
Primitive Sets of a Lattice and a

Generalization of Euclidean Algorithm∗

Spyros. S. Magliveras

Center for Cryptology and Information Security

Department of Mathematical Sciences

Florida Atlantic University

Boca Raton, FL 33431, U.S.A

spyros@fau.unl.edu

Tran van Trung

Institute for Experimental Mathematics

University of Duisburg-Essen

Essen, Germany

trung@iem.uni-due.de

Wandi Wei

Center for Cryptology and Information Security

Department of Mathematical Sciences

Florida Atlantic University

Boca Raton, FL 33431, U.S.A

wei@brain.math.fau.edu

Abstract

We present a generalization of the Euclidean algorithm, and ap-
ply it to give a solution to the following lattice problem. Let Λ =
Λ(b1,b2, . . . ,bn) be a lattice of rank n in R

m with the basis b1,b2, . . . ,bn.
Let a = a1b1 + a2b2 + . . . + anbn ∈ Λ be a primitive vector. It has
been proved that a can be extended to a basis. But there is no known
formula for an extended basis of a primitive vector. Our generalization

∗This work was partially supported by a Federal Earmark grant for Research in Secure

Telecommunication Networks (2004-05)

1

2

of the Euclidean algorithm provides such a formula, whose entries can
be computed very efficiently.

Key words. Euclidean algorithm, lattice, primitive vector,

primitive set, basis

1 Introduction

Let Z denote the set of integers. Let R
m denote the m-dimensional real

space, and let b1,b2, . . . ,bn ∈ R
m be n vectors linearly independent over

R. The set

Λ = Λ(b1,b2, . . . ,bn) = {z1b1 + z2b2 + . . . + znbn : zi ∈ Z, 1 ≤ i ≤ n}

is called a lattice of rank n in R
m, and the set of vectors b1,b2, . . . ,bn a

basis of Λ.
A set C of k lattice vectors c1, c2, . . . , ck ∈ Λ is called a primitive set

if these vectors are linearly independent over R and

Λ ∩ spanR(c1, c2, . . . , ck) = Λ(c1, c2, . . . , ck).

When k = 1, the only vector in C is called a primitive vector. It is proved
(see, for example, [4, 6]) that a lattice vector

a = a1b1 + a2b2 + . . . + anbn

is primitive if and only if

gcd(a1, a2, . . . , an) = 1.

It is also proved that any primitive set of vectors can be extended to a basis.
The proof in [4] depends on the result that if y1,y2, . . . ,yk (k < n) form a
primitive set and

y ∈ Λ \ Λ(y1,y2, . . . ,yk),

then the (k + 1)-dimensional parallelotope P spanned by y1,y2, . . . ,yk,y

contains a vector yk+1 ∈ P ∩ Λ with a positive minimum distance to
Λ(y1,y2, . . . ,yk), and the k + 1 vectors y1,y2, . . . ,yk,yk+1 form a prim-
itive set. The proof in [6] makes use of the fact that for any k linearly
independent lattice vectors y1,y2, . . . ,yk, the infimum

inf{tk > 0 : t1y1 + t2y2 + . . . + tkyk ∈ Λ

ti ∈ R, ti ≥ 0 (1 ≤ i ≤ k)}

3

is actually attained for some vector z ∈ Λ, and z is used in the construction
of an extended basis. But there is no known polynomial algorithm for com-
puting either yk+1 or z and therefore for constructing an extended basis,
even for the special case of a single primitive vector.

In this article we study this problem from the viewpoint of the well-
known Euclidean algorithm, treat the extended basis of a primitive vector
of a lattice as a special case of a generalization of the Euclidean algorithm,
and present a formula for an extended basis. The computations of the entries
in the formula can be done very efficiently. We also present a formula for
an extended basis of an arbitrary primitive set of size n − 1.

In the next section, we state our generalization of the Euclidean algo-
rithm, derive the above-mentioned formula, and analyze the time complexity
of computing the entries in the formula. In §3, we apply this method to give
an algorithmic solution to the construction of an extended basis of a prim-
itive vector of a lattice. In §4, we discuss the case where the size of the
primitive sets is n − 1. Concluding remarks are drawn in the last section.

2 A Generalization of the Euclidean Algorithm

Let a, b be two integers not both zero, and d = gcd(a, b). By means of the
Euclidean algorithm integers t, s can be determined so that

d = at + bs. (2.1)

Here we consider a generalization.
Equality (2.1) can be rewritten as

d =

∣

∣

∣

∣

a b

−s t

∣

∣

∣

∣

, t, s ∈ Z. (2.2)

Let Z
n denote the set of n-dimensional integral vectors. Let (a1, a2, . . . , an) ∈

Z
n be a nonzero vector, and d = gcd(a1, a2, . . . , an). Then our generalization

is to design an algorithm for finding an integral (n − 1) × n matrix

(mij), 2 ≤ i ≤ n, 1 ≤ j ≤ n

such that
d = det (aij), (2.3)

where

a1j = aj , j = 1, 2, . . . , n

aij = mij , i = 2, 3, . . . , n; j = 1, 2, . . . , n

4

For our purpose we can assume without loss of generality that a1 6= 0.
Let

d1 = a1,

di = gcd(a1, a2, . . . , ai), 2 ≤ i ≤ n,

d = dn.

Since a1 6= 0, all the di are well defined, and

di = gcd(di−1, ai), 2 ≤ i ≤ n.

By the Euclidean algorithm, we can determine the values of ti, si, (2 ≤ i ≤
n) such that

di = ti−1 di−1 + si−1 ai, 2 ≤ i ≤ n.

We now prove

Theorem 2.1 Let n be a positive integer greater than 1. Let U = Un be the

n × n matrix

U := Un := (uij) =































a1 a2 a3 . . . an

−s1 t1 0 . . . 0

−a1 s2

d2
−a2 s2

d2
t2 . . . 0

.

−a1 sn−1

dn−1
−a2 sn−1

dn−1
−a3 sn−1

dn−1
. . . tn−1































,

i.e.,

u1j = aj , 1 ≤ j ≤ n

uij = −
aj si−1

di−1

, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ n

uii = ti 2 ≤ i ≤ n

uij = 0, i + 1 ≤ j ≤ n, 2 ≤ i ≤ n

Then Un is an integral matrix and

det (Un) = dn = d. (2.4)

5

Proof. Since di−1 = gcd(a1, a2, . . . , ai−1), we know that
aj si−1

di−1
(1 ≤ j ≤

i − 1) are integers, and then all the numbers uij are integers.

We prove (2.4) by induction on n ≥ 2. By (2.1) and (2.2) we know that
the induction basis is true. Now we assume that (2.4) is true for n = k, i.e.,

det (Uk) = dk. (2.5)

When n = k + 1, we have

det (Uk+1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3 . . . ak ak+1

−s1 t1 0 . . . 0 0

−a1 s2

d2
−a2 s2

d2
t2 . . . 0 0

.

−
a1 sk−1

dk−1

−
a2 sk−1

dk−1

−
a3 sk−1

dk−1

. . . tk−1 0

−a1 sk

dk
−a2 sk

dk
−a3 sk

dk
. . . −ak sk

dk
tk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Expanding it by its last column, we have

det (Uk+1)

= tk det (Uk) + (−1)k+2 ak+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−s1 t1 0 . . . 0

−a1 s2

d2
−a2 s2

d2
t2 . . . 0

.

−
a1 sk−1

dk−1

−
a2 sk−1

dk−1

−
a3 sk−1

dk−1

. . . tk−1

−a1 sk

dk
−a2 sk

dk
−a3 sk

dk
. . . −ak sk

dk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

= tk dk + (−1)k+3 sk

dk

ak+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−s1 t1 0 . . . 0

−a1 s2

d2
−a2 s2

d2
t2 . . . 0

.

−
a1 sk−1

dk−1

−
a2 sk−1

dk−1

−
a3 sk−1

dk−1

. . . tk−1

a1 a2 a3 . . . ak

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

by induction hypothesis (2.5). Noting that the determinant in the last ex-
pression differs from det(Uk) only in the order of their rows, we have

det (Uk+1)

= tk dk

+(−1)k+3 sk

dk

ak+1 (−1)k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3 . . . ak−1 ak

−s1 t1 0 . . . 0 0

−a1 s2

d2
−a2 s2

d2
t2 . . . 0 0

.

−
a1 sk−1

dk−1

−
a2 sk−1

dk−1

−
a3 sk−1

dk−1

. . . −
ak−1 sk−1

dk−1

tk−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= tk dk +
sk

dk

det (Bk) ak+1

= tk dk +
sk

dk

dk ak+1

= tk dk + sk ak+1

= dk+1,

which completes the induction proof. 2

Based on this theorem, one can easily compute matrix U as shown in
the following algorithm.

An Algorithm for Computing Matrix U .

Step 1. Invoke the Euclidean Algorithm to compute the di (2 ≤ i ≤ n)
and the values of si, ti (2 ≤ i ≤ n).

7

Step 2. We compute the integral values of the entries
ai sj

dj
, 2 ≤ i ≤

j − 1, 2 ≤ j ≤ n.

For analyzing the time complexity of the algorithm, we need some lem-
mas.

Lemma 2.1 Let u, v ∈ Z and u 6= 0, v 6= 0. Then there exist s, t ∈ Z such

that gcd(u, v) = su + tv and

|s| ≤ |v|, |t| ≤ |u|.

Proof. Let d denote gcd(u, v), and s0, t0 ∈ Z any numbers such that d =
s0u + t0v. Then for any k ∈ Z,

s = s0 + kv, t = t0 − ku

satisfy su + tv = d. We have

d ≥ |s0 + kv| · |u| − |t0 − ku| · |v|,

d + |t0 − ku| · |v| ≥ |s0 + kv| · |u|.

By the division algorithm, we can choose k such that |t0 − ku| < |u|, i.e.,
|t0 − ku| ≤ |u| − 1. So

d + (|u| − 1) · |v| ≥ d + |t0 − ku| · |v| ≥ |s0 + kv| · |u|,

and then

|s0 + kv| ≤
d

|u|
+ (1 −

1

|u|
)|v|

= |v| −
|v| − d

|u|

≤ |v|.

2

The following Lemmas are well known, and can be found in many books,
for example, [1], [3], [5], etc.

Lemma 2.2 Let u, v ∈ Z and u 6= 0, v 6= 0. Then gcd(u, v) as well as

s, t such that gcd(u, v) = su+ tv can be computed in O((log |u|)(log |v|)) bit

operations.

8

Lemma 2.3 Let u, v ∈ Z and u 6= 0, v 6= 0. Then the product u · v can be

computed in O((log |u|)(log |v|)) bit operations.

Lemma 2.4 Let u, v ∈ Z and u 6= 0, v 6= 0. Then the quotient u
v

can be

computed in O((log |u|)(log |v|)) bit operations.

We now analyze the time complexity of our algorithm. Let a0 and a′0 be
the two largest among all the absolute values |ai|. The case where either a0

or a′0 is 0 is trivial, so we now assume that both of them are nonzero.

Theorem 2.2 The worst-case time complexity of the above algorithm is

O(n2(log a0)(log a′0)) bit operations.

Proof. Step 1 of the algorithm can be carried out by invoking the Eu-
clidean Algorithm n− 1 times. By Lemma 2.2, this can be done in (n− 1) ·
O((log a0)(log a′0)) = O(n(log a0)(log a′0)) bit operations.

The number of divisions and the number of multiplications in Step 2 is
the same, which is

2 + 3 + . . . + (n − 1) = O(n2).

By Lemma 2.1, the absolute values of all the numbers involved are bounded
by a0 and a′0. Therefore, by Lemmas 2.3 and 2.4, all the integral values of
the fractions dealt with in Step 2 can be computed in O(n2(log a0)(log a′0))
bit operations. Therefore, the worst-case time complexity of the algorithm
is

O(n(log a0)(log a′0)) + O(n2(log a0)(log a′0)) = O(n2(log a0)(log a′0))

bit operations. 2

3 A Solution to the Construction of an Extended Basis of a

Primitive Vector

Let Λ = Λ(b1,b2, . . . ,bn) be a lattice with basis b1,b2, . . . ,bn. Let a =
a1b1 + a2b2 + . . . + anbn ∈ Λ be a primitive vector. Then we have

gcd(a1, a2, . . . , an) = 1.

Theorem 2.1 asserts that det(U) = 1, and then the row vectors of matrix
U = (uij) with respect to basis {b1,b2, . . . ,bn} form a new basis of Λ, which
is an extension of primitive vector a.

Combining this and Theorem 2.2, we have

9

Theorem 3.1 The primitive vector a together with the n − 1 vectors

n
∑

j=0

uijbj , 2 ≤ i ≤ n

form an extended basis of a, where

uij = −
aj si−1

di−1

, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ n

uii = ti 2 ≤ i ≤ n

uij = 0. i + 1 ≤ j ≤ n, 2 ≤ i ≤ n

The worst-case time complexity of computing the extended basis is O(n2(log a0)(log a′0))
bit operations.

4 A Solution to the Construction of an Extended Basis of a

Primitive Set of Size n − 1

We adopt the notation about ai, di, si, ti,Λ,bi introduced in §2.
We need two lemmas. The first can be proved by induction, and the

second can be found in [2].

Lemma 4.1 The gcd(a1, a2, . . . , an) can be expressed as an integral linear

combination of ai as follows:

gcd(a1, a2, . . . , an) =
n

∑

i=1

ti−1sisi+1si+2 · · · sn−1 · ai. (4.1)

Lemma 4.2 Let 1 ≤ k < n and

ai = ai1b1 + ai2b2 + . . . + ainbn ∈ Λ, 1 ≤ i ≤ k.

Let M denote the k × n matrix (aij) (1 ≤ i ≤ k, 1 ≤ j ≤ n). Then

{ai : 1 ≤ i ≤ k} is a primitive set if and only if the gcd of all the minors of

order k of M is 1.

We now consider the case when k = n−1. Suppose that the n−1 vectors

ai = ai1b1 + ai2b2 + . . . + ainbn ∈ Λ, 1 ≤ i ≤ n − 1

10

form a primitive set. Let M = (aij) be the (n − 1) × n matrix of the
coefficients of ai. Let Ai (1 ≤ i ≤ n) be the n minors of M obtained by
deleting the ith column of M . Without loss of generality, we may assume
that A1 6= 0. Then we can define

d′1 = A1,

d′i = gcd(A1, A2, . . . , Ai), 2 ≤ i ≤ n,

d′ = d′n.

By the Euclidean algorithm, we can determine the values of t′i, s′i, (2 ≤ i ≤
n) such that

d′i = t′i−1 d′i−1 + s′i−1 Ai, 2 ≤ i ≤ n.

Then by Lemma 4.1 we have

gcd(A1, A2, . . . , An) =
n

∑

i=1

t′i−1s
′

is
′

i+1s
′

i+2 · · · s
′

n−1 · Ai

=

n
∑

i=1

(−1)n−i[(−1)n−it′i−1s
′

is
′

i+1s
′

i+2 · · · s
′

n−1] · Ai.

Let
ani = (−1)n−it′i−1s

′

is
′

i+1s
′

i+2 · · · s
′

n−1, 1 ≤ i ≤ n

A = (aij), 1 ≤ i, j ≤ n,

and
an = an1b1 + an2b2 + . . . + annbn.

Then an ∈ Λ. By (4.2) and Lemma 4.2, we have

det(A) = gcd(A1, A2, . . . , An) = 1.

Therefore, ai (1 ≤ i ≤ n) form a basis.
Let us now discuss the time complexity of computing an. There are many

algorithms for computing integral determinants and many upper bounds for
the absolute values of determinants. Suppose that the algorithm used for
computing Ai has the worst-case complexity of c(ai, a

′

i) bit operations, where
ai, a′i are the two largest absolute values of the entries in Ai and c(ai, a

′

i) is
a function of ai and a′i. Let a0, a′0 denote the two largest absolute values
of aij (1 ≤ i ≤ n − 1; 1 ≤ j ≤ n). Then the worst-case complexity of
computing all Ai (1 ≤ i ≤ n) is

O(n c(a0, a
′

0)).

11

Suppose that the upper bound used for |Ai| is w(ai, a
′

i), which is a function
of ai and a′i. Then all |Ai| (1 ≤ i ≤ n) is upper bounded by w(a0, a

′

0). Noting
that there are (n− 1)− (i− 1) = n− i multiplications in computing ani, by
Lemmas 2.3 and 2.4 we know that the computations of all ani (1 ≤ i ≤ n)
need no more than

O(n c(a0, a
′

0)) + O(n w(a0, a
′

0)) = O(n (c(a0, a
′

0) + w(a0, a
′

0)))

bit operations.
In summary, we have

Theorem 4.1 The vectors ai (1 ≤ i ≤ n) form an extended basis of primi-

tive set ai (1 ≤ i ≤ n − 1), and the worst-case complexity of computing this

extended basis is O(n (c(a0, a
′

0) + w(a0, a
′

0))).

5 Concluding Remarks

We have employed the Euclidean algorithm and our generalization of it to
provide formulas for an extended basis of an arbitrary primitive set of size
n − 1 or 1 of a lattice of rank n in R

m. The entries in the formulas can
be computed very efficiently. The results presented here shed some light on
the general case where the size of the primitive set is between 2 and n − 2,
and we believe that the Euclidean algorithm will play a crucial role in the
solution of the general case.

References

[1] Eric Bach and Jeffrey Shallit, Algorithmic Number Theory,
Volume 1: Efficient Algorithms, The MIT Press, Cambridge, Mas-
sachusetts, 1997.

[2] J.W.S. Cassels, An Introduction to the Geometry of Numbers
Springer, Berlin, 1997.

[3] Neal Koblitz, Algebraic Aspects of Cryptography, Springer, Berlin,
1998.

[4] C. G. Lekkerkerker and P. M. Gruber, Geometry of Num-
bers, Second edition North-Holland Mathematical Library, 37, North-
Holland Publishing Co., 1987.

12

[5] Daniele Micciancio and Shafi Goldwasser, Complexity of Lat-
tice Problems, A Cryptographic Perspective, Kluwer Academic Pub-
lishers, Boston, 2002

[6] Carl Ludwig Siegel, Lectures on the Geometry of Numbers,
Springer-Verlag, 1989.

