is visualized in Fig. 1. The symbols \oplus , \odot , \boxplus represent (quasi)group operations.

In [Grošek, Satko, Nemoga–2000] and related papers, the authors showed that using quasigroups instead of groups allows more options to gain ideal parameters for some cryptographic primitives.

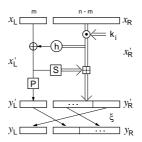


Figure 1: Round Structure

Consider the following scenario: An attacker has access to outputs from a composition x * k of messages x and round keys k, both belonging to a quasigroup (S,*) where $S = \{0,1,\ldots,n-1\}$. Then his/her aim is to find a polynomial function $f \in \mathcal{F}(n)$ such that for all $x,y \in S$, x*y = f(x,y). Thus, from the point of view of a designer, just the opposite is required - to use a quasigroup which is hard to approximate by a polynomial in $\mathcal{F}(n)$. The main goal of this paper is to formalize the notion of those quasigroups,

state some of their properties and provide their construction. We will understand the Cayley table of a quasigroup (S, *), $S = \{0, 1, ..., n-1\}$, as a Latin square $L = L(\ell_{ij}) \in \mathcal{L}(n)$ with $\ell_{ij} = i * j$. Therefore the notions of a quasigroup and a Latin square will be freely interchanged in the paper. Since it is more natural and handy to express definitions and re-

sults concerning the topic in the language of Latin squares, the notion of a quasigroup will be used only sporadically.

If there is a polynomial function $f \in \mathcal{F}(n)$ such that, for all $x, y \in S$, $x*y = \ell_{xy} = f(x,y)$ then the Latin square $L = L(\ell_{ij})$ (the quasigroup (S,*)) will be called polynomial, otherwise we call L(S,*) non-polynomial. A simple example of a polynomial quasigroup is the quasigroup (S,*) with the operation * defined by

$$x * y \equiv ax + by + c \mod n$$
,

where gcd(a, n) = gcd(b, n) = 1.

To be able to measure "how far" a Latin square $L = L(\ell_{ij}) \in \mathcal{L}(n)$ is from a polynomial one we introduce some more notation. For $f \in \mathcal{F}(n)$ we use c(L,f) to be the number of pairs (i,j) for which $\ell_{ij} = f(i,j)$. Further, we define $c(L) = \max c(L,f)$ where the maximum runs over all $f \in \mathcal{F}(n)$ and say that c(L) is the coincidence number of L. We call $f \in \mathcal{F}(n)$ a best polynomial approximation of L if c(L,f) = c(L). Finally, we call a Latin square L most non-polynomial if $c(L) \leq c(L')$ for all $L' \in \mathcal{L}(n)$. Thus, a Latin square L is most non-polynomial if L has the smallest coincidence number of all squares in $\mathcal{L}(n)$.

Example 1.1 It has been found, by an exhaustive computer search, that $f_0 \in \mathcal{F}(6)$, $f_0(x,y) = 4 + 3x + 3y$ is a best polynomial approximation of the Latin square L given below. Hence, $c(L, f_0) = c(L) = 12$. The cells in which L and f_0 coincide are typeset in bold.

$i \setminus j$	0	1	2	3	4	5
$ \begin{array}{c} i \setminus j \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	0	2	5	1	4	3
1	2	4	1	3	0	5
2	5	1	4	0	3	2
3	1	3	0	2	5	4
4	4	0	3	5	2	1
5	3	5	2	4	1	0

2 Non-polynomial Latin squares

In this section we show that, given a Latin square $L \in \mathcal{L}(n)$, we can decide in a finite time whether L is polynomial and find its polynomial function or its best polynomial approximation. Further we show that nearly all Latin squares in $\mathcal{L}(n)$ are non-polynomial.

Let $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$ be the prime number factorization of n. With respect to the global Euler–Fermat theorem [Schwarz–1981], for any $x\in Z_n$ we have

$$r^{\max \alpha_i + \lambda(n)} = r^{\max \alpha_i} \mod n$$

where λ is the Carmichael function. This implies that to each $f \in \mathcal{F}(n)$ there exists $f^* \in \mathcal{F}(n)$ so that $f(x,y) = f^*(x,y)$ for all $x,y \in Z_n$, and the degree of $f^* \leq w$, where $w = \lambda(n) + \max \alpha_i - 1$. Therefore, to determine whether a Latin square is polynomial, and to find its polynomial function or its best polynomial approximation it is sufficient to calculate the coincidence number c(L, f) only for a finite number of polynomials f. More precisely, the number of polynomials one needs to test equals the number of polynomials $f \in \mathcal{F}(n)$ with maximum degree at most w. However, the total number of polynomials in $\mathcal{F}(n)$ of the maximum degree at most w is n^m where $m = (1 + 2 + \ldots + (w + 1)) = \frac{(w+2)(w+1)}{2}$.

We recall now that the Carmichael function λ can be bounded from above by the Euler totient function φ . Then

$$\frac{(w+2)(w+1)}{2} \approx (w+1)^2/2 = (\lambda(n) + \max \alpha_i)^2/2 \le \varphi(n)^2/2.$$

Since on average $\varphi(n) \approx \frac{6n}{\pi^2}$, we have $\varphi(n)^2/2 \approx 0.20n^2$. This yields

$$n^{2+\frac{(w+2)(w+1)}{2}} \approx \exp\{0.20n^2 \ln(n)\}.$$

Thus, it is needed to calculate the coincidence number c(L, f) for approximately $\exp\{2n^2\ln(n)\}$ functions in $\mathcal{F}(n)$. Therefore this exhaustive search for a larger value of n is unrealistic.

Further, it follows from the above discussion that the number of distinct polynomials (we consider two polynomials f and g distinct if there is at least one pair (x,y) so that $f(x,y) \neq g(x,y)$) in $\mathcal{F}(n)$ is at most n^m . Thus, the number of polynomial Latin squares in $\mathcal{L}(n)$ is at most of that order as well. As the total number of Latin squares in $\mathcal{L}(n)$ is more than $n!(n-1)!\dots 2!1!$ (see, e.g. [Dénes, Keedwell–1974], [Godsil, McKay–1990]), nearly all Latin squares are non-polynomial.

We emphasize that in the case $n = p^r$, p being a prime, a similar question about polynomial interpolation over the field $GF(p^r)$ is trivial. To any Latin square $L = L(\ell_{ij})$ of order p^r there exists a unique polynomial f such that for all $i, j, f(i, j) = \ell_{ij}$. This polynomial is given by

$$f(x,y) = \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} \left(1 - (x-u)^{n-1}\right) \left(1 - (y-v)^{n-1}\right) \ell_{uv}. \tag{2.1}$$

Thus any Latin square of size $n = p^r$, p prime, is polynomial over the field $GF(p^r)$. This immediately implies that each Latin square of a prime power order n is polynomial over $GF(p^r)$.

3 Totally non-polynomial Latin square.

As mentioned above, the aim of a designer of a block cipher algorithm is to find a Latin square which is hard to approximate polynomially. Hypothetically, a most non-polynomial Latin square might possess a row or a column that is polynomial, which would significantly simplify breaking the cipher for an attacker, e.g. using a chosen plaintext attack, or related keys attack. Therefore, from a block cipher prospective, the designer is interested to construct a Latin square L with the property that no row and no column of L is polynomial.

Formally, a permutation π of the set $\{0, 1, ..., n-1\}$ is polynomial if there is a polynomial $U(x) \in Z_n[x]$ so that $U(x) = \pi(x)$ for all $x \in Z_n$, otherwise π is called non-polynomial. Since each row/column of a Latin square $L \in \mathcal{L}(n)$ is a permutation of $\{0, 1, ..., n-1\}$ we will speak of a polynomial (non-polynomial) row/column of L in the sense of the above definition.

Now we are ready to define what is meant by a totally non-polynomial Latin square, and in what follows we focus on Latin squares with this property.

Definition 3.1 A Latin square L is called totally non-polynomial if each row and each column of L is non-polynomial.

To construct a totally non-polynomial Latin square L with a small coincidence number c(L) we now focus on permutations that are "far" from being polynomial.

Definition 3.2 Let π be a permutation on the set $\{0, 1, \ldots, n-1\}$. Then a set $J \subset \{0, 1, \ldots, n-1\}$ is called a non-polynomial support of π if for each polynomial $U(x) \in Z_n[x]$ we have $U(j) = \pi(j)$ for at most one element of $j \in J$.

We start with a simple lemma which provides a fundamental ingredient for our construction of a totally non-polynomial Latin square.

Lemma 3.3 Let $J \neq \emptyset$ be a non-polynomial support of a permutation π on $\{0,1,...,n-1\}$, and $h \in \{0,1,...,n-1\}$. Then the permutation β on $\{0,1,...,n-1\}$ given by $\beta(x) = \pi(x+h)$ for all $x \in \{0,1,...,n-1\}$ has a non-polynomial support J' of size |J'| = |J|. In particular, there is a permutation β on $\{0,1,...,n-1\}$ with a non-polynomial support J' so that |J| = |J'|, and $0 \in J'$.

The sum and the difference of two elements of $\{0, 1, ..., n-1\}$ in the lemma and its proof are taken $\mod n$.

Proof. Let J be a non-polynomial support of π . Set $J' = \{y, \text{ there is } x \in J, y = x - h\}$. To see that J' is a non-polynomial support of β , suppose by the way of contradiction that there is a polynomial $U(x) \in Z_n[x]$ and $u, v \in J'$ so that $U(u) = \beta(u)$ and $U(v) = \beta(v)$. Set V(x) = U(x - h). Obviously, $V(x) \in Z_n[x]$ as well. Further, $u, v \in J'$ implies $u + h, v + h \in J$. However, $V(u+h) = U(u) = \beta(u) = \pi(u+h)$ and $V(v+h) = U(v) = \beta(v) = \pi(v+h)$ contradict the assumption that J is a non-polynomial support of π . Thus, J' is a non-polynomial support of β . As |J'| = |J|, the proof of the first part of the statement is complete. To see the second part, set h = b, where b is an element of J.

Now we are ready to describe a construction of totally non-polynomial Latin squares. Recall that the sum of two elements of $\{0, 1, ..., n-1\}$ is taken mod n.

Construction 3.4 Let π be a permutation on $\{0, 1, ..., n-1\}$ and let $L = L(\ell_{ij})$ be an $n \times n$ array.

Step 1. The first row of L is formed by π , i.e. $\ell_{0j} = \pi(j)$.

Step 2. For
$$i > 0$$
 and $j = 0, 1, ..., n - 1$, $\ell_{ij} = \pi(i + j)$.

It is easy to see that L defined above is a Latin square. Such a Latin square is known as back circulant. We use $L(\pi)$ to denote the Latin square obtained by the above construction. As each row of L is a cyclic shift of π , Lemma 3.3 guarantees that if π is a non-polynomial permutation each row of $L(\pi)$ is totally non-polynomial and has a non-polynomial support of the same size

as π does. Clearly, $L(\pi)$ is symmetric, hence we have the same property for its columns. Hence $L(\pi)$ is totally non-polynomial.

To estimate the coincidence number of L we state:

Theorem 3.5 Let J be a non-polynomial support of a permutation π on $\{0,1,...,n-1\}$. Then the coincidence number $c(L(\pi)) \leq n(n-|J|+1)$.

Proof. Let $f \in \mathcal{F}(n)$ be a best polynomial approximation of $L(\pi)$. Then, by the definition of the non-polynomial support, for each $i = 0, 1, \ldots, n-1$, $f(i,x) \in Z_n[x]$ coincides with at most n-|J|+1 elements in the i-th row of $L(\pi)$. Thus, f coincides with at most n(n-|J|+1) elements of $L(\pi)$, hence $c(L(\pi)) \leq n(n-|J|+1)$.

To get Latin squares with small coincidence number, in the rest of the section we deal with non-polynomial permutations that are hard to approximate. The next theorem provides, for a general natural number n, a sufficient condition for a set to be a non-polynomial support.

Theorem 3.6 Let $J \subset \{0, 1, ..., n-1\}$ and π be a permutation on $\{0, 1, ..., n-1\}$ such that the following condition holds:

(A) for each $x, y \in J, x \neq y$, there is a non-trivial divisor d = d(x, y) of n so that $x \equiv y \mod d$ and $\pi(x) \not\equiv \pi(y) \mod d$.

Then J is a non-polynomial support of π .

Proof. Let there exist a polynomial $U(x) \in Z_n[x], U(x) = \sum_{k=0}^w a_k x^k$, and $x, y \in Z_n, x \neq y$, so that $U(x) = \pi(x)$ and $U(y) = \pi(y)$. By [Schwarz-1981] we may assume that w is a finite number. Then $U(x) - U(y) \equiv \sum_{k=0}^w a_k (x^k - y^k) \mod n$. By the condition (A), $x \equiv y \mod d$, d being a non-trivial divisor of n, that is, x = rd + y, where r is a natural number. Applying the binomial theorem we get $x^k - y^k = (rd + y)^k - y^k = \sum_{i=1}^k b_i d^i = d\sum_{i=1}^k b_i d^{i-1}$, where $b_i \in Z_n$. Hence, $U(x) - U(y) \equiv d\sum_{k=1}^w c_k d^{k-1} \equiv \pi(x) - \pi(y) \mod n$, and $c_k \in Z_n$. Since d|n we necessarily have $d|(\pi(x) - \pi(y))$, a contradiction with our assumption $\pi(x) \not\equiv \pi(y) \mod d$. This completes the proof.

The next theorem shows that for each n there is a permutation with relatively large non-polynomial support.

Theorem 3.7 Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, k \geq 2$, where p_1, p_2, \dots, p_k are distinct primes, and $p_1^{\alpha_1} < p_2^{\alpha_2} < \dots < p_k^{\alpha_k}$. Then there exists a permutation π on $\{0,1,2,\dots,n-1\}$ with a non-polynomial support of size $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_{k-1}^{\alpha_{k-1}}$.

It turns out that it is very handy for our purpose to use a one-to-one representation of $x \in Z_n$ by means of a k-tuple ($x \mod p_1^{\alpha_1}, x \mod p_2^{\alpha_2}, \ldots, x \mod p_k^{\alpha_k}$). Here in fact we are utilizing a well-known fact, namely the Chinese Remainder Theorem, that two rings Z_n and $Z_{p_1^{\alpha_1}} \times Z_{p_2^{\alpha_2}} \times \ldots Z_{p_k^{\alpha_k}}$ are isomorphic and the mapping $x \to (x \mod p_1^{\alpha_1}, x \mod p_2^{\alpha_2}, \ldots, x \mod p_k^{\alpha_k})$ is their isomorphism. For the sake of simplicity we will write shortly $x = (x \mod p_1^{\alpha_1}, x \mod p_2^{\alpha_2}, \ldots, x \mod p_k^{\alpha_k})$, and use $(x)_i$ for the i-th coordinate of x in the representation. Clearly, for $x, y \in Z_n$, $x \equiv y \mod p_i^{\alpha_i}$ iff $(x)_i = (y)_i$.

Proof. Consider the set $J\subset Z_n,\ J=\{(a_1,a_2,\ldots,a_{k-1},0),0\leq a_i\leq p_i^{\alpha_i}-1,i=1,2,\ldots,k-1\}$. Hence $|J|=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$. Further, let π be a permutation on $\{0,1,\ldots,n-1\}$ so that if $x=(a_1,a_2,\ldots,a_{k-1},0)$ then $\pi(x)=(0,a_1,a_2,\ldots,a_{k-1})$. Note that as $(\pi(x))_{i+1}=(x)_i,i=1,2,\ldots,k-1,$ we have $(\pi(x))_{i+1}< p_i^{\alpha_i}< p_{i+1}^{\alpha_{i+1}}$. This means that the k-tuple $\pi(x)=(0,a_1,a_2,\ldots,a_{k-1})$ is a representation of a number $y\in Z_n$. Let $x,y\in J, x\neq y$. Then there is an index $i,1\leq i\leq k-1$ so that $(x)_i\neq (y)_i$. Let j be the largest index with the property. This implies that $(x)_j\neq (y)_j$ and $(x)_{j+1}=(y)_{j+1}$. In turn this implies that $(\pi(x))_{j+1}\neq (\pi(y))_{j+1}$. Hence $x\equiv y\mod p_{j+1}^{\alpha_{j+1}}$ and $\pi(x)\not\equiv \pi(y)\mod p_{j+1}^{\alpha_{j+1}}$, i.e. J satisfies the condition (A) of Theorem 3.6. Therefore J is a non-polynomial support of π . As J is of size $p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$ the proof is complete.

As an immediate consequence of Theorem 3.5 and 3.7 we get

Corollary 3.8 Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, k \geq 2$, where p_1, p_2, \dots, p_k are distinct primes, and $p_1^{\alpha_1} < p_2^{\alpha_2} < \dots < p_k^{\alpha_k}$. Then there is a Latin square $L \in \mathcal{L}(n)$ with $c(L) \leq n(n - \frac{n}{p_k^{\alpha_k}} + 1)$.

Although we believe that Theorem 3.7 gives a permutation with the largest possible non-polynomial support among all permutations on $\{0, 1, ..., n-1\}$, we are able to provide some evidence in this regard only for n being a square free number. To be able to do so first we state a necessary and sufficient condition for a set to be a non-polynomial support in this case. This condition is similar to the condition (A) in Theorem 3.6.

Theorem 3.9 Let n be a square free number, $n = p_1 p_2 ... p_k$, where the $p_i's$ are distinct primes. Let π be a permutation on $\{0, 1, 2, ..., n-1\}$. Then a set $J \subset \{0, 1, 2, ..., n-1\}$ is a non-polynomial support of π iff the following condition holds:

(A') for each $x, y \in J$, $x \neq y$, there is i = i(x, y) so that $x \equiv y \mod p_i$ and $\pi(x) \not\equiv \pi(y) \mod p_i$.

We start by stating a result of Ding et al. that is a key ingredient of our proof.

Theorem 3.10 (Theorem 4.3.1 in [Ding, Pei, Salomaa-1996]) Let n be a square free number, $n = p_1 p_2 \dots p_k$, the $p_i's$ primes, and let $\beta_i \in \{0, 1, 2, \dots, n-1\}$ for $i \in I \subset \{0, 1, 2, \dots, n-1\}$. Then there is a polynomial $U(x) \in Z_n[x]$ such that $U(i) = \beta_i$ for all $i \in I$ iff $i \equiv j \mod p_s$ for some $s, 1 \leq s \leq k$, and $i, j \in I$, implies that $\beta_i \equiv \beta_j \mod p_s$.

Proof. (of Theorem 3.9)

Sufficiency. Suppose, by the way of contradiction, that there exists a polynomial $U(x) \in Z_n[x]$ and there are $x, y \in J, x \neq y$, so that $U(x) = \pi(x)$ and $U(y) = \pi(y)$. As $x, y \in J$ the condition (A') implies that there exists i so that $x \equiv y \mod p_i$ and $\pi(x) \not\equiv \pi(y) \mod p_i$. However, in such a case Theorem 3.10 states that $\pi(x) \equiv \pi(y) \mod p_i$, a contradiction.

Necessity. Let $x, y \in J, x \neq y$. As J is a non-polynomial support of π there is no $U(x) \in Z_n[x]$ so that $U(x) = \pi(x)$ and $U(y) = \pi(y)$. Theorem 3.10 implies that there is an i so that $x \equiv y \mod p_i$ and $\pi(x) \not\equiv \pi(y) \mod p_i$.

We strongly believe that the following is true:

Conjecture 3.11 Let n be a square free number, $n = p_1 p_2 \dots p_k, k \geq 2$, where $p_1 < p_2 < \dots < p_k$, are primes. Let J be a non-polynomial support of a permutation π on $\{0, 1, 2, \dots, n-1\}$. Then $|J| \leq p_1 p_2 \dots p_{k-1}$.

As a support for the conjecture we state:

Theorem 3.12 Let n be a square free number, $n = p_1 p_2 \dots p_k$, where $p_1 < \dots < p_k, k \le 4$, are primes, and let J be a non-polynomial support of a permutation π on $\{0, 1, \dots, n-1\}$. Then $|J| \le p_1 p_2 \dots p_{k-1}$.

Proof. We prove the theorem for k = 2 and k = 3 only. The proof for k = 4 uses the same ideas as in the case of k = 3 but it is very involved and distinguishes many cases, and therefore is omitted.

k=2. By Lemma 3.3 we assume that $(0,0) \in J$. Thus, by Theorem 3.9, for each $x \in J$, either $(x)_1 = 0$ or $(x)_2 = 0$, i.e. either $J \subseteq \{(0,a_2), 0 \le a_2 \le p_2 - 1\}$ or $J \subseteq \{(a_1,0), 0 \le a_1 \le p_1 - 1\}$. In the latter case clearly $|J| \le p_1$. In the former case $(\pi(x))_1 \ne (\pi(y))_1$ for all $x, y \in J, x \ne y$. As $0 \le (\pi(x))_1 < p_1$ the proof follows.

k=3. By Lemma 3.3 we may assume that $(0,0,0) \in J$, and, by Theorem 3.9 $(x)_i=0$ for at least one coordinate. Set $A_1=\{(0,a_2,a_3), 0 \leq a_2 \leq p_2-1, 0 \leq a_3 \leq p_3-1\}$, $A_2=\{(a_1,0,a_3), 0 \leq a_1 \leq p_1-1, 0 \leq a_3 \leq p_3-1\}$, and $A_3=\{(a_1,a_2,0), 0 \leq a_1 \leq p_1-1, 0 \leq a_2 \leq p_2-1\}$. We consider two cases.

I. There is an $i, 1 \le i \le 3$, so that $J \subset A_i$. For $J \subset A_3$ the proof is obvious as $|A_3| = p_1p_2$. Suppose now that $J \subset A_1$. For $0 \le a \le p_1 - 1$, we define $J_a = \{x \in J, (\pi(x))_1 = a\}$. Clearly, $|J| = |J_0| + |J_1| + \ldots + |J_{p_1-1}|$ as the

 $J_i's$ are pairwise disjoint. Thus, it suffices to show that $|J_i| \leq p_2$ for all $i = 0, 1, \ldots, p_1 - 1$.

Let $x=(0,x_2,x_3)\in J, y=(0,y_2,y_3)\in J$ be so that $x_2\neq y_2$, and $x_3\neq y_3$. Then, by Theorem 3.9, $(\pi(x))_1\neq (\pi(y))_1$. Hence, if $(\pi(u))_1=(\pi(v))_1$ for some $u=(0,u_2,u_3)\in J, v=(0,v_2,v_3)\in J$, then either $u_2=v_2$ or $u_3=v_3$, and consequently, for each $i=0,1,\ldots,p_1-1$, either $J_a\subset\{(0,c,a_3),$ where c is a fixed number, and $0\leq a_3\leq p_3-1\}$, or $J_a\subset\{(0,a_2,c),$ where c is a fixed number, and $0\leq a_2\leq p_2-1\}$. In the former case Theorem 3.9 implies $(\pi(x))_2\neq (\pi(y))_2$ for all $x,y\in J_a, x\neq y$, which in turn implies $|J_a|\leq p_2$. In the latter case $|J_a|\leq p_2$ as the first and the third coordinates of all numbers in J_a are fixed.

For $J \subset A_2$ the proof is analogous.

II. $J \nsubseteq A_i$ for i = 1, 2, 3. Put $B_1 = \{(a_1, 0, 0), 1 \le a_1 \le p_1 - 1\}$, $B_2 = \{(0, a_2, 0), 1 \le a_2 \le p_2 - 1\}$, and $B_3 = \{(0, 0, a_3), 0 \le a_3 \le p_3 - 1\}$. Suppose first that $J \subset \bigcup_{i=1}^3 B_i$. Then $J \cap B_i \ne \emptyset$ for i = 1, 2, 3.

Let $x = (x_1, 0, 0) \in J$, $(\pi(x))_2 = a$, let $y = (0, y_2, 0) \in J$, $(\pi(y))_1 = b$, and finally let $z = (0, 0, z_3) \in J$, $\pi(z) = (c, d, e)$, and $v = (0, 0, v_3) \in J$, $\pi(v) = (f, g, h)$. Then, by Theorem 3.9, it is $c \neq b \neq f$, $d \neq a \neq g$, and either $c \neq f$, or $d \neq g$. Therefore, $|J \cap B_3| \leq (p_1 - 1)(p_2 - 1)$, and in aggregate, $|J| = |J \cap B_1| + |J \cap B_2| + |J \cap B_3| \leq (p_1 - 1) + (p_2 - 1) + ((p_1 - 1)(p_2 - 1)) = p_1 p_2 - 1$.

Finally, assume that $J \subsetneq \bigcup_{i=1}^3 B_i$. Suppose $x = (0, a, b) \in J, a \neq 0 \neq b$. (The cases $y = (a, 0, b) \in J$ and $z = (a, b, 0) \in J, a \neq 0 \neq b$ will be omitted as they can be treated in an analogous way). If there is $y = (c, 0, d) \in J, c \neq 0$, then Theorem 3.9 implies b = d, and $J \cap (A_1 \setminus (A_2 \cup A_3)) = \{(0, a_2, b), 1 \leq a_2 \leq p_2 - 1\}$ as well as $J \cap (A_2 \setminus (A_1 \cup A_3)) = \{(a_1, 0, b), 1 \leq a_1 \leq p_1 - 1\}$ and $J \cap A_3 = \emptyset$. Therefore, $J \subset \{(0, a_2, b), 1 \leq a_2 \leq p_2 - 1\} \cup \{(a_1, 0, b), 1 \leq a_1 \leq p_1 - 1\} \cup B_3$. The only difference between this case and the case $J \subset \bigcup_{i=1}^3 B_i$ is that in the latter b = 0. As this fact has not been used in the proof, we are done with the last case as well.

We finish this paper with two remarks concerning a general natural number n. The first is concerned with the coincidence number of a Latin square $L(\pi)$ obtained by the construction described in this paper. We believe that the upper bound on $c(L(\pi))$ given in Corollary 3.8 is far from a tight one, that is, we believe that the construction provides a Latin square with much lower coincidence number than indicated by the corollary. As an evidence we turn the reader's attention to the Latin square L in Example 1.1. It is easy to see that $L = L(\pi)$ for $\pi = (0, 2, 5, 1, 4, 3)$. We have verified by an exhaustive computer search that $12 = c(L(\pi)) \le c(L(\pi'))$ for all permutations π' on the set $\{0, 1, ..., 5\}$. On the other hand, by Corollary 3.8, for any permutation π' we get as an upper bound only $c(L(\pi')) \le 24$. We believe that the reason is the following: If $f(x,y) \in \mathcal{F}(n)$ is a best polynomial approximation of $L(\pi)$ then $f(0,y) \in Z_n$ is by far not the best polynomial approximation of the

permutation π . By Theorem 3.12, for each permutation π on $\{0, 1, 2, 3, 4, 5\}$ there is a polynomial $U(x) \in Z_n[x]$ that coincides with π in at least 4 of 6 arguments. On the other hand, a best polynomial approximation of $L(\pi)$ coincides with π in only 2 positions.

The second one is rather technical. Our construction of a non-polynomial support in Theorem 3.7 is based on the mapping

$$(a_1, a_2, \dots, a_{k-1}, 0) \to (0, a_1, a_2, \dots, a_{k-1}).$$

It is not difficult to see that one may use another mapping

$$(a_1, a_2, \dots, a_{k-1}) \to (\sum_{i=1}^{k-1} a_i \mod p_1, a_1, a_2, \dots, a_{k-1}).$$

This is nothing but a very poor "linear code with a control sum". Unfortunately we are unable to make use of the fact.

References

- [Belousov-1967] Belousov, V.D. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967. (In Russian.)
- [Brualdi-1991] Brualdi, R.A., Ryser, H.J. Combinatorial Matrix Theory, Cambridge University Press, Cambridge 1991.
- [Čanda, Trung–2002] Čanda, V., Trung, T.V. Scalable block ciphers based on Feistel-like structure. Tatra Mountains Mathematical Pub. 25(2002), pp. 39-66.
- [Dénes, Keedwell–1974] Dénes, J., Keedwell A.D. Latin Squares and their Applications. Akadémiai Kiadó, Budapest, 1974.
- [Ding, Pei, Salomaa–1996] Ding, C., Pei, D., Salomaa, A. Chinese Remainder Theorem. Applications in Computing, Coding, Cryptography. World Scientific, Singapore, 1996.
- [Grošek, Nemoga, Satko-2000] Grošek, O., Nemoga, K., Satko, L. Generalized Perfectly nonlinear functions. Tatra Mountains Pub. 20(2000), pp. 121-131.
- [Grošek, Wei–1999] Grošek, O., Wei, W. Bent–like functions on groupoids. Pure Mathematics and Applications. 10(1999), No.3, Budapest (H)& Siena (I) Publisher, pp. 267-278.
- [Grošek, Satko, Nemoga–2000] Grošek, O., Nemoga, K., Satko, L. Ideal difference tables from an Algebraic point of view. Ammendment to Criptologa y Seguridad de la Informacin. Editors Pino Cabalero Gil and Candelaria Hernandez Goya, RA-MA, Madrid, 2000, pp. 453-454, 43-53.
- [Godsil, McKay-1990] Godsil, C.D., McKay, B.D. Asymptotic enumeration of Latin squares. J. Combinatorial Theory B, 48(1990), pp. 19-44.
- [Satko, Grošek, Nemoga–2003] Satko, L., Grošek, O., Nemoga, K. Extremal generalized S-boxes. Computing and Informatics No 1, 22(2003), pp. 85-99.
- [Schwarz-1981] Schwarz, Š. The role of semigroups in the elementary theory of numbers. Math. Slovaca Vol. 31(1981), pp. 369–395.