Primitive Sets of a Lattice and a Generalization of Euclidean Algorithm*

Spyros. S. Magliveras
Center for Cryptology and Information Security
Department of Mathematical Sciences
Florida Atlantic University
Boca Raton, FL 33431, U.S.A
spyros@fau.unl.edu
Tran van Trung
Institute for Experimental Mathematics
University of Duisburg-Essen
Essen, Germany
trung@iem.uni-due.de
Wandi Wei
Center for Cryptology and Information Security
Department of Mathematical Sciences
Florida Atlantic University
Boca Raton, FL 33431, U.S.A
wei@brain.math.fau.edu

Abstract

We present a generalization of the Euclidean algorithm, and apply it to give a solution to the following lattice problem. Let $\Lambda=$ $\Lambda\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ be a lattice of rank n in \mathbb{R}^{m} with the basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$. Let $\mathbf{a}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{n} \mathbf{b}_{n} \in \Lambda$ be a primitive vector. It has been proved that a can be extended to a basis. But there is no known formula for an extended basis of a primitive vector. Our generalization

[^0]of the Euclidean algorithm provides such a formula, whose entries can be computed very efficiently.

Key words. Euclidean algorithm, lattice, primitive vector, primitive set, basis

1 Introduction

Let \mathbb{Z} denote the set of integers. Let \mathbb{R}^{m} denote the m-dimensional real space, and let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{m}$ be n vectors linearly independent over \mathbb{R}. The set

$$
\Lambda=\Lambda\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)=\left\{z_{1} \mathbf{b}_{1}+z_{2} \mathbf{b}_{2}+\ldots+z_{n} \mathbf{b}_{n}: z_{i} \in \mathbb{Z}, 1 \leq i \leq n\right\}
$$

is called a lattice of rank n in \mathbb{R}^{m}, and the set of vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ a basis of Λ.

A set C of k lattice vectors $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k} \in \Lambda$ is called a primitive set if these vectors are linearly independent over \mathbb{R} and

$$
\Lambda \cap \operatorname{span}_{\mathbb{R}}\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}\right)=\Lambda\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}\right)
$$

When $k=1$, the only vector in C is called a primitive vector. It is proved (see, for example, $[4,6]$) that a lattice vector

$$
\mathbf{a}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{n} \mathbf{b}_{n}
$$

is primitive if and only if

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1
$$

It is also proved that any primitive set of vectors can be extended to a basis. The proof in [4] depends on the result that if $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}(k<n)$ form a primitive set and

$$
\mathbf{y} \in \Lambda \backslash \Lambda\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right)
$$

then the $(k+1)$-dimensional parallelotope P spanned by $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}, \mathbf{y}$ contains a vector $\mathbf{y}_{k+1} \in P \cap \Lambda$ with a positive minimum distance to $\Lambda\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right)$, and the $k+1$ vectors $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}, \mathbf{y}_{k+1}$ form a primitive set. The proof in [6] makes use of the fact that for any k linearly independent lattice vectors $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}$, the infimum

$$
\begin{aligned}
\inf \left\{t_{k}>0:\right. & t_{1} \mathbf{y}_{1}+t_{2} \mathbf{y}_{2}+\ldots+t_{k} \mathbf{y}_{k} \in \Lambda \\
& \left.t_{i} \in \mathbb{R}, t_{i} \geq 0(1 \leq i \leq k)\right\}
\end{aligned}
$$

is actually attained for some vector $\mathbf{z} \in \Lambda$, and \mathbf{z} is used in the construction of an extended basis. But there is no known polynomial algorithm for computing either \mathbf{y}_{k+1} or \mathbf{z} and therefore for constructing an extended basis, even for the special case of a single primitive vector.

In this article we study this problem from the viewpoint of the wellknown Euclidean algorithm, treat the extended basis of a primitive vector of a lattice as a special case of a generalization of the Euclidean algorithm, and present a formula for an extended basis. The computations of the entries in the formula can be done very efficiently. We also present a formula for an extended basis of an arbitrary primitive set of size $n-1$.

In the next section, we state our generalization of the Euclidean algorithm, derive the above-mentioned formula, and analyze the time complexity of computing the entries in the formula. In $\S 3$, we apply this method to give an algorithmic solution to the construction of an extended basis of a primitive vector of a lattice. In $\S 4$, we discuss the case where the size of the primitive sets is $n-1$. Concluding remarks are drawn in the last section.

2 A Generalization of the Euclidean Algorithm

Let a, b be two integers not both zero, and $d=\operatorname{gcd}(a, b)$. By means of the Euclidean algorithm integers t, s can be determined so that

$$
\begin{equation*}
d=a t+b s . \tag{2.1}
\end{equation*}
$$

Here we consider a generalization.
Equality (2.1) can be rewritten as

$$
d=\left|\begin{array}{cc}
a & b \tag{2.2}\\
-s & t
\end{array}\right|, \quad t, s \in \mathbb{Z}
$$

Let \mathbb{Z}^{n} denote the set of n-dimensional integral vectors. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ \mathbb{Z}^{n} be a nonzero vector, and $d=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Then our generalization is to design an algorithm for finding an integral $(n-1) \times n$ matrix

$$
\left(m_{i j}\right), \quad 2 \leq i \leq n, 1 \leq j \leq n
$$

such that

$$
\begin{equation*}
d=\operatorname{det}\left(a_{i j}\right), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1 j} & =a_{j}, \quad j=1,2, \ldots, n \\
a_{i j} & =m_{i j}, \quad i=2,3, \ldots, n ; j=1,2, \ldots, n
\end{aligned}
$$

For our purpose we can assume without loss of generality that $a_{1} \neq 0$. Let

$$
\begin{aligned}
d_{1} & =a_{1}, \\
d_{i} & =\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{i}\right), \quad 2 \leq i \leq n, \\
d & =d_{n} .
\end{aligned}
$$

Since $a_{1} \neq 0$, all the d_{i} are well defined, and

$$
d_{i}=\operatorname{gcd}\left(d_{i-1}, a_{i}\right), \quad 2 \leq i \leq n .
$$

By the Euclidean algorithm, we can determine the values of $t_{i}, s_{i},(2 \leq i \leq$ n) such that

$$
d_{i}=t_{i-1} d_{i-1}+s_{i-1} a_{i}, \quad 2 \leq i \leq n .
$$

We now prove
Theorem 2.1 Let n be a positive integer greater than 1. Let $U=U_{n}$ be the $n \times n$ matrix

$$
U:=U_{n}:=\left(u_{i j}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
-s_{1} & t_{1} & 0 & \ldots & 0 \\
-\frac{a_{1} s_{2}}{d_{2}} & -\frac{a_{2} s_{2}}{d_{2}} & t_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-\frac{a_{1} s_{n-1}}{d_{n-1}} & -\frac{a_{2} s_{n-1}}{d_{n-1}} & -\frac{a_{3} s_{n-1}}{d_{n-1}} & \ldots & t_{n-1}
\end{array}\right),
$$

i.e.,

$$
\begin{aligned}
& u_{1 j}=a_{j}, \quad 1 \leq j \leq n \\
& u_{i j}=-\frac{a_{j} s_{i-1}}{d_{i-1}}, \quad 1 \leq j \leq i-1,2 \leq i \leq n \\
& u_{i i}=t_{i} \quad 2 \leq i \leq n \\
& u_{i j}=0, \quad i+1 \leq j \leq n, 2 \leq i \leq n
\end{aligned}
$$

Then U_{n} is an integral matrix and

$$
\begin{equation*}
\operatorname{det}\left(U_{n}\right)=d_{n}=d . \tag{2.4}
\end{equation*}
$$

Proof. Since $d_{i-1}=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{i-1}\right)$, we know that $\frac{a_{j} s_{i-1}}{d_{i-1}}(1 \leq j \leq$ $i-1)$ are integers, and then all the numbers $u_{i j}$ are integers.

We prove (2.4) by induction on $n \geq 2$. By (2.1) and (2.2) we know that the induction basis is true. Now we assume that (2.4) is true for $n=k$, i.e.,

$$
\begin{equation*}
\operatorname{det}\left(U_{k}\right)=d_{k} . \tag{2.5}
\end{equation*}
$$

When $n=k+1$, we have

$$
\operatorname{det}\left(U_{k+1}\right)=\left|\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{k} & a_{k+1} \\
-s_{1} & t_{1} & 0 & \ldots & 0 & 0 \\
-\frac{a_{1} s_{2}}{d_{2}} & -\frac{a_{2} s_{2}}{d_{2}} & t_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
-\frac{a_{1} s_{k-1}}{d_{k-1}} & -\frac{a_{2} s_{k-1}}{d_{k-1}} & -\frac{a_{3} s_{k-1}}{d_{k-1}} & \ldots & t_{k-1} & 0 \\
-\frac{a_{1} s_{k}}{d_{k}} & -\frac{a_{2} s_{k}}{d_{k}} & -\frac{a_{3} s_{k}}{d_{k}} & \ldots & -\frac{a_{k} s_{k}}{d_{k}} & t_{k}
\end{array}\right|
$$

Expanding it by its last column, we have

$$
\left.=t_{k} \operatorname{det}\left(U_{k}\right)+(-1)^{k+2} a_{k+1}\right)\left|\begin{array}{ccccc}
-s_{1} & t_{1} & 0 & \ldots & 0 \\
-\frac{a_{1} s_{2}}{d_{2}} & -\frac{a_{2} s_{2}}{d_{2}} & t_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-\frac{a_{1} s_{k-1}}{d_{k-1}} & -\frac{a_{2} s_{k-1}}{d_{k-1}} & -\frac{a_{3} s_{k-1}}{d_{k-1}} & \ldots & t_{k-1} \\
-\frac{a_{1} s_{k}}{d_{k}} & -\frac{a_{2} s_{k}}{d_{k}} & -\frac{a_{3} s_{k}}{d_{k}} & \ldots & -\frac{a_{k} s_{k}}{d_{k}}
\end{array}\right|
$$

$$
=t_{k} d_{k}+(-1)^{k+3} \frac{s_{k}}{d_{k}} a_{k+1}\left|\begin{array}{ccccc}
-s_{1} & t_{1} & 0 & \ldots & 0 \\
-\frac{a_{1} s_{2}}{d_{2}} & -\frac{a_{2} s_{2}}{d_{2}} & t_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-\frac{a_{1} s_{k-1}}{d_{k-1}} & -\frac{a_{2} s_{k-1}}{d_{k-1}} & -\frac{a_{3} s_{k-1}}{d_{k-1}} & \ldots & t_{k-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{k}
\end{array}\right|
$$

by induction hypothesis (2.5). Noting that the determinant in the last expression differs from $\operatorname{det}\left(U_{k}\right)$ only in the order of their rows, we have

$$
\begin{aligned}
& \operatorname{det}\left(U_{k+1}\right) \\
= & t_{k} d_{k} \\
& +(-1)^{k+3} \frac{s_{k}}{d_{k}} a_{k+1}(-1)^{k-1} \left\lvert\, \begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{k-1} & a_{k} \\
-s_{1} & t_{1} & 0 & \ldots & 0 & 0 \\
-\frac{a_{1} s_{2}}{d_{2}} & -\frac{a_{2} s_{2}}{d_{2}} & t_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
= & t_{k} d_{k}+\frac{s_{k}}{d_{k}} \operatorname{det}\left(B_{k}\right) a_{k+1} \\
-\frac{a_{1} s_{k-1}}{d_{k-1}} & -\frac{a_{2} s_{k-1}}{d_{k-1}} & -\frac{a_{3} s_{k-1}}{d_{k-1}} & \ldots & -\frac{a_{k-1} s_{k-1}}{d_{k-1}} & t_{k-1}
\end{array}\right. \\
= & t_{k} d_{k}+\frac{s_{k}}{d_{k}} d_{k} a_{k+1} \\
= & t_{k} d_{k}+s_{k} a_{k+1} \\
= & d_{k+1}
\end{aligned}
$$

which completes the induction proof.
Based on this theorem, one can easily compute matrix U as shown in the following algorithm.

An Algorithm for Computing Matrix U.

Step 1. Invoke the Euclidean Algorithm to compute the $d_{i}(2 \leq i \leq n)$ and the values of $s_{i}, t_{i}(2 \leq i \leq n)$.

Step 2. We compute the integral values of the entries $\frac{a_{i} s_{j}}{d_{j}}, 2 \leq i \leq$ $j-1,2 \leq j \leq n$.

For analyzing the time complexity of the algorithm, we need some lemmas.

Lemma 2.1 Let $u, v \in \mathbb{Z}$ and $u \neq 0, v \neq 0$. Then there exist $s, t \in \mathbb{Z}$ such that $\operatorname{gcd}(u, v)=s u+t v$ and

$$
|s| \leq|v|,|t| \leq|u| .
$$

Proof. Let d denote $\operatorname{gcd}(u, v)$, and $s_{0}, t_{0} \in \mathbb{Z}$ any numbers such that $d=$ $s_{0} u+t_{0} v$. Then for any $k \in \mathbb{Z}$,

$$
s=s_{0}+k v, t=t_{0}-k u
$$

satisfy $s u+t v=d$. We have

$$
\begin{aligned}
d & \geq\left|s_{0}+k v\right| \cdot|u|-\left|t_{0}-k u\right| \cdot|v|, \\
d+\left|t_{0}-k u\right| \cdot|v| & \geq\left|s_{0}+k v\right| \cdot|u| .
\end{aligned}
$$

By the division algorithm, we can choose k such that $\left|t_{0}-k u\right|<|u|$, i.e., $\left|t_{0}-k u\right| \leq|u|-1$. So

$$
d+(|u|-1) \cdot|v| \geq d+\left|t_{0}-k u\right| \cdot|v| \geq\left|s_{0}+k v\right| \cdot|u|,
$$

and then

$$
\begin{aligned}
\left|s_{0}+k v\right| & \leq \frac{d}{|u|}+\left(1-\frac{1}{|u|}\right)|v| \\
& =|v|-\frac{|v|-d}{|u|} \\
& \leq|v| .
\end{aligned}
$$

The following Lemmas are well known, and can be found in many books, for example, [1], [3], [5], etc.

Lemma 2.2 Let $u, v \in \mathbb{Z}$ and $u \neq 0, v \neq 0$. Then $\operatorname{gcd}(u, v)$ as well as s, t such that $g c d(u, v)=s u+t v$ can be computed in $O((\log |u|)(\log |v|))$ bit operations.

Lemma 2.3 Let $u, v \in \mathbb{Z}$ and $u \neq 0, v \neq 0$. Then the product $u \cdot v$ can be computed in $O((\log |u|)(\log |v|))$ bit operations.

Lemma 2.4 Let $u, v \in \mathbb{Z}$ and $u \neq 0, v \neq 0$. Then the quotient $\frac{u}{v}$ can be computed in $O((\log |u|)(\log |v|))$ bit operations.

We now analyze the time complexity of our algorithm. Let a_{0} and a_{0}^{\prime} be the two largest among all the absolute values $\left|a_{i}\right|$. The case where either a_{0} or a_{0}^{\prime} is 0 is trivial, so we now assume that both of them are nonzero.

Theorem 2.2 The worst-case time complexity of the above algorithm is $O\left(n^{2}\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)$ bit operations.

Proof. Step 1 of the algorithm can be carried out by invoking the Euclidean Algorithm $n-1$ times. By Lemma 2.2, this can be done in $(n-1)$. $O\left(\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)=O\left(n\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)$ bit operations.

The number of divisions and the number of multiplications in Step 2 is the same, which is

$$
2+3+\ldots+(n-1)=O\left(n^{2}\right) .
$$

By Lemma 2.1, the absolute values of all the numbers involved are bounded by a_{0} and a_{0}^{\prime}. Therefore, by Lemmas 2.3 and 2.4, all the integral values of the fractions dealt with in Step 2 can be computed in $O\left(n^{2}\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)$ bit operations. Therefore, the worst-case time complexity of the algorithm is

$$
O\left(n\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)+O\left(n^{2}\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)=O\left(n^{2}\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)
$$

bit operations.

3 A Solution to the Construction of an Extended Basis of a Primitive Vector

Let $\Lambda=\Lambda\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ be a lattice with basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$. Let $\mathbf{a}=$ $a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\ldots+a_{n} \mathbf{b}_{n} \in \Lambda$ be a primitive vector. Then we have

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1
$$

Theorem 2.1 asserts that $\operatorname{det}(U)=1$, and then the row vectors of matrix $U=\left(u_{i j}\right)$ with respect to basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ form a new basis of Λ, which is an extension of primitive vector a.

Combining this and Theorem 2.2, we have

Theorem 3.1 The primitive vector a together with the $n-1$ vectors

$$
\sum_{j=0}^{n} u_{i j} \mathbf{b}_{j}, \quad 2 \leq i \leq n
$$

form an extended basis of \mathbf{a}, where

$$
\begin{aligned}
& u_{i j}=-\frac{a_{j} s_{i-1}}{d_{i-1}}, \quad 1 \leq j \leq i-1,2 \leq i \leq n \\
& u_{i i}=t_{i} \quad 2 \leq i \leq n \\
& u_{i j}=0 . \quad i+1 \leq j \leq n, 2 \leq i \leq n
\end{aligned}
$$

The worst-case time complexity of computing the extended basis is $O\left(n^{2}\left(\log a_{0}\right)\left(\log a_{0}^{\prime}\right)\right)$ bit operations.

4 A Solution to the Construction of an Extended Basis of a Primitive Set of Size $n-1$

We adopt the notation about $a_{i}, d_{i}, s_{i}, t_{i}, \Lambda, \mathbf{b}_{i}$ introduced in $\S 2$.
We need two lemmas. The first can be proved by induction, and the second can be found in [2].

Lemma 4.1 The $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ can be expressed as an integral linear combination of a_{i} as follows:

$$
\begin{equation*}
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} t_{i-1} s_{i} s_{i+1} s_{i+2} \cdots s_{n-1} \cdot a_{i} . \tag{4.1}
\end{equation*}
$$

Lemma 4.2 Let $1 \leq k<n$ and

$$
\mathbf{a}_{i}=a_{i 1} \mathbf{b}_{1}+a_{i 2} \mathbf{b}_{2}+\ldots+a_{i n} \mathbf{b}_{n} \in \Lambda, \quad 1 \leq i \leq k
$$

Let M denote the $k \times n$ matrix $\left(a_{i j}\right)(1 \leq i \leq k, 1 \leq j \leq n)$. Then $\left\{\mathbf{a}_{i}: 1 \leq i \leq k\right\}$ is a primitive set if and only if the gcd of all the minors of order k of M is 1 .

We now consider the case when $k=n-1$. Suppose that the $n-1$ vectors

$$
\mathbf{a}_{i}=a_{i 1} \mathbf{b}_{1}+a_{i 2} \mathbf{b}_{2}+\ldots+a_{i n} \mathbf{b}_{n} \in \Lambda, \quad 1 \leq i \leq n-1
$$

form a primitive set. Let $M=\left(a_{i j}\right)$ be the $(n-1) \times n$ matrix of the coefficients of \mathbf{a}_{i}. Let $A_{i}(1 \leq i \leq n)$ be the n minors of M obtained by deleting the $i^{\text {th }}$ column of M. Without loss of generality, we may assume that $A_{1} \neq 0$. Then we can define

$$
\begin{aligned}
d_{1}^{\prime} & =A_{1}, \\
d_{i}^{\prime} & =\operatorname{gcd}\left(A_{1}, A_{2}, \ldots, A_{i}\right), \quad 2 \leq i \leq n, \\
d^{\prime} & =d_{n}^{\prime} .
\end{aligned}
$$

By the Euclidean algorithm, we can determine the values of $t_{i}^{\prime}, s_{i}^{\prime},(2 \leq i \leq$ n) such that

$$
d_{i}^{\prime}=t_{i-1}^{\prime} d_{i-1}^{\prime}+s_{i-1}^{\prime} A_{i}, \quad 2 \leq i \leq n .
$$

Then by Lemma 4.1 we have

$$
\begin{aligned}
\operatorname{gcd}\left(A_{1}, A_{2}, \ldots, A_{n}\right) & =\sum_{i=1}^{n} t_{i-1}^{\prime} s_{i}^{\prime} s_{i+1}^{\prime} s_{i+2}^{\prime} \cdots s_{n-1}^{\prime} \cdot A_{i} \\
& =\sum_{i=1}^{n}(-1)^{n-i}\left[(-1)^{n-i} t_{i-1}^{\prime} s_{i}^{\prime} s_{i+1}^{\prime} s_{i+2}^{\prime} \cdots s_{n-1}^{\prime}\right] \cdot A_{i} .
\end{aligned}
$$

Let

$$
\begin{gathered}
a_{n i}=(-1)^{n-i} t_{i-1}^{\prime} s_{i}^{\prime} s_{i+1}^{\prime} s_{i+2}^{\prime} \cdots s_{n-1}^{\prime}, \quad 1 \leq i \leq n \\
A=\left(a_{i j}\right), \quad 1 \leq i, j \leq n,
\end{gathered}
$$

and

$$
\mathbf{a}_{n}=a_{n 1} \mathbf{b}_{1}+a_{n 2} \mathbf{b}_{2}+\ldots+a_{n n} \mathbf{b}_{n} .
$$

Then $\mathbf{a}_{n} \in \Lambda$. By (4.2) and Lemma 4.2, we have

$$
\operatorname{det}(A)=\operatorname{gcd}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=1 .
$$

Therefore, $\mathbf{a}_{i}(1 \leq i \leq n)$ form a basis.
Let us now discuss the time complexity of computing \mathbf{a}_{n}. There are many algorithms for computing integral determinants and many upper bounds for the absolute values of determinants. Suppose that the algorithm used for computing A_{i} has the worst-case complexity of $c\left(a_{i}, a_{i}^{\prime}\right)$ bit operations, where a_{i}, a_{i}^{\prime} are the two largest absolute values of the entries in A_{i} and $c\left(a_{i}, a_{i}^{\prime}\right)$ is a function of a_{i} and a_{i}^{\prime}. Let a_{0}, a_{0}^{\prime} denote the two largest absolute values of $a_{i j}(1 \leq i \leq n-1 ; 1 \leq j \leq n)$. Then the worst-case complexity of computing all $A_{i}(1 \leq i \leq n)$ is

$$
O\left(n c\left(a_{0}, a_{0}^{\prime}\right)\right) .
$$

Suppose that the upper bound used for $\left|A_{i}\right|$ is $w\left(a_{i}, a_{i}^{\prime}\right)$, which is a function of a_{i} and a_{i}^{\prime}. Then all $\left|A_{i}\right|(1 \leq i \leq n)$ is upper bounded by $w\left(a_{0}, a_{0}^{\prime}\right)$. Noting that there are $(n-1)-(i-1)=n-i$ multiplications in computing $a_{n i}$, by Lemmas 2.3 and 2.4 we know that the computations of all $a_{n i}(1 \leq i \leq n)$ need no more than

$$
O\left(n c\left(a_{0}, a_{0}^{\prime}\right)\right)+O\left(n w\left(a_{0}, a_{0}^{\prime}\right)\right)=O\left(n\left(c\left(a_{0}, a_{0}^{\prime}\right)+w\left(a_{0}, a_{0}^{\prime}\right)\right)\right)
$$

bit operations.
In summary, we have
Theorem 4.1 The vectors $\mathbf{a}_{i}(1 \leq i \leq n)$ form an extended basis of primitive set $\mathbf{a}_{i}(1 \leq i \leq n-1)$, and the worst-case complexity of computing this extended basis is $O\left(n\left(c\left(a_{0}, a_{0}^{\prime}\right)+w\left(a_{0}, a_{0}^{\prime}\right)\right)\right)$.

5 Concluding Remarks

We have employed the Euclidean algorithm and our generalization of it to provide formulas for an extended basis of an arbitrary primitive set of size $n-1$ or 1 of a lattice of rank n in \mathbb{R}^{m}. The entries in the formulas can be computed very efficiently. The results presented here shed some light on the general case where the size of the primitive set is between 2 and $n-2$, and we believe that the Euclidean algorithm will play a crucial role in the solution of the general case.

References

[1] Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, Volume 1: Efficient Algorithms, The MIT Press, Cambridge, Massachusetts, 1997.
[2] J.W.S. Cassels, An Introduction to the Geometry of Numbers Springer, Berlin, 1997.
[3] Neal Koblitz, Algebraic Aspects of Cryptography, Springer, Berlin, 1998.
[4] C. G. Lekkerkerker and P. M. Gruber, Geometry of Numbers, Second edition North-Holland Mathematical Library, 37, NorthHolland Publishing Co., 1987.
[5] Daniele Micciancio and Shafi Goldwasser, Complexity of Lattice Problems, A Cryptographic Perspective, Kluwer Academic Publishers, Boston, 2002
[6] Carl Ludwig Siegel, Lectures on the Geometry of Numbers, Springer-Verlag, 1989.

[^0]: *This work was partially supported by a Federal Earmark grant for Research in Secure Telecommunication Networks (2004-05)

