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Abstract

Factorizable logarithmic signatures for finite groups are the essential component
of the cryptosystems MST1 and MST3. The problem of finding efficient algorithms
for factoring group elements with respect to a given class of logarithmic signatures is
therefore of vital importance in the investigation of these cryptosystems. In this paper
we are concerned about the factorization algorithms with respect to transversal and
fused transversal logarithmic signatures for finite abelian groups. More precisely we
present algorithms and their complexity for factoring group elements with respect to
these classes of logarithmic signatures. In particular, we show a factoring algorithm with
respect to the class of fused transversal logarithmic signatures and also its complexity
based on an idea of Blackburn, Cid and Mullan for finite abelian groups.

1 Introduction

Logarithmic signatures and covers for finite groups have found interesting applications in
designing cryptographic primitives and pseudo-random number generators [4], [6], [7], [2],
[11], [3], [5], [9]. Logarithmic signatures and covers are a kind of factorization of a finite
group G through its subsets and they induce surjective mappings from Z|G| onto G. An in-
teresting fact is that these mappings can, in general, very efficiently be computed. However,
if we take a random cover for a finite group, its induced mapping behaves like a random
function, see [9], thus inverting this mapping becomes an intractable problem. There are
strong indications supporting this fact. On the other hand, the mapping induced by a
logarithmic signature actually is a bijection. As there are various classes of logarithmic sig-
natures which have arisen from algebraic structures of the groups, the problem of inverting
this bijection needs a careful study. More important is the fact that logarithmic signatures,
whose induced mappings are used as part of the private key in a public key cryptosystem
have to be efficiently invertible, see [7], [2], [11]. Hence, the question of inverting the in-
duced bijection for a given logarithmic signature is of significance. In [6] Magliveras and
Memon have shown that the induced bijections for a specific class of transversal logarith-
mic signatures derived from a chain of point stabilizer subgroups for permutation groups
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of degree n can be invertible with a time complexity of O(n2). In [8] it is shown that the
induced bijection of a certain specific class of transversal logarithmic signatures for elemen-
tary abelian 2-groups can be invertible with a time complexity of O(1), see also [13]. In
[1] Blackburn, Cid and Mullan introduce a method for inverting induced bijections of fused
transversal logarithmic signatures for elementary abelian 2-groups. In [11] the problem of
inverting these induced bijections is also discussed.

In this paper we study the inverting problem of the bijections induced from transversal
and fused transversal logarithmic signatures for abelian groups. We present algorithms and
their complexity for the inverting problem. In particular, we show an algorithm based on
the idea of Blackburn et al. and determine its complexity. We further study the invert-
ing problem by using trapdoor information and show that fused transversal logarithmic
signatures for abelian groups are tame with respect to this method.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic
signatures and covers for finite groups and their induced mappings. For more details the
reader is referred to [6], [7]. We assume that the reader is familiar with the basics of group
theory. The group theoretic notation used is standard and may be found in any textbook
of group theory. In this paper we only deal with finite groups.

Let G be a finite group. We define the width of G to be the positive integer w = dlog2 |G|e.
Suppose that α = [A1,A2, . . . ,As] is a sequence of subsets Ai = [ai1, . . . ,airi ] ⊂ G, such
that

∑s
i=1 |Ai| is polynomially bounded in the width w of G. Let S be a subset of G. We

say that α is a cover for S if every product a1j1 . . .asjs lies in S and if each element g ∈ S

can be expressed in at least one way as a product of the form

g = a1j1 . . .asjs (2.1)

with aiji ∈ Ai.

If every g ∈ S can be expressed in exactly one way by Equation (2.1), then α is called a
logarithmic signature (LS) for S. If S = G, α is called a cover resp. a logarithmic signature
for G.

The Ai are called the blocks, and the vector (r1, . . . , rs) with ri = |Ai| the type of α. We
say that α is nontrivial if s > 2 and ri > 2 for 1 6 i 6 s; otherwise α is said to be trivial.
The sum `(α) =

∑s
i=1 ri is defined as the length of α.

Let Γ = {(G`,α`)}`∈N be a family of pairs, indexed by the security parameter `, where
the G` are groups in a common representation, and where α` is a specific cover for G` of
length polynomial in `. We say that Γ is tame if there exists a probabilistic polynomial time
algorithm A such that for each g ∈ G`, A accepts (α`,g) as input, and outputs a factorization
ϕ(g) of g with respect to α` (as in equation (2.1) with overwhelming probability of success.
We say that Γ is wild if for any probabilistic polynomial time algorithm A, the probability
that A succeeds in factorizing a random element g of G is negligible.

Let γ : G = G0 > G1 > · · · > Gs = 1 be a chain of subgroups of G, and let Ai be
an ordered, complete set of right (or left) coset representatives of Gi−1 in Gi. Then it is
clear that [A1, . . . ,As] forms a logarithmic signature for G, called a transversal logarithmic
signature (TLS).
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Let G be a permutation group on the set X = {1, . . . ,n}. Consider a chain of nested point
stabilizers G = G0 > G1 > · · · > Gs = 1, where Gi fixes pointwise the symbols 1, 2, . . . , i,
for any i > 1. It is shown in [6] that a specific constructed class of transversal logarithmic
signatures from this chain of subgroups has a factorization with a time complexity of O(n2).
In general, the problem of finding a factorization in Equation (2.1) with respect to a given
cover is presumedly intractable. There is strong evidence in support of the hardness of
the problem. For example, let G be a cyclic group and g be a generator of G. Let α =
[A1,A2, . . . ,As] be any cover for G, for which the elements of Ai are written as powers
of g. Then the factorization with respect to α amounts to solving the Discrete Logarithm
Problem in G.

The main point making covers and LS interesting for use in cryptography is that if the
above factorization problem is intractable, they essentially induce one-way functions. This
can be described as follows. Let α = [A1,A2, . . . ,As] be a cover of type (r1, r2, . . . , rs) for
G with Ai = [ai,1,ai,2, . . . ,ai,ri ] and let m =

∏s
i=1 ri. Let m1 = 1 and mi =

∏i−1
j=1 rj for

i = 2, . . . , s. Let τ denote the canonical bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on Zm; i.e.

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm

τ(j1, j2, . . . , js) :=

s∑
i=1

jimi.

Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → G

ᾰ(x) := a1,j1 · a2,j2 · · ·as,js ,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the mapping
ᾰ(x) is efficiently computable.

Conversely, given a cover α and an element y ∈ G, to determine any element x ∈ ᾰ−1(y) it
is necessary to obtain any one of the possible factorizations of type (2.1) for y and determine
indices j1, j2, . . . , js such that y = a1,j1 · a2,j2 · · ·as,js . This is possible if and only if α is
factorizable. Once a vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js)
can be computed efficiently.

Assume that α = [A1,A2, . . . ,As] is a cover for G. Let g0,g1, . . . ,gs ∈ G, and consider
β = [B1,B2, . . . ,Bs] with Bi = g−1

i−1Aigi. We say that β is a two sided transform of α by
g0,g1, . . . ,gs; in the special case, where g0 = 1 and gs = 1, β is called a sandwich of α. It
is clear that β is a cover for G.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆. For example,
if β is a sandwich of α, then α and β are obviously equivalent.

A block Ai of a cover is called normalized if Ai contains the identity element of the
group, i.e. idG ∈ Ai. It is obvious that by using a sandwich transformation with gi ∈ Ai
for i = 1, . . . , s−1 we can transform α to an equivalent β having all (s−1) blocks normalized,
the last block Bs is in general not normalized.

Let α = [A1,A2, . . . ,As] be a LS for a finite group G. Consider k blocks Ai1 , . . . ,Aik
of α. Define B := Ai1 .Ai2 . . . . .Aik = {ai1 .ai2 . . . . .aik | aij ∈ Aij , j = 1, . . . ,k}. We call B a
fused block of Ai1 , . . . , Aik . If we apply fusion operations to the blocks of α we generally
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obtain a cover β = [B1, . . . ,Bt] for a subset of G, where t < s. However, if G is abelian,
then β remains a LS for G. Usually β may not necessarily be equivalent to α, and we call
β a fused logarithmic signature of α.

In the rest of the paper we assume that multiplication in the groups is taken to be
constant.

3 Algorithms for factorization with respect to TLS

In this section we present algorithms for factorization with respect to TLS for finite groups.

We first present a generic algorithm for factoring with respect to any TLS α for any group
G (abelian or non-abelian).

Algorithm 1 Generic Algorithm

Input: G: a finite group, α = [A1,A2, . . . ,As] a TLS for G constructed from a chain of
subgroups G = G0 > G1 > · · · > Gs = 1 of G, g ∈ G.

Output: ai ∈ Ai such that g = a1 . . .as.

1: Find a unique element a1 ∈ A1 such that g1 = a1.g
−1 ∈ G2. Find a unique element

a2 ∈ A2 such that g2 = a2.g
−1
1 ∈ G3. Continue this process until As. Then we have

g = a1 . . .as as a factorization of g with respect to α.

The number of steps required for the algorithm is O(
∑s
i=1 |Ai|). If G is a permutation

group of degree n, there exist algorithms for solving the membership problem for G in
polynomial time with respect to n by using a strong generating set.

Now let G be a finite abelian group. In the following we show that there is a factoring
algorithm for TLS of G having a time complexity of O(w).

Again let α = [A1,A2, . . . ,As] be a TLS for G constructed from a chain of subgroups
G = G0 > G1 > · · · > Gs = 1. Since G is abelian, each Gi is a normal subgroup of G.
Therefore we can form the quotient group Ḡ(i) := G/Gi for i = 0, . . . , s, where Ḡ(i) :=
G/Gi = {Gi.g | g ∈ G}. The elements of Ḡ(i) are denoted by ḡ(i), where ḡ(i) = φ(i)(g) and
φ(i) : G −→ Ḡ(i) defined by φ(i)(g) = Gi.g is the canonical homomorphism.

For each i = 1, . . . , s define ᾱ(i) = [Ā
(i)
1 , . . . , Ā

(i)
i ] with Ā

(i)
j = φ(i)(Aj). Note that the

blocks Ā
(i)
i+1, . . . , Ā

(i)
s in the quotient group Ḡ(i) are viewed as blocks of size 1 with the

identity as their unique element. Therefore we ignore them all. For each i = 1, . . . , s define
πi to be the permutation in Sri which sorts the elements of Ai according to a certain order,
for instance, numerical order. When applying πi to Ai for all i = 1, . . . , s we obtain a TLS
β = [B1,B2, . . . ,Bs]. The factorization with respect to α can obviously be done via β and
πi. Precisely, if g = a1j1 . . .arjr is a factorization of an element g ∈ G with respect to β,
then g = a1π−1

1 (j1)
. . . .arπ−1

r (jr)
is a factorization with respect to α, where π−1

i is the inverse
of πi. We now present an algorithm for factoring with respect to a sorted TLS.
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Algorithm 2 Factorization with TLS

Input: G: abelian group, α = [A1,A2, . . . ,As] a sorted TLS for G constructed from a
chain of subgroups G = G0 > G1 > · · · > Gs = 1 of G, g ∈ G.

Output: ai ∈ Ai such that g = a1 . . .as.
1: Using the chain of quotient groups Ḡ(s−1), . . . , Ḡ(1), the chain of TLS ᾱ(s−1), . . . , ᾱ(1),

and the chain of elements ḡ(s−1), . . . , ḡ(1), we carry out the factorization of g as follows.

First, find the unique element ā
(1)
1 ∈ ᾱ(1) = [Ā

(1)
1 ] such that ḡ(1) = ā

(1)
1 (note that Ā

(1)
1

is identical to the quotient group G/G1 := Ḡ
(1)).

In the quotient group Ḡ(2) we have ᾱ(2) = [Ā
(2)
1 , Ā

(2)
2 ] and the element ḡ(2) has a

factorization ḡ(2) = ā
(2)
1 .ā

(2)
2 with respect to ᾱ(2), where ā

(2)
1 corresponds to ā

(1)
1 in

Ḡ(1), which is already known. So we can compute ā
(2)
2 = (ā

(2)
1 )−1.ḡ(2).

From the known factorization of ḡ(2) = ā
(2)
1 .ā

(2)
2 with respect to ᾱ(2) we obtain a factor-

ization of ḡ(3) = ā
(3)
1 .ā

(3)
2 .ā

(3)
3 with respect to ᾱ(3), where ā

(3)
3 = (ā

(3)
2 )−1.(ā

(3)
1 )−1.ḡ(3)

and ā
(3)
1 , ā

(3)
2 are elements in Ḡ(3) having their images under the canonical homomor-

phism as ā
(2)
1 and ā

(2)
2 in Ḡ(2) respectively.

Continuing this process in (s − 1) steps we obtain a factorization of ḡ(s−1) =

ā
(s−1)
1 . . . ā

(s−1)
s−1 with respect to ᾱ(s−1) in the quotient group Ḡ(s−1). Finally we obtain

a factorization of g = a1 . . .as−1.as with respect to α, where as = a
−1
s−1 . . .a−1

1 .g, and
a1, . . . ,as−1 are the elements in A1, . . . ,As−1 (respectively) giving the corresponding

elements ā
(s−1)
1 , . . . , ā

(s−1)
s−1 in Ḡ(s−1).

The main complexity of the factorization in step i depends on the search of element ā
(i)
i

in Ā
(i)
i . This can be done in time of O(log2 |Ai|), since the elements of Ai are sorted. Hence

O(
∑s
i=1 log2 |Ai|) = O(w) is the complexity of Algorithm 2. The only extra operation for

factoring with respect to an unsorted TLS is the application of the inverse permutations
π−1
i to the result obtained from a sorted TLS, as discussed above. Moreover, computing

with each πi can be carried out in constant time. Hence, we obtain the following theorem
as a consequence of Algorithm 2.

Theorem 3.1 Any transversal logarithmic signature for a finite abelian group is tame.

Remark 3.2 Algorithm 2 can be applied to a TLS for a non-abelian group if each subgroup
of the chain is normal in the underlying group. In particular, for a Hamiltonian group (a
non-abelian group in which any subgroup is normal) any TLS is tame.

4 Algorithms for factorization with respect to FTLS

In this section we present algorithms for factoring group elements with respect to a fused
transversal logarithmic signature (FTLS) for abelian groups. Let α = [A1,A2, . . . ,As] be a
transversal logarithmic signature of type (r1, . . . , rs) for an abelian group G. We define the
following transformations on α.

(i) permute the blocks Ai’s,
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(ii) permute the elements within blocks Ai,

(iii) replace a block Ai with Aig for some g ∈ G, (as G is abelian, this replacement is
in fact an application of a two side transformation on Ai, namely h−1

i−1Aihi = Aig,

where g = h−1
i−1.hi),

(iv) replace two blocks Ai and Aj with a single block Ai.Aj = {xy | x ∈ Ai,y ∈ Aj} (we
call this operation the fusion of Ai and Aj).

A logarithmic signature obtained from a transversal logarithmic signature by applying
a finite number of the transformations (i), (ii), (iii) and (iv) is called a fused transversal
logarithmic signature (FTLS).

Definition 4.1 A subset A of a finite abelian group G is called periodic if there exists an
element g ∈ G \ {1} with gA = A. We call such an element g a period of A.

We refer the reader to [12] for details concerning periodicity properties for blocks of
logarithmic signatures.

Lemma 4.2 Let β = [B1,B2, . . . ,Bt] be a fused transversal logarithmic signature for an
abelian group G. Then the following holds:

(i) At least one block Bi of β is periodic.

(ii) Let x ∈ Bi be a period of Bi and let Ḡ = G/ < x > be the quotient group of G modulo
the cyclic group < x >. Then the logarithmic signature β̄ = [B̄1, B̄2, . . . , B̄t] induced
from β is a FTLS for Ḡ.

Proof. (i) Let α = [A1,A2, . . . ,As] be a transversal logarithmic signature for G, which is
used to create β. Here we may assume that all the blocks of both α and β are normalized.
Thus the block A1, which is a normal subgroup of G, is contained in some block Bi of β.
It is a simple observation that each element x ∈ A1 \ {1} is a period of Bi.

The second statement (ii) is obvious. �

Lemma 4.2 can be found in [1]. It is used by Blackburn, Cid and Mullan to prove
that FTLS for elementary abelian 2-groups are tame. The authors have given a group
argumentation for the proof without showing details. We now show an algorithm for the
factorization with respect to an FTLS for any abelian groups based on the Blackburn-Cid-
Mullan idea and we determine its complexity.

Again let α = [A1,A2, . . . ,As] be a transversal logarithmic signature for an abelian G.
Let β = [B1,B2, . . . ,Bt] be a fused transversal logarithmic signature obtained by applying
a finite number of the transformations (i), (ii), (iii) and (iv) to α. Let g be an element of
G which we want to factorize by using β. Here we assume that all the blocks Bi’s of β are
normalized. The main idea of factoring with respect to an FTLS for elementary abelian
2-groups as described in [1] is as follows: Find a period x for a certain block of β and
transform β to β̄ in the quotient group Ḡ = G/ < x >. Again β̄ is an FTLS for Ḡ by
Lemma 4.2, so the process is repeated with β̄ and Ḡ until we reach the trivial quotient
group, and the resulting FTLS becomes a trivial logarithmic signature. In this process we
also keep track of the induced elements of g in the quotient groups.
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Based on the idea of Blackburn, Cid and Mullan we show the following factoring algorithm
with respect to an FTLS for abelian groups.

Algorithm 3 Factorization with FTLS

Input: G: abelian group, α = [A1,A2, . . . ,As] a normalized TLS for G constructed from
a chain of subgroups G = G1 > G2 > · · · > Gs+1 = 1 of G, β = [B1,B2, . . . ,Bt] a FTLS
of type (r1, . . . , rt) obtained from α, g ∈ G.

Output: bi ∈ Bi such that g = b1 · · ·bt.
1: (a) Find a period x1 for a periodic block Bi.

(b) Consider β̄(1) = [B̄
(1)
1 , B̄

(1)
2 , . . . , B̄

(1)
t ] induced by β in the quotient group Ḡ(1) =

G/ < x1 >. (Then β̄ is an FTLS for Ḡ by Lemma 4.2. β̄ is of type
(r1, . . . , ri−1, ri/δ1, ri+1, . . . , rt), where δ1 is the order of x1.)

(c) Define ḡ(1) to be the induced element of g in the quotient group Ḡ(1).

Repeat (a), (b) and (c) for β̄(1), Ḡ(1) and ḡ(1) to obtain β̄(2), Ḡ(2) and ḡ(2), where

Ḡ(2) = Ḡ(1)/ < x̄2 > and x̄2 is a period of some block B̄
(1)
j . Continuing this process we

eventually obtain a trivial LS β̄(u) for the trivial group Ḡ(u) after a finite number of
steps, say u. Also, the induced element ḡ(u) ∈ Ḡ(u) becomes the identity element.

2: Working backward from β̄(u), β̄(u−1), . . . to β̄(1) we can factorize g with respect to β
as follows. Here, we describe one step of the factorization process.
First note that β̄(i) and β̄(i−1) have all blocks of the same type except one block
β̄(i−1) containing the period x̄(i−1) which is used to define β̄(i) from β̄(i−1). W.l.o.g.

we may assume that this periodic block is the first block B̄
(i−1)
1 of β̄(i−1) =

[B̄
(i−1)
1 , B̄

(i−1)
2 , . . . , B̄

(i−1)
t ]. Let β̄(i) = [B̄

(i)
1 , B̄

(i)
2 , . . . , B̄

(i)
t ]. Assume by induction

that ḡ(i) = b̄
(i)
1j1

.b̄
(i)
2j2

. . . b̄
(i)
tjt

is a known factorization of ḡ(i) with respect to β̄(i) (i.e.

b̄
(i)
j ∈ B̄

(i)
j , j = 1, . . . , t). Now ḡ(i−1) is known since ḡ(i) is known by the induction as-

sumption. Let ḡ(i−1) = b̄
(i−1)
1k1

.b̄
(i−1)
2k2

. . . b̄
(i−1)
tkt

be a factorization of ḡ(i−1) with respect

to β̄(i−1). Then we have km = jm for m = 2, . . . , t.

Hence the element b̄
(i−1)
1k1

∈ B̄(i−1)
1 is uniquely determined by

b̄
(i−1)
1k1

= ḡ(i−1).(b̄
(i−1)
tjt

)−1 . . . (b̄
(i−1)
2j2

)−1.

In the following we attempt to determine the complexity of Algorithm 3 for elementary
abelian p-groups. For the sake of simplicity we also asumme that ri = r for i = 1, . . . , t and
|Ai| = z for i = 1, . . . , s. If we would not have the assumption, it would be more involved
to compute the complexity.

Let G be an elementary abelian p-group. Let α = [A1,A2, . . . ,As] be a TLS constructed
from a chain of subgroups G = G1 > G2 > · · · > Gs+1 = 1 of G of type (z, . . . , z) (i.e.
|Ai| = z for all i = 1, . . . , t). We also assume that ri = r for all i = 1, . . . , t. So, we have
ri = p

e for i = 1, . . . , t.

One main part of the complexity of the algorithm is the finding of periodic elements in
the process of constructing induced FTLS for the quotient group Ḡ(j) for each j = 1, . . . ,u,
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where u is the smallest number such that the quotient group Ḡ(u) becomes the identity
group.

To start with we have to find a period in a certain block of β. There are t possible choices
for such a block, say Bi. For an x ∈ Bi, verifying whether x is a period, i.e. xBi = Bi,
requires a complexity of Θ(|Bi| log2 |Bi|). This complexity is composed of computing |Bi|

times multiplications x.bi1, . . . , x.bir and of checking if x.bij ∈ Bi. The checking has a
complexity Θ(log2 |Bi|), if block Bi is sorted (otherwise it would be of complexity Θ(|Bi|)).
Therefore, we will assume that each block Bi is sorted once. Sorting of Bi has a complexity
of Θ(|Bi| log2 |Bi|). For each step of moving to the quotient group the unique block of β̄(k)

whose size is decreased needs also to be sorted (more precisely, if x is a period in B̄
(k−1)
i , the

block B̄
(k)
i of β̄(k) in the quotient group Ḡ(k) = Ḡ(k−1)/ < x > is of size |B̄

(k)
i | = |B̄

(k−1)
i |/p

and we have to sort B̄
(k)
i ).

As the computation of pointer elements bi’s in the factorization of g in step 2 is deter-
ministic, we may regard the time spent for this step as being constant and therefore its
complexity will be neglected.

The total number of operations in step 1 comprises the number of operations for finding
periods, denoted by A, and the number of operations for block sorting, denoted by B. Here
we have

A = t
(
(r/p0)2log2(r/p

0) + (r/p)2log2(r/p) + · · ·+ (r/pe−1)2log2(r/p
e−1)

)
=

t

logp2

e∑
i=1

(p2)ii,

and

B = t
(
(r/p0)log2(r/p

0) + (r/p)log2(r/p) + · · ·+ (r/pe−1)log2(r/p
e−1)

)
=

t

logp2

e∑
i=1

pii.

By using the formula

n∑
i=1

ixi =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2
,

where x 6= 1, the total number of operations in step 1 amounts to

A+ B =
t

logp2

(e(p2)e+2 − (e+ 1)(p2)e+1 + p2

(p2 − 1)2
+
epe+2 − (e+ 1)pe+1 + p

(p− 1)2
)

= Θ
( t

logp2
(p2)elogpp

e
)

= Θ
(
tr2log2r

)
.

We record the result of the above analysis in the following theorem.
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Theorem 4.3 Let G be a finite abelian p-group and let β be an FTLS of type (r1, r2, . . . , rt) =
(r, r, . . . , r) for G obtained from a TLS of type (z1, . . . , zs) = (z, z, . . . , z). Then the fac-
torization of an element g ∈ G with respect to β using Algorithm 3 has a complexity of
Θ
(
tr2log2r

)
.

The complexity as given in Theorem 4.3 shows that if the sizes for r are small, Algorithm
3 could still be considered as “efficient”, but if r is getting large, Algorithm 3 will no longer
be efficient. And because of the term r2 involving in the complexity estimate, Algorithm 3
cannot be used to prove the tameness of FTLS for abelian groups.

In the next section we show that if the information of the transformations used for
generating an FTLS β from a TLS is known, then we can construct a factoring algorithm
proving the tameness of β.

4.1 Factorization with respect to FTLS by using trapdoor information

Assume that an FTLS β for an abelian group G is constructed from a TLS α using the four
transformations (i), (ii), (iii) and (iv) as described at the beginning of the section. To be
more precise, let the TLS α = [A1,A2, . . . ,As] of type (z1, . . . , zs) be derived from a chain
of subgroups G = G0 > G1 > · · ·Gs = 1 of G.

In general, there is no particular order of using the transformations (i), (ii), (iii) and (iv),
but for the sake of clarity we will generate an FTLS according to the following steps.

(T1) (Fusion) Perform a fusion of the blocks of α. The fusion transformation (iv) will be
done as follows.

– Select a permutation ϕ ∈ Ss and compute a logarithmic signature α ′ from α by

α ′ = [A ′
1, . . . ,A ′

s] = [Aϕ(1), . . . ,Aϕ(s)].

– Select a partition P = {P1, . . . ,Pt} on the set {1, . . . , s} with

P1 = {1, . . . , i1}, P2 = {i1+1, . . . , i2}, . . . ,Pt = {is−1+1, . . . , is} with |Pj| = uj, for
j = 1, . . . s. Fusing the blocks of α ′ according to this partition yields a logarithmic
signature β ′ := [B ′

1, . . . ,B ′
t] of type (r1, . . . , rt) with

B ′
j = A

′
ij−1+1.A

′
ij−1+2 . . .A ′

ij
,

and rj = |A ′
ij−1+1|.|A

′
ij−1+2| . . . |A ′

ij
| for j = 1, . . . , t and i0 = 0.

(i.e. each block B ′
i is obtained by fusing certain consecutive blocks of α ′.)

(T2) Select random permutations πj ∈ Srj , j = 1, . . . , t. Permute the positions of the
elements of each block B ′

j with permutation πj. Let β ′′ = [B ′′
1 , . . . ,B ′′

t ] denote the
resulting logarithmic signature obtained from β ′ after this step.

(T3) Select random elements gj ∈ G and replace each block B ′′
j of β ′′ with B ′′′ := B ′′

j .gj.
The resulting object is a logarithmic signature β ′′′ = [B ′′′

1 , . . . ,B ′′′
t ].

(T4) Select a random permutation ξ ∈ St and permute the blocks of β ′′′ by using ξ. The
result obtained from this last step is our constructed FTLS β = [B1, . . . ,Bt].
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We call the information about the transformations T1, T2, T3 and T4, which are used
to generate an FTLS β from a TLS α, the trapdoor information.

Proposition 4.4 Let α := [A1, . . . ,As] be a transversal logarithmic signature for an abelian
group G. Let β ′ := [B ′

1, . . . ,B ′
t] be a fused transversal logarithmic signature for G obtained

from α by using (only) the fusion transformation T1 . Then β ′ is equivalent to a logarithmic
signature α ′ obtained from α by permuting its blocks with the permutation used by T1.

Proof. Now suppose that β ′ is given. Let α ′ = [A ′
1, . . . ,A ′

s] be the logarithmic signature
obtained from α by using the permutation ϕ ∈ Ss for transformation T1, i.e.

α ′ = [A ′
1, . . . ,A ′

s] = [Aϕ(1), . . . ,Aϕ(s)].

Then it is clear that β ′ is equivalent to α ′. �

As a consequence of Proposition 4.4 we see that instead of factoring with respect to an
FTLS β we can factorize with respect to α by using the knowledge of transformations T1,
T2, T3 and T4. This is presented in the following algorithm.

Algorithm 4 Factorization with FTLS by using trapdoor information

Input: α, ϕ ∈ Ss, P = {P1, . . . ,Pt}, πi ∈ Sri , gi ∈ G, i = 1, . . . , t, ξ ∈ St, and y ∈ G.
Output: x = x1||x2|| . . . ||xt, such that y = β̆(x).

1: Compute y ′ = y.
∏t
i=1 gi (here, g1, . . . ,gt are elements in G which are used for trans-

formation T3). Write y ′ = y ′
1||y

′
2|| . . . ||y ′

s. Each y ′
i is of dlog2(ri)e bit length.

2: Factorize y ′ with respect to α by using Algorithm 2. Let denote j ′1, . . . , j ′s the indices
obtained by this factorization.

3: Compute j` = j
′
ϕ−1(`) for ` = 1, . . . , s.

4: According to P` = {i1, i2, . . . , iu`} set x ′` = ji1‖ji2‖ . . . ‖jiu` for ` = 1, . . . , t.

5: Compute x ′′` = π−1
` (x ′`) and finally compute x` = x

′′
ξ−1(`) for ` = 1, . . . , t.

In Algorithm 4 we may assume that performing steps 1, 3, 4, 5 will take a constant
time. Thus the complexity for factoring y with respect to β is reduced to the complexity
of factoring y ′ with respect to the TLS α in step 2, which is O(w) by Theorem 3.1, where
w = dlog2 |G|e. Thus we have the following theorem.

Theorem 4.5 Let β := [B1, . . . ,Bt] be an FTLS constructed from a TLS α := [A1, . . . ,As]
for an abelian group G by using the transformations T1, T2, T3 and T4. Then β is tame
if the trapdoor information about these transformations is known.

5 Conclusion

We have presented factorization algorithms and their computational complexities for the
classes of tranversal and fused transversal logarithmic signatures for finite abelian groups.
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The results have shown that transversal logarithmic signatures are tame, however, fused
transversal logarithmic signatures are tame when trapdoor information is used. We have
also presented a factorization algorithm for fused transversal logarithmic signatures based
on the idea of Blackburn, Cid and Mullan and computed its complexity. It is an interesting
open problem to decide whether or not fused transversal logarithmic signatures for abelian
groups are tame without using the trapdoor information.
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