On Jacobsthal Binary Sequences

Spyros. S. Magliveras ${ }^{\text {a }}$, Tran van Trung ${ }^{\text {b }}$, and Wandi Wei ${ }^{\text {a }}$
${ }^{\text {a }}$ CCIS, Department of Math. Sciences, Florida Atlantic University Boca Raton, FL 33431, USA.
spyros@fau.edu, wei@brain.math.fau.edu
${ }^{\text {b }}$ Institut für Experimentelle Mathematik, Universität Duisburg-Essen
Essen, Germany
trung@iem.uni-due.de

Abstract

Let $\Sigma=\{0,1\}$ be the binary alphabet, and $\mathcal{A}=\{0,01,11\}$ the set of three strings $0,01,11$ over Σ. Let \mathcal{A}^{*} denote the Kleene closure of $\mathcal{A}, \mathbb{Z}^{0}$ the set of nonnegative integers, and \mathbb{Z}^{+}the set of positive integers. A sequence in A^{*} is called a Jacobsthal binary sequence. Let $\mathrm{J}(\mathrm{n})$ denote the set of Jacobsthal binary sequences of length n. For $k \in \mathbb{Z}^{+},\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset \mathbb{Z}^{0}$, and $n-1 \geqslant s_{1}>s_{2}>\ldots>s_{k} \geqslant 0$, let $\mathrm{J}_{1}\left(\mathfrak{n} ; \mathrm{s}_{1}, s_{2}, \ldots, s_{k}\right)$ denote the subset $\mathrm{J}_{1}\left(\mathfrak{n} ; \mathrm{s}_{1}, s_{2}, \ldots, s_{k}\right)=\left\{a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in\right.$ $\left.J(n): a_{s_{i}}=1(1 \leqslant i \leqslant k)\right\}$, of $J(n)$, and let $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)=\left|J_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)\right|$. When $k=1$, a formula for $N_{1}(n ; s)$ has been derived recently. In this paper we consider the general case of $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$, and study some other special types of Jacobsthal binary sequences. Some identities involving these numbers are also given.

Keywords. Jacobsthal numbers, combinatorial identities, combinatorial enumeration

Introduction

Let $\Sigma=\{0,1\}$ be the binary alphabet, and $A=\{0,01,11\}$ the set of three strings $0,01,11$ over Σ. Let \mathcal{A}^{*} denote the Kleene closure of A, \mathbb{Z}^{0} the set of nonnegative integers, and \mathbb{Z}^{+}the set of positive integers. A sequence in A^{*} is called a Jacobsthal binary sequence. Let $J(n)$ denote the set of Jacobsthal binary sequences of length n and let $|J(n)|$ denote the cardinality of $J(n)$.

The Jacobsthal numbers are defined by the recursion

$$
\begin{equation*}
J_{n}=J_{n-1}+2 J_{n-2}, \quad n>2 \tag{1}
\end{equation*}
$$

together with the initial values

$$
\begin{equation*}
\mathrm{J}_{0}=\mathrm{J}_{1}=1 . \tag{2}
\end{equation*}
$$

Note that some other authors use the initial values $\mathrm{J}_{0}=0, \mathrm{~J}_{1}=1$ instead. Using the initial values in (2), a known result can be stated more conveniently as

$$
\begin{equation*}
|\mathrm{J}(\mathrm{n})|=\mathrm{J}_{\mathrm{n}} . \tag{3}
\end{equation*}
$$

J_{n} is also called the $n^{\text {th }}$ Jacobsthal number. For convenience, we also define

$$
\begin{equation*}
\mathrm{J}_{\mathfrak{m}}=0, \forall \mathrm{~m} \in \mathbb{Z}, \mathrm{~m}<0 \tag{4}
\end{equation*}
$$

Based on (4), we state an obvious fact and a known result as a lemma for easy reference.
Lemma 1 The recursion (1) can be extended as

$$
\mathrm{J}_{\mathrm{t}}=\mathrm{J}_{\mathrm{t}-1}+2 \mathrm{~J}_{\mathrm{t}-2}, \quad \mathrm{t} \in \mathbb{Z}, \mathrm{t} \neq 0
$$

The value of $\mathrm{J}_{\mathrm{n}}\left(\mathrm{n} \in \mathbb{Z}^{0}\right)$ can be computed by

$$
\begin{equation*}
\mathrm{J}_{\mathrm{n}}=\frac{1}{3}\left(2^{\mathrm{n}+1}+(-1)^{\mathrm{n}}\right), \quad \mathrm{n} \in \mathbb{Z}^{0} \tag{5}
\end{equation*}
$$

The Jacobsthal numbers have applications in such areas as tiling, graph matching, alternating sign matrices, etc. $([1,2,4,5])$.

Let

$$
\begin{equation*}
k \in \mathbb{Z}^{+},\left\{s_{1}, s_{2}, \ldots, s_{k-1}, s_{k}\right\} \subset \mathbb{Z}^{0} ; n-1 \geqslant s_{1}>s_{2}>\ldots>s_{k} \geqslant 0 \tag{6}
\end{equation*}
$$

Let $J_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$ denote the following subset of $J(n)$:

$$
J_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)=\left\{a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in J(n): a_{s_{i}}=1(1 \leqslant i \leqslant k)\right\}
$$

i.e., the subset of Jacobsthal binary sequences that have the digit 1 at each of the $s_{i}^{\text {th }}(1 \leqslant i \leqslant k)$ positions from the right. Let $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)=\left|J_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)\right|$. R. Grimaldi[4] considers the case where $k=1$, establishing a recursion for $N_{1}\left(n ; s_{1}\right)$ and then deriving the following formula:

$$
\begin{align*}
\mathrm{N}_{1}(\mathrm{n} ; \mathrm{s}) & =\frac{1}{3}\left(2^{\mathrm{n}}+(-1)^{\mathrm{n}}+(-1)^{\mathrm{n}-\mathrm{s}} 2^{\mathrm{s}}\right) \tag{7}\\
& =J_{n}-\frac{2^{s}}{3}\left(2^{\mathrm{n}-\mathrm{s}}+(-1)^{\mathrm{n}-\mathrm{s}-1}\right) \tag{8}
\end{align*}
$$

For the general case, finding a formula for $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$ by using a recursion seems extremely difficult. In this article we employ a different approach to dealing with this problem, namely, considering the following dual problem of $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$.

Let

$$
\begin{equation*}
r \in \mathbb{Z}^{+},\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}-1}, \mathrm{t}_{\mathrm{r}}\right\} \subset \mathbb{Z}^{0}, \mathrm{n}-1 \geqslant \mathrm{t}_{1}>\mathrm{t}_{2}>\ldots>\mathrm{t}_{\mathrm{r}} \geqslant 0 \tag{9}
\end{equation*}
$$

Let $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ denote the following subset of $J(n)$:

$$
J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)=\left\{a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in J(n): a_{t_{i}}=0(1 \leqslant i \leqslant r)\right\}
$$

i.e., the subset of Jacobsthal binary sequences that have the digit 0 at each of the $t_{i}^{\text {th }}(1 \leqslant i \leqslant r)$ positions from the right. Let $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)=\left|J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)\right|$.

In the next section we present characterizations of the sets $J(n)$ and $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$. Based on them, some combinatorial identities involving $J_{n}, N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $\mathrm{N}_{1}\left(\mathrm{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)$ are derived in Section 3. From these identities, formulas for $\mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right)$ and $\mathrm{N}_{1}\left(\mathrm{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)$ are obtained in the last section.

1 Characterizations of the sets $J(n)$ and $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$

For easy reference we state a trivial fact, that is
Lemma 2 For any $\mathfrak{i}, \mathfrak{j} \in \mathbb{Z}^{+}, \mathrm{J}(\mathfrak{i}) \| \mathrm{J}(\mathfrak{j}) \subseteq J(\mathfrak{i}+\mathfrak{j})$, where $\mathrm{J}(\mathfrak{i}) \| \mathrm{J}(\mathfrak{j})=\{\mathrm{a} \| \mathrm{b}: \mathrm{a} \in \mathrm{J}(\mathfrak{i}), \mathrm{b} \in$ $\mathrm{J}(\mathfrak{j})$ and $\|$ stands for the concatenation operation on strings.

We now characterize the set $J(n)$. We need
Lemma 3 Let $l \in \mathbb{Z}^{+}$. The string α of the 0 -digit followed by $l-1$ 1-digits is a Jacobsthal binary string of length l.

Proof. If $l=2 \mathfrak{m}+1$ for some $\mathfrak{m} \in \mathbb{Z}^{0}$, the $l-1=2 m$ 1-digits in α can be regarded as m copies of the string 11. Since both strings $11,0 \in A$, we know $\alpha \in A$. If $l=2 m$ for some $m \in \mathbb{Z}^{0}$, the last $l-2=2 m-21$-digits in α can be regarded as $m-1$ copies of the string 11 . Since both string $11,01 \in A$, we know $\alpha \in A$.

Theorem 1 For any $\mathfrak{n} \in \mathbb{Z}^{+}$, a binary sequence of length \mathfrak{n} is in $\mathrm{J}(\mathrm{n})$ if and only if it is an all-1 sequence of even length or its first 0-digit from the left is preceded by an all-1 subsequence of even length.

Proof. Since the string $1 \notin A$ but the string $11 \in A$, the all- 1 sequence of length n is in $J(n)$ if and only if n is even. Therefore, in what follows we only need to consider the case in which the sequence $a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ has at least one 0-digit.

Let a_{n-i} be the first 0-digit from the left. Then

$$
a_{n-1}=a_{n-2}=\ldots=a_{n-(i-1)}=1
$$

Since the two strings $1,10 \notin A$, in order for $a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ to be in $J(n)$, the subsequence $a_{n-1} a_{n-2} \ldots a_{n-(i-1)}$ has to be formed by copies of the element $11 \in A$. This is impossible when $i-1$ is odd.

We now prove that when $i-1$ is even, the sequence $a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ is in $J(n)$ by induction on the number, say u, of 0 -digits in the sequence. For the case where $u=1$, let $a_{i}=0$, By Lemma 3 , the subsequence $a_{i} a_{i-1} \ldots a_{1} a_{0} \in J(i+1)$. Recalling that $a_{n-1} a_{n-2} \ldots a_{i+1} \in J(n-i-1)$ we know $a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in J(n)$ by Lemma 2. This establishes the induction basis.

For the inductive step, suppose that $u>1$ and the conclusion is true for any sequence having exactly $u-10$-digits. Let a_{l} be the first 0-digit from the right in a sequence having $u 0$-digits. By Lemma 3, we know $a_{l} a_{l-1} \ldots a_{0}=011 \ldots 1 \ldots a_{0} \in J(l+1)$. By the induction hypothesis, $a_{n-1} a_{n-2} \ldots a_{l+1} \in J(n-l-1)$. Therefore, $a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in$ $J(n)$ by Lemma 2 . This completes the induction.

From this theorem, one can obtain the known formula (5) for $|J(n)|$.

Corollary 1

$$
|J(n)|=\frac{2^{n+1}+(-1)^{n}}{3}
$$

Proof. Let $J(n, i)$ denote the set of such Jacobsthal binary sequences that have their first 0-digit at the $(2 i+1)^{\text {st }}$ position from the left, and Δ_{n} the set consisting of the all-1 sequence of length n when $2 \mid n$, and $\Delta_{n}=\emptyset$ when $2 \nmid n$. Then

$$
J(n)=\left(\bigcup_{0 \leqslant i \leqslant(n-1) / 2} J(n, i)\right) \cup \Delta_{n}
$$

is a partition of $J(n)$. By Theorem 1 , when $n=2 m\left(m \in \mathbb{Z}^{+}\right)$, we have :

$$
\begin{gathered}
|J(n)|=\sum_{i=0}^{m-1} 2^{2 \mathfrak{m}-(2 \mathfrak{i}+1)}+1=\frac{1}{2} \sum_{\mathfrak{i}=0}^{m-1} 4^{(m-\mathfrak{i})}+1=\frac{1}{2} \sum_{\mathfrak{i}=1}^{m} 4^{\mathfrak{i}}+1= \\
=2 \sum_{\mathfrak{i}=0}^{m-1} 4^{\mathfrak{i}}+1=2\left(\frac{4^{m}-1}{3}\right)+1=\frac{2^{\mathfrak{n}+1}+(-1)^{n}}{3}
\end{gathered}
$$

When $n=2 m+1\left(m \in \mathbb{Z}^{0}\right)$, we have :

$$
\begin{gathered}
|J(n)|=\sum_{i=0}^{m} 2^{2 m+1-(2 i+1)}=\sum_{i=0}^{m} 2^{2(m-i)}=\sum_{i=0}^{m} 2^{2 i}= \\
=\sum_{i=0}^{m} 4^{\mathfrak{i}}=\frac{4^{m+1}-1}{3}=\frac{2^{n+1}+(-1)^{n}}{3} \cdot \square
\end{gathered}
$$

By Theorem 1 we can give a characterization of the set $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$. Recall that the parameters satisfy (9):

$$
r \in \mathbb{Z}^{+},\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}-1}, \mathrm{t}_{\mathrm{r}}\right\} \subset \mathbb{Z}^{0}, \mathrm{n}-1>\mathrm{t}_{1}>\mathrm{t}_{2}>\ldots>\mathrm{t}_{\mathrm{r}} \geqslant 0
$$

Theorem 2 For any $n \in \mathbb{Z}^{+}$, the binary sequence $a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ of length n is in $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ if and only if the subsequence $a_{n-1} a_{n-2} \ldots a_{t_{1}+1}$ is in $J\left(n-1-t_{1}\right)$ and $\mathrm{a}_{\mathrm{t}_{\mathrm{i}}}=0(1 \leqslant \mathfrak{i} \leqslant \mathrm{r})$.

Proof. Let a_{j} be the first 0-digit from the left. Then $j \geqslant t_{1}$. By Theorem 1, $a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in J(n)$ if and only if the entries before a_{j} are all 1's, i.e., $2 \mid n-1-j$, which is the necessary and sufficient condition for $a_{n-1} a_{n-2} \ldots a_{t_{1}+1}$ to be in $J(n-1-$ t_{1}).

It is somewhat surprising that whether $a_{n-1} a_{n-2} \ldots a_{1} a_{0} \in J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ or not is determined only by the subsequence $a_{n-1} a_{n-2} \ldots a_{t_{1}+1}$ and $a_{t_{i}}=0(1 \leqslant i \leqslant r)$, but is independent of the digits $a_{j}\left(0 \leqslant \mathfrak{j} \leqslant t_{1}-1, \mathfrak{j} \neq \boldsymbol{t}_{\mathfrak{i}}\right)$.

Based on these theorems, some combinatorial identities involving $J_{n}, N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$ can be established, which will be presented in the next section.

2 Some Combinatorial Identities Involving $J_{n}, N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$

In this section some combinatorial identities involving $J_{n}, N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$ are proved. Applying them to obtain formulas for $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$ will be the task of the next section.

We need a simple lemma :

Lemma 4 For any $\mathfrak{n} \in \mathbb{Z}^{0}$,

$$
2^{n}=3 J_{n-1}+(-1)^{n}
$$

Proof. Recalling that $\mathrm{J}_{-1}=0$ (cf. (4)), we know that the statement is true when $\mathfrak{n}=0$. When $\mathfrak{n} \in \mathbb{Z}^{+}$, the statement is equivalent to (5).

We can now state the following

Theorem 3

$$
\begin{align*}
& \mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right)=\left[3 \mathrm{~J}_{\mathrm{t}_{1}-\mathrm{r}}+(-1)^{\mathrm{t}_{1}-\mathrm{r}+1}\right] \mathrm{J}_{\mathrm{n}-\mathrm{t}_{1}-1} \tag{10}\\
& \mathrm{~N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right)=J_{\mathrm{n}-\mathrm{r}}+(-1)^{\mathrm{n}-\mathrm{t}_{1}-1} J_{\mathrm{t}_{1}-\mathrm{r}} \tag{11}
\end{align*}
$$

Proof. By Theorem 2, for a sequence $a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ in $J_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$, there are $\left|J\left(n-t_{1}-1\right)\right|=J_{n-t_{1}-1}$ many choices for the subsequences $a_{n-1} a_{n-2} \ldots a_{t_{1}+1}$. For each of these choices, there are two choices for each of the digits $a_{j}\left(0 \leqslant \mathfrak{j} \leqslant t_{1}-1, \mathfrak{j} \neq\right.$ $\left.t_{2}, t_{3}, \ldots, t_{r}\right)$. Noting that $a_{t_{j}}=0(1 \leqslant j \leqslant r)$, we have

$$
\begin{aligned}
\mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right) & =\left|J\left(\mathrm{n}-\mathrm{t}_{1}-1\right)\right| \cdot 2^{\mathrm{t}_{1}+1-\mathrm{r}} \\
& =J_{\mathrm{n}-\mathrm{t}_{1}-1} 2^{\mathrm{t}_{1}-\mathrm{r}+1}
\end{aligned}
$$

By Lemma 4,

$$
2^{\mathrm{t}_{1}-\mathrm{r}+1}=3 \mathrm{~J}_{\mathrm{t}_{1}-\mathrm{r}}+(-1)^{\mathrm{t}_{1}-\mathrm{r}+1}
$$

Therefore,

$$
\mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right)=\mathrm{J}_{\mathrm{n}-\mathrm{t}_{1}-1}\left[3 \mathrm{~J}_{\mathrm{t}_{1}-\mathrm{r}}+(-1)^{\mathrm{t}_{1}-\mathrm{r}+1}\right],
$$

which is (10). Similarly, we can also write

$$
\begin{aligned}
& N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)= \\
= & J_{n-t_{1}-1} 2^{t_{1}-r+1} \\
= & \frac{1}{3}\left[2^{n-t_{1}}+(-1)^{n-t_{1}-1}\right] 2^{t_{1}-r+1} \\
= & \frac{1}{3}\left[2^{n-r+1}+(-1)^{n-t_{1}-1} 2^{t_{1}-r+1}\right] \\
= & \frac{1}{3}\left\{3 J_{n-r}+(-1)^{n-r+1}+(-1)^{n-t_{1}-1}\left[3 J_{t_{1}-r}+(-1)^{t_{1}-r+1}\right]\right\} \\
= & J_{n-r}+(-1)^{n-t_{1}-1} J_{t_{1}-r},
\end{aligned}
$$

which proves (11).
From this theorem, an identity can be immediately derived.
Corollary 2 We have the identity

$$
\left[3 \mathrm{~J}_{\mathrm{t}_{1}-\mathrm{r}}+(-1)^{\mathrm{t}_{1}-\mathrm{r}+1}\right] \mathrm{J}_{\mathrm{n}-\mathrm{t}_{1}-1}=\mathrm{J}_{\mathrm{n}-\mathrm{r}}+(-1)^{\mathrm{n}-\mathrm{t}_{1}-1} \mathrm{~J}_{\mathrm{t}_{1}-\mathrm{r}} .
$$

This identity can also be checked by using (5).
Let us look at the cases $r=1$ and $r=2$.

Corollary 3 If $\mathfrak{n}-1 \geqslant u \geqslant 0$, then

$$
\begin{align*}
& \mathrm{N}_{0}(\mathfrak{n} ; \mathfrak{u})=\left[3 \mathrm{~J}_{\mathfrak{u}-1}+(-1)^{\mathfrak{u}}\right] \mathrm{J}_{\mathfrak{n}-\mathfrak{u}-1} \tag{12}\\
& \mathrm{~N}_{0}(\mathfrak{n} ; \mathfrak{u})=J_{\mathfrak{n}-1}+(-1)^{\mathfrak{n}-\mathfrak{u}-1} J_{\mathfrak{u}-1} \tag{13}
\end{align*}
$$

Example 1 From (13) and $\mathrm{J}_{0}=\mathrm{J}_{1}=1, \mathrm{~J}_{2}=3$, we have

$$
\begin{aligned}
\mathrm{N}_{0}(1 ; 0) & =\mathrm{J}_{0}+(-1)^{0} \mathrm{~J}_{-1}=1, \\
\mathrm{~N}_{0}(2 ; 0) & =\mathrm{J}_{1}+(-1)^{1} \mathrm{~J}_{-1}=1, \\
\mathrm{~N}_{0}(2 ; 1) & =\mathrm{J}_{1}+(-1)^{0} \mathrm{~J}_{0}=2, \\
\mathrm{~N}_{0}(3 ; 0) & =\mathrm{J}_{2}+(-1)^{2} \mathrm{~J}_{-1}=3, \\
\mathrm{~N}_{0}(3 ; 1) & =\mathrm{J}_{2}+(-1)^{1} \mathrm{~J}_{0}=2, \\
\mathrm{~N}_{0}(3 ; 2) & =\mathrm{J}_{2}+(-1)^{0} \mathrm{~J}_{1}=4,
\end{aligned}
$$

The corresponding subsets of $\mathrm{J}(\mathrm{n})$ are

$$
\begin{aligned}
& \mathrm{J}_{0}(1 ; 0)=\{0\}, \mathrm{J}_{0}(2 ; 0)=\{00\}, \mathrm{J}_{0}(2 ; 1)=\{00,01\} \\
& \mathrm{J}_{0}(3 ; 0)=\{000,010,110\}, \mathrm{J}_{0}(3 ; 1)=\{000,001\}, \mathrm{J}_{0}(3 ; 2)=\{000,001,010,011\}
\end{aligned}
$$

Corollary 4 If $\mathrm{n}-1 \geqslant \mathrm{u} \geqslant 0$, then

$$
\left[3 \mathrm{~J}_{\mathfrak{u}-1}+(-1)^{\mathfrak{u}}\right] \mathrm{J}_{\mathfrak{n}-\mathfrak{u}-1}=\mathrm{J}_{\mathfrak{n}-1}+(-1)^{\mathfrak{n}-\mathfrak{u}-1} J_{\mathfrak{u}-1}
$$

For $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$, we have

Theorem 4 Suppose that $s_{1}, s_{2}, \ldots, s_{k}$ satisfy (6). Then $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)=$

$$
J_{n}+\sum_{1 \leqslant r \leqslant k}(-1)^{r} \sum_{1 \leqslant i \leqslant k-r+1}\binom{k-i}{r-1}\left[J_{n-r}+(-1)^{n-s_{i}-1} J_{s_{i}-r}\right] .
$$

Proof. First of all, for any $1 \leqslant r \leqslant k$, by (11) we have :

$$
\begin{gathered}
\sum_{1 \leqslant i_{1}<i_{2}<\ldots<i_{r} \leqslant k} N_{0}\left(n ; s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{r}}\right)= \\
\sum_{1 \leqslant i_{1}<i_{2}<\ldots<i_{r} \leqslant k}\left[J_{n-r}+(-1)^{n-s_{i_{1}}-1} J_{s_{i_{1}}-r}\right] .
\end{gathered}
$$

Since $1 \leqslant \mathfrak{i}_{1}<\mathfrak{i}_{2}<\ldots<\mathfrak{i}_{r} \leqslant k$, the index \mathfrak{i}_{1} must satisfy $1 \leqslant \mathfrak{i}_{1} \leqslant k-r+1$. After i_{1} has been chosen from this range, there are $\binom{k-i_{1}}{r-1}$ ways of choosing $\mathfrak{i}_{2}, \ldots, \mathfrak{i}_{r}$. Since the summands $J_{n-r}+(-1)^{n-s_{i_{1}}-1} J_{s_{i_{1}}-r}$ do not depend on the values of $\mathfrak{i}_{2}, \ldots, \mathfrak{i}_{r}$, we have :

$$
\begin{aligned}
& \sum_{1 \leqslant i_{1}<i_{2}<\ldots<i_{r} \leqslant k}\left[J_{n-r}+(-1)^{n-s_{i_{1}}-1} J_{s_{i_{1}}-r}\right]= \\
& \sum_{1 \leqslant i_{1} \leqslant k-r+1}\binom{k-i_{1}}{r-1}\left[J_{n-r}+(-1)^{n-s_{i_{1}}-1} J_{s_{i_{1}}-r}\right] .
\end{aligned}
$$

Further, using \mathfrak{i} to substitute for \mathfrak{i}_{1} in the summation on the right hand side, yields :

$$
\begin{aligned}
& \sum_{1 \leqslant i_{1}<i_{2}<\ldots<i_{r} \leqslant k} N_{0}\left(n ; s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{r}}\right)= \\
& \sum_{1 \leqslant i \leqslant k-r+1}\binom{k-i}{r-1}\left[J_{n-r}+(-1)^{n-s_{i}-1} J_{s_{i}-r}\right] .
\end{aligned}
$$

By the inclusion-exclusion principle, $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)=$

$$
\begin{aligned}
& J_{n}+\sum_{1 \leqslant r \leqslant k}(-1)^{r} \sum_{1 \leqslant i_{1}<i_{2}<\ldots<i_{r} \leqslant k} N_{0}\left(n ; s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{r}}\right)= \\
& J_{n}+\sum_{1 \leqslant r \leqslant k}(-1)^{r} \sum_{1 \leqslant i \leqslant k-r+1}\binom{k-i}{r-1}\left[J_{n-r}+(-1)^{n-s_{i}-1} J_{s_{i}-r},\right.
\end{aligned}
$$

which proves (4).

Similarly, using (10) instead of (11) yields the following :
Theorem 5 Suppose that $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$ satisfy (6). Then $\mathrm{N}_{1}\left(\mathfrak{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)=$

$$
J_{\mathfrak{n}}+\sum_{1 \leqslant r \leqslant k}(-1)^{r} \sum_{1 \leqslant i \leqslant k-r+1}\binom{k-i}{r-1}\left[3 J_{s_{i}-r}+(-1)^{s_{i}-r+1}\right] J_{n-s_{i}-1} .
$$

Let us look at the cases for $k=1,2$.
Corollary 5 For any $\mathfrak{n} \in \mathbb{Z}^{+}$and $\mathfrak{n}-1 \geqslant \boldsymbol{u} \geqslant 0$,

$$
\begin{aligned}
& \mathrm{N}_{1}(\mathfrak{n} ; \mathfrak{u})=2 \mathrm{~J}_{\mathfrak{n}-2}+(-1)^{\mathfrak{n}-\mathbf{u}} \boldsymbol{J}_{\mathfrak{u}-1} \\
& \mathrm{~N}_{1}(\mathfrak{n} ; \mathfrak{u})=\mathrm{J}_{\mathfrak{n}}-\left[3 \boldsymbol{J}_{\mathfrak{u}-1}+(-1)^{\mathfrak{u}}\right]_{\mathfrak{n}-\mathfrak{u}-1} .
\end{aligned}
$$

Proof. By Theorem 4 and Lemma 1,

$$
\begin{gathered}
\mathrm{N}_{1}(\mathfrak{n} ; \mathfrak{u})=J_{\mathfrak{n}}+(-1)^{1}\binom{1-1}{1-1}\left[\mathrm{~J}_{\mathfrak{n}-1}+(-1)^{\mathfrak{n}-\mathfrak{u}-1} \mathrm{~J}_{\mathfrak{u}-1}\right. \\
=J_{n}-J_{\mathfrak{n}-1}+(-1)^{\mathfrak{n}-\mathbf{u}} J_{\mathfrak{u}-1} \\
=2 \mathrm{~J}_{\mathfrak{n}-2}+(-1)^{\mathfrak{n}-\mathfrak{u}} \mathrm{J}_{\mathfrak{u}-1} .
\end{gathered}
$$

And by Theorem 5 we obtain :

$$
\begin{gathered}
\mathrm{N}_{1}(\mathfrak{n} ; \mathfrak{u})=\mathrm{J}_{\mathfrak{n}}+(-1)^{1}\binom{1-1}{1-1}\left[3 \mathrm{~J}_{\mathfrak{u}-1}+(-1)^{\mathfrak{u}} \mathrm{J}_{\mathfrak{n}-\mathfrak{u}-1}\right] \\
=\mathrm{J}_{\mathfrak{n}}-\left[3 \mathrm{~J}_{\mathfrak{u}-1}+(-1)^{\mathfrak{u}} \mathrm{J}_{\mathfrak{n}-\mathfrak{u}-1}\right] .
\end{gathered}
$$

Example 2 By Corollary 5, we have :
$\mathrm{N}_{1}(1 ; 0)=2 \mathrm{~J}_{-1}+\mathrm{J}_{-1}=0, \quad \mathrm{~N}_{1}(2 ; 0)=2 \mathrm{~J}_{0}+\mathrm{J}_{-1}=2, \quad \mathrm{~N}_{1}(2 ; 1)=2 \mathrm{~J}_{0}-\mathrm{J}_{0}=1$,
$\mathrm{N}_{1}(3 ; 0)=2 \mathrm{~J}_{1}-\mathrm{J}_{-1}=2, \quad \mathrm{~N}_{1}(3 ; 1)=2 \mathrm{~J}_{1}+\mathrm{J}_{0}=3, \quad \mathrm{~N}_{1}(3 ; 2)=2 \mathrm{~J}_{1}-\mathrm{J}_{1}=1$.
The corresponding subsets of $\mathrm{J}(\mathrm{n})$ are
$\mathrm{J}_{1}(1 ; 0)=\emptyset, \mathrm{J}_{1}(2 ; 0)=\{01,11\}, \mathrm{J}_{1}(2 ; 1)=\{11\}$,
$\mathrm{J}_{1}(3 ; 0)=\{001,011\}, \mathrm{J}_{1}(3 ; 1)=\{010,011,110\}, \mathrm{J}_{1}(3 ; 2)=\{110\}$.

Example 3 Applying Corollary 5, we have

$$
\begin{aligned}
& \mathrm{N}_{1}(1 ; 0)=\mathrm{J}_{1}-\left[3 \mathrm{~J}_{-1}+1\right] \mathrm{J}_{0}=1-1=0 . \\
& \mathrm{N}_{1}(2 ; 0)=\mathrm{J}_{2}-\left[3 \mathrm{~J}_{-1}+1\right] \mathrm{J}_{1}=3-1=2 . \\
& \mathrm{N}_{1}(2 ; 1)=\mathrm{J}_{2}-\left[3 \mathrm{~J}_{0}-1\right] \mathrm{J}_{0}=3-2=1 . \\
& \mathrm{N}_{1}(3 ; 0)=\mathrm{J}_{3}-\left[3 \mathrm{~J}_{-1}+1\right] \mathrm{J}_{2}=5-3=2 . \\
& \mathrm{N}_{1}(3 ; 1)=\mathrm{J}_{3}-\left[3 \mathrm{~J}_{0}-1\right] \mathrm{J}_{1}=5-2=3 . \\
& \mathrm{N}_{1}(3 ; 2)=\mathrm{J}_{3}-\left[3 \mathrm{~J}_{1}+1\right] \mathrm{J}_{0}=5-4=1 .
\end{aligned}
$$

The corresponding subsets of $\mathrm{J}(\mathrm{n})$ have been shown in Example 2.
Now let us turn to the case of $k=2$. In this case, $n>1$.

Corollary 6 For any $\mathfrak{n} \in \mathbb{Z}^{+}, \mathfrak{n} \geqslant 2$, and $\mathfrak{n}-1 \geqslant u>v \geqslant 0$, we have :

$$
\begin{equation*}
\mathrm{N}_{1}(\mathrm{n} ; \mathrm{u}, v)=2\left[\mathrm{~J}_{\mathrm{n}-2}-\mathrm{J}_{\mathrm{n}-3}\right]+(-1)^{\mathrm{n}-\mathrm{u}}\left[\mathrm{~J}_{\mathrm{u}-1}-\mathrm{J}_{\mathrm{u}-2}\right]+(-1)^{\mathrm{n}-v} J_{v-1} \tag{14}
\end{equation*}
$$

For any $\mathfrak{n} \in \mathbb{Z}^{+}, \mathfrak{n} \geqslant 3, \quad \mathfrak{n}-1 \geqslant \mathbf{u}>v \geqslant 0, \mathbf{u} \geqslant 2$, we have:

$$
\begin{equation*}
\mathrm{N}_{1}(\mathrm{n} ; \mathrm{u}, v)=4 \mathrm{~J}_{\mathrm{n}-4}+(-1)^{\mathrm{n}-\mathrm{u}} 2 \mathrm{~J}_{\mathrm{u}-3}+(-1)^{\mathrm{n}-v} \mathrm{~J}_{v-1} . \tag{15}
\end{equation*}
$$

Proof. By Theorem 4, $\quad \mathrm{N}_{1}\left(\mathrm{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}\right)=$

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{n}}+(-1)^{1} \sum_{1 \leqslant i \leqslant 2}\binom{2-\mathrm{i}}{1-1}\left[\mathrm{~J}_{\mathrm{n}-1}+(-1)^{\mathrm{n}-\mathrm{s}_{\mathrm{i}}-1} \mathrm{~J}_{\mathrm{s}_{\mathrm{i}}-1}\right]+ \\
& +\binom{2-1}{2-1}\left[\mathrm{~J}_{\mathrm{n}-2}+(-1)^{\mathrm{n}-\mathrm{s}_{1}-1} \mathrm{~J}_{\mathrm{s}_{1}-2}\right]= \\
& \mathrm{J}_{\mathrm{n}}-\left[\mathrm{J}_{\mathrm{n}-1}+(-1)^{\mathrm{n}-\mathrm{s}_{1}-1} \mathrm{~J}_{\mathrm{s}_{1}-1}+\mathrm{J}_{\mathrm{n}-1}+(-1)^{\mathrm{n}-\mathrm{s}_{2}-1} \mathrm{~J}_{\mathrm{s}_{2}-1}\right]+ \\
& +\left[\mathrm{J}_{\mathrm{n}-2}+(-1)^{\mathrm{n}-\mathrm{s}_{1}-1} \mathrm{~J}_{\mathrm{s}_{1}-2}\right]= \\
& \mathrm{J}_{\mathrm{n}}-2 \mathrm{~J}_{\mathrm{n}-1}+\mathrm{J}_{\mathrm{n}-2}+(-1)^{n-\mathrm{s}_{1}} \mathrm{~J}_{\mathrm{s}_{1}-1}+(-1)^{n-s_{2}} \mathrm{~J}_{\mathrm{s}_{2}-1}+ \\
& +(-1)^{n-s_{1}-1} J_{s_{1}-2}= \\
& 2\left[J_{n-2}-J_{n-3}\right]+(-1)^{n-s_{1}}\left[J_{s_{1}-1}-J_{s_{1}-2}\right]+(-1)^{n-s_{2}} J_{s_{2}-1} .
\end{aligned}
$$

Substituting u, v for s_{1}, s_{2}, respectively, gives (14).
When $\mathrm{n} \geqslant 3$, and $\mathrm{s}_{1} \geqslant 2$, by Lemma 1 we have :

$$
\mathrm{J}_{\mathrm{n}-2}-\mathrm{J}_{\mathrm{n}-3}=2 \mathrm{~J}_{\mathrm{n}-4}, \quad \mathrm{~J}_{\mathrm{s}_{1}-1}-\mathrm{J}_{\mathrm{s}_{1}-2}=2 \mathrm{~J}_{\mathrm{s}_{1}-3} .
$$

So ,

$$
\begin{aligned}
\mathrm{N}_{1}\left(\mathrm{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}\right) & =2\left[\mathrm{~J}_{\mathrm{n}-2}-\mathrm{J}_{n-3}\right]+(-1)^{n-s_{1}}\left[\mathrm{~J}_{s_{1}-1}-J_{s_{1}-2}\right]+(-1)^{n-s_{2}} J_{s_{2}-1} \\
& =4 J_{n-4}+(-1)^{n-s_{1}} 2 J_{s_{1}-3}+(-1)^{n-s_{2}} J_{s_{2}-1}
\end{aligned}
$$

Substituting u, v for s_{1}, s_{2}, respectively, gives (15).

The identities in this section can be used to give formulas for $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$, which will be presented in the next section.

3 Formulas for $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ and $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$

For $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$, we have:
Theorem 6 The following holds :

$$
\begin{equation*}
\mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right)=\left(\frac{1}{3}\right) 2^{\mathrm{t}_{1}+1-\mathrm{r}}\left[2^{\mathrm{n}-\mathrm{t}_{1}}+(-1)^{\mathrm{n}-\mathrm{t}_{1}-1}\right] \tag{16}
\end{equation*}
$$

Proof. From the proof of Theorem 3 and equality (5), we have

$$
\begin{aligned}
\mathrm{N}_{0}\left(\mathrm{n} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right) & =\mathrm{J}_{\mathrm{n}-1-\mathrm{t}_{1}} \cdot 2^{\mathrm{t}_{1}+1-\mathrm{r}} \\
& =\frac{1}{3} 2^{\mathrm{t}_{1}+1-\mathrm{r}}\left[2^{\mathrm{n}-\mathrm{t}_{1}}+(-1)^{\mathrm{n}-\mathrm{t}_{1}-1}\right]
\end{aligned}
$$

Note that $N_{0}\left(n ; t_{1}, t_{2}, \ldots, t_{r}\right)$ only depends on the parameters n, t_{1} and r, and is independent of the values of the parameters t_{2}, \ldots, t_{r}.

Theorems 3 and 4 provide an explicit formulas for $N_{1}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$, as shown in the following theorem. Its proof is obvious and will be omitted.

Theorem 7 Suppose that $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$ satisfy (6). Then $\mathrm{N}_{1}\left(\mathrm{n} ; \mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)=$

$$
\begin{aligned}
\left(\frac{1}{3}\right)\left(2^{n+1}\right. & \left.+(-1)^{n}\right)+ \\
& +\left(\frac{1}{3}\right) \sum_{1 \leqslant r \leqslant k}(-1)^{r} \sum_{1 \leqslant i \leqslant k-r+1}\binom{k-i}{r-1} 2^{s_{i}-r+1}\left(2^{n-s_{i}}+(-1)^{n-s_{i}-1}\right)
\end{aligned}
$$

When $k=1$, we have :

Corollary 7

$$
\begin{equation*}
N_{1}(n ; s)=\frac{1}{3}\left\{2^{n+1}-2^{s}\left[2^{n-s}+(-1)^{n-s-1}\right]+(-1)^{n}\right\} \tag{17}
\end{equation*}
$$

Example 4 By (17), the first several values of $\mathrm{N}_{1}(\mathrm{n} ; \mathrm{s})$ can be computed as follows.

$$
\begin{aligned}
& \mathbf{N}_{1}(1 ; 0)=\frac{1}{3}\left\{2^{2}-2^{0}\left[2^{2}+(-1)^{1}\right]+(-1)^{1}\right\}=0, \\
& \mathbf{N}_{1}(2 ; 0)=\frac{1}{3}\left\{2^{3}-2^{0}\left[2^{2}+(-1)^{1}\right]+(-1)^{2}\right\}=2, \\
& \mathbf{N}_{1}(2 ; 1)=\frac{1}{3}\left\{2^{3}-2^{1}\left[2^{1}+(-1)^{0}\right]+(-1)^{2}\right\}=1, \\
& \mathbf{N}_{1}(3 ; 0)=\frac{1}{4}\left\{2^{4}-2^{0}\left[2^{3}+(-1)^{2}\right]+(-1)^{3}\right\}=2, \\
& \mathbf{N}_{1}(3 ; 1)=\frac{1}{4}\left\{2^{4}-2^{1}\left[2^{2}+(-1)^{1}\right]+(-1)^{3}\right\}=3, \\
& \mathbf{N}_{1}(3 ; 2)=\frac{1}{4}\left\{2^{4}-2^{2}\left[2^{1}+(-1)^{0}\right]+(-1)^{3}\right\}=1
\end{aligned}
$$

The corresponding subsets of $\mathrm{J}(\mathrm{n})$ have been shown in Example 2.
When $k=2$, we have :
Corollary 8 For any $\mathfrak{n} \geqslant 2$ and $\mathrm{n}-1 \geqslant u>v \geqslant 0$, we have:

$$
\mathrm{N}_{1}(\mathrm{n} ; \mathrm{u}, v)=\left(\frac{1}{3}\right)\left[2^{\mathrm{n}-1}+(-1)^{\mathrm{n}-\mathrm{u}} 2^{\mathrm{u}-1}+(-1)^{\mathrm{n}-v} 2^{v}+(-1)^{\mathrm{n}}\right]
$$

References

[1] R. Brigham, P. Chinn and R. Grimaldi Tiling and Patterns of Enumeration, Congressus Numerantium, 137(1999), 207-219.
[2] D. Frey and J. Sellers Jacobsthal Numbers and Alternating Sign Matrices, J. of Integer Sequences, 3(2000), Article 00.2.3, 1-15.
[3] R. Grimaldi, Binary Strings and the Jacobsthal Numbers, Congressus Numerantium, 174(2005), 3-22.
[4] R. Grimaldi, The Distribution of 1's in Jacobsthal Binary Sequences, Congressus Numerantium, 190(2008), 47-64.
[5] H. Silvia, Tiling an m-by-n Area with Squares of Size up to k-by-k (m $\leqslant 5$), Congressus Numerantium, 140(1999), 43-64..

