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Abstract

Let Σ = {0, 1} be the binary alphabet, and A = {0, 01, 11} the set of three strings
0, 01, 11 over Σ. Let A∗ denote the Kleene closure of A, Z0 the set of nonnegative
integers, and Z+ the set of positive integers. A sequence in A∗ is called a Jacobsthal
binary sequence. Let J(n) denote the set of Jacobsthal binary sequences of length
n. For k ∈ Z+, {s1, s2, . . . , sk} ⊂ Z0, and n − 1 > s1 > s2 > . . . > sk > 0, let
J1(n; s1, s2, . . . , sk) denote the subset J1(n; s1, s2, . . . , sk) = {an−1an−2 . . .a1a0 ∈
J(n) : asi

= 1 (1 6 i 6 k)}, of J(n), and letN1(n; s1, s2, . . . , sk) = |J1(n; s1, s2, . . . , sk)|.
When k = 1, a formula for N1(n; s) has been derived recently. In this paper we con-
sider the general case of N1(n; s1, s2, . . . , sk), and study some other special types
of Jacobsthal binary sequences. Some identities involving these numbers are also
given.

Keywords. Jacobsthal numbers, combinatorial identities, combinatorial enumera-
tion

Introduction

Let Σ = {0, 1} be the binary alphabet, and A = {0, 01, 11} the set of three strings 0, 01, 11
over Σ. Let A∗ denote the Kleene closure of A, Z0 the set of nonnegative integers, and
Z+ the set of positive integers. A sequence in A∗ is called a Jacobsthal binary sequence.
Let J(n) denote the set of Jacobsthal binary sequences of length n and let |J(n)| denote
the cardinality of J(n).

The Jacobsthal numbers are defined by the recursion

Jn = Jn−1 + 2Jn−2, n > 2 (1)

together with the initial values
J0 = J1 = 1. (2)

Note that some other authors use the initial values J0 = 0, J1 = 1 instead. Using the
initial values in (2), a known result can be stated more conveniently as

|J(n)| = Jn. (3)
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Jn is also called the nth Jacobsthal number. For convenience, we also define

Jm = 0,∀m ∈ Z, m < 0. (4)

Based on (4), we state an obvious fact and a known result as a lemma for easy reference.

Lemma 1 The recursion (1) can be extended as

Jt = Jt−1 + 2Jt−2, t ∈ Z, t 6= 0.

The value of Jn (n ∈ Z0) can be computed by

Jn =
1
3
(2n+1 + (−1)n), n ∈ Z0. (5)

The Jacobsthal numbers have applications in such areas as tiling, graph matching,
alternating sign matrices, etc. ([1, 2, 4, 5]).

Let

k ∈ Z+, {s1, s2, . . . , sk−1, sk} ⊂ Z0 ;n− 1 > s1 > s2 > . . . > sk > 0. (6)

Let J1(n; s1, s2, . . . , sk) denote the following subset of J(n):

J1(n; s1, s2, . . . , sk) = {an−1an−2 . . .a1a0 ∈ J(n) : asi
= 1 (1 6 i 6 k)},

i.e., the subset of Jacobsthal binary sequences that have the digit 1 at each of the
sth
i (1 6 i 6 k) positions from the right. Let N1(n; s1, s2, . . . , sk) = |J1(n; s1, s2, . . . , sk)|.

R. Grimaldi[4] considers the case where k = 1, establishing a recursion for N1(n; s1) and
then deriving the following formula:

N1(n; s) =
1
3
(2n + (−1)n + (−1)n−s2s) (7)

= Jn −
2s

3
(2n−s + (−1)n−s−1). (8)

For the general case, finding a formula for N1(n; s1, s2, . . . , sk) by using a recursion seems
extremely difficult. In this article we employ a different approach to dealing with this
problem, namely, considering the following dual problem of N1(n; s1, s2, . . . , sk).

Let

r ∈ Z+, {t1, t2, . . . , tr−1, tr} ⊂ Z0, n− 1 > t1 > t2 > . . . > tr > 0. (9)

Let J0(n; t1, t2, . . . , tr) denote the following subset of J(n):

J0(n; t1, t2, . . . , tr) = {an−1an−2 . . .a1a0 ∈ J(n) : ati
= 0 (1 6 i 6 r)},

i.e., the subset of Jacobsthal binary sequences that have the digit 0 at each of the
tth
i (1 6 i 6 r) positions from the right. Let N0(n; t1, t2, . . . , tr) = |J0(n; t1, t2, . . . , tr)|.

In the next section we present characterizations of the sets J(n) and J0(n; t1, t2, . . . , tr).
Based on them, some combinatorial identities involving Jn, N0(n; t1, t2, . . . , tr) and
N1(n; s1, s2, . . . , sk) are derived in Section 3. From these identities, formulas for
N0(n; t1, t2, . . . , tr) and N1(n; s1, s2, . . . , sk) are obtained in the last section.
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1 Characterizations of the sets J(n) and J0(n; t1, t2, . . . , tr)

For easy reference we state a trivial fact, that is

Lemma 2 For any i, j ∈ Z+, J(i)||J(j) ⊆ J(i + j), where J(i)||J(j) = {a||b : a ∈ J(i),b ∈
J(j) and ‖ stands for the concatenation operation on strings.

We now characterize the set J(n). We need

Lemma 3 Let l ∈ Z+. The string α of the 0-digit followed by l−1 1-digits is a Jacobsthal
binary string of length l.

Proof. If l = 2m+ 1 for some m ∈ Z0, the l− 1 = 2m 1-digits in α can be regarded
as m copies of the string 11. Since both strings 11, 0 ∈ A, we know α ∈ A. If l = 2m
for some m ∈ Z0, the last l− 2 = 2m− 2 1-digits in α can be regarded as m− 1 copies
of the string 11. Since both string 11, 01 ∈ A, we know α ∈ A. �

Theorem 1 For any n ∈ Z+, a binary sequence of length n is in J(n) if and only if it
is an all-1 sequence of even length or its first 0-digit from the left is preceded by an all-1
subsequence of even length.

Proof. Since the string 1 6∈ A but the string 11 ∈ A, the all-1 sequence of length n
is in J(n) if and only if n is even. Therefore, in what follows we only need to consider
the case in which the sequence an−1an−2 . . .a1a0 has at least one 0-digit.

Let an−i be the first 0-digit from the left. Then

an−1 = an−2 = . . . = an−(i−1) = 1.

Since the two strings 1, 10 6∈ A, in order for an−1an−2 . . .a1a0 to be in J(n), the subse-
quence an−1an−2 . . .an−(i−1) has to be formed by copies of the element 11 ∈ A. This
is impossible when i− 1 is odd.

We now prove that when i− 1 is even, the sequence an−1an−2 . . .a1a0 is in J(n) by
induction on the number, say u, of 0-digits in the sequence. For the case where u = 1,
let ai = 0,. By Lemma 3, the subsequence aiai−1 . . .a1a0 ∈ J(i + 1). Recalling that
an−1an−2 . . .ai+1 ∈ J(n− i− 1) we know an−1an−2 . . .a1a0 ∈ J(n) by Lemma 2. This
establishes the induction basis.

For the inductive step, suppose that u > 1 and the conclusion is true for any sequence
having exactly u − 1 0-digits. Let al be the first 0-digit from the right in a sequence
having u 0-digits. By Lemma 3, we know alal−1 . . .a0 = 011 . . . 1 . . .a0 ∈ J(l+1). By the
induction hypothesis, an−1an−2 . . .al+1 ∈ J(n− l−1). Therefore, an−1an−2 . . .a1a0 ∈
J(n) by Lemma 2. This completes the induction. �

From this theorem, one can obtain the known formula (5) for |J(n)|.

Corollary 1

|J(n)| =
2n+1 + (−1)n

3
,
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Proof. Let J(n, i) denote the set of such Jacobsthal binary sequences that have their
first 0-digit at the (2i+ 1)st position from the left, and ∆n the set consisting of the all-1
sequence of length n when 2 | n, and ∆n = ∅ when 2 - n. Then

J(n) = (
⋃

06i6(n−1)/2

J(n, i) ) ∪ ∆n

is a partition of J(n). By Theorem 1, when n = 2m (m ∈ Z+), we have :

|J(n)| =
∑m−1

i=0 22m−(2i+1) + 1 = 1
2

∑m−1
i=0 4(m−i) + 1 = 1

2

∑m
i=1 4i + 1 =

= 2
∑m−1

i=0 4i + 1 = 2(4m−1
3 ) + 1 =

2n+1+(−1)n

3 .

When n = 2m+ 1 (m ∈ Z0), we have :

|J(n)| =
∑m

i=0 22m+1−(2i+1) =
∑m

i=0 22(m−i) =
∑m

i=0 22i =

=
∑m

i=0 4i = 4m+1−1
3 =

2n+1+(−1)n

3 . �

By Theorem 1 we can give a characterization of the set J0(n; t1, t2, . . . , tr). Recall
that the parameters satisfy (9):

r ∈ Z+, {t1, t2, . . . , tr−1, tr} ⊂ Z0, n− 1 > t1 > t2 > . . . > tr > 0.

Theorem 2 For any n ∈ Z+, the binary sequence an−1an−2 . . .a1a0 of length n is in
J0(n; t1, t2, . . . , tr) if and only if the subsequence an−1an−2 . . .at1+1 is in J(n− 1 − t1)

and ati
= 0 (1 6 i 6 r).

Proof. Let aj be the first 0-digit from the left. Then j > t1. By Theorem 1,
an−1an−2 . . .a1a0 ∈ J(n) if and only if the entries before aj are all 1’s, i.e., 2|n− 1 − j,
which is the necessary and sufficient condition for an−1an−2 . . .at1+1 to be in J(n− 1 −

t1). �

It is somewhat surprising that whether an−1an−2 . . .a1a0 ∈ J0(n; t1, t2, . . . , tr) or
not is determined only by the subsequence an−1an−2 . . .at1+1 and ati

= 0 (1 6 i 6 r),
but is independent of the digits aj (0 6 j 6 t1 − 1, j 6= ti).

Based on these theorems, some combinatorial identities involving Jn, N0(n; t1, t2, . . . , tr)
and N1(n; s1, s2, . . . , sk) can be established, which will be presented in the next section.

2 Some Combinatorial Identities Involving Jn, N0(n; t1, t2, . . . , tr)
and N1(n; s1, s2, . . . , sk)

In this section some combinatorial identities involving Jn, N0(n; t1, t2, . . . , tr) and
N1(n; s1, s2, . . . , sk) are proved. Applying them to obtain formulas forN0(n; t1, t2, . . . , tr)
and N1(n; s1, s2, . . . , sk) will be the task of the next section.

We need a simple lemma :

4



Lemma 4 For any n ∈ Z0,
2n = 3Jn−1 + (−1)n.

Proof. Recalling that J−1 = 0 (cf. (4)), we know that the statement is true when
n = 0. When n ∈ Z+, the statement is equivalent to (5). �

We can now state the following

Theorem 3

N0(n; t1, t2, . . . , tr) = [3Jt1−r + (−1)t1−r+1]Jn−t1−1 (10)
N0(n; t1, t2, . . . , tr) = Jn−r + (−1)n−t1−1Jt1−r (11)

Proof. By Theorem 2, for a sequence an−1an−2 . . .a1a0 in J0(n; t1, t2, . . . , tr), there
are |J(n− t1 −1)| = Jn−t1−1 many choices for the subsequences an−1an−2 . . .at1+1. For
each of these choices, there are two choices for each of the digits aj (0 6 j 6 t1 − 1, j 6=
t2, t3, . . . , tr). Noting that atj

= 0 (1 6 j 6 r), we have

N0(n; t1, t2, . . . , tr) = |J(n− t1 − 1)| · 2t1+1−r

= Jn−t1−12t1−r+1.

By Lemma 4,
2t1−r+1 = 3Jt1−r + (−1)t1−r+1.

Therefore,
N0(n; t1, t2, . . . , tr) = Jn−t1−1[3Jt1−r + (−1)t1−r+1],

which is (10). Similarly, we can also write

N0(n; t1, t2, . . . , tr) =

= Jn−t1−12t1−r+1

=
1
3
[2n−t1 + (−1)n−t1−1]2t1−r+1

=
1
3
[2n−r+1 + (−1)n−t1−12t1−r+1]

=
1
3
{3Jn−r + (−1)n−r+1 + (−1)n−t1−1[3Jt1−r + (−1)t1−r+1]}

= Jn−r + (−1)n−t1−1Jt1−r,

which proves (11). �

From this theorem, an identity can be immediately derived.

Corollary 2 We have the identity

[3Jt1−r + (−1)t1−r+1]Jn−t1−1 = Jn−r + (−1)n−t1−1Jt1−r.

This identity can also be checked by using (5).

Let us look at the cases r = 1 and r = 2.
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Corollary 3 If n− 1 > u > 0, then

N0(n;u) = [3Ju−1 + (−1)u]Jn−u−1 (12)
N0(n;u) = Jn−1 + (−1)n−u−1Ju−1 (13)

Example 1 From (13) and J0 = J1 = 1, J2 = 3, we have

N0(1; 0) = J0 + (−1)0J−1 = 1,
N0(2; 0) = J1 + (−1)1J−1 = 1,
N0(2; 1) = J1 + (−1)0J0 = 2,
N0(3; 0) = J2 + (−1)2J−1 = 3,
N0(3; 1) = J2 + (−1)1J0 = 2,
N0(3; 2) = J2 + (−1)0J1 = 4.

The corresponding subsets of J(n) are

J0(1; 0) = {0}, J0(2; 0) = {00}, J0(2; 1) = {00, 01}.
J0(3; 0) = {000, 010, 110}, J0(3; 1) = {000, 001}, J0(3; 2) = {000, 001, 010, 011}.

Corollary 4 If n− 1 > u > 0, then

[3Ju−1 + (−1)u]Jn−u−1 = Jn−1 + (−1)n−u−1Ju−1 .

For N1(n; s1, s2, . . . , sk), we have

Theorem 4 Suppose that s1, s2, . . . , sk satisfy (6). Then N1(n; s1, s2, . . . , sk) =

Jn +
∑

16r6k(−1)r
∑

16i6k−r+1

(
k−i
r−1

)
[Jn−r + (−1)n−si−1Jsi−r].

Proof. First of all, for any 1 6 r 6 k, by (11) we have :∑
16i1<i2<...<ir6k N0(n; si1 , si2 , . . . , sir) =

∑
16i1<i2<...<ir6k [Jn−r + (−1)n−si1

−1Jsi1
−r].

Since 1 6 i1 < i2 < . . . < ir 6 k, the index i1 must satisfy 1 6 i1 6 k − r + 1. After
i1 has been chosen from this range, there are

(
k−i1
r−1

)
ways of choosing i2, . . . , ir. Since

the summands Jn−r + (−1)n−si1
−1Jsi1

−r do not depend on the values of i2, . . . , ir, we
have : ∑

16i1<i2<...<ir6k [Jn−r + (−1)n−si1
−1Jsi1

−r] =

∑
16i16k−r+1

(
k−i1
r−1

)
[Jn−r + (−1)n−si1

−1Jsi1
−r] .

Further, using i to substitute for i1 in the summation on the right hand side, yields :
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∑
16i1<i2<...<ir6k N0(n; si1 , si2 , . . . , sir) =

∑
16i6k−r+1

(
k−i
r−1

)
[Jn−r + (−1)n−si−1Jsi−r] .

By the inclusion-exclusion principle, N1(n; s1, s2, . . . , sk) =

Jn +
∑

16r6k (−1)r
∑

16i1<i2<...<ir6k N0(n; si1 , si2 , . . . , sir) =

Jn +
∑

16r6k (−1)r
∑

16i6k−r+1

(
k−i
r−1

)
[Jn−r + (−1)n−si−1Jsi−r ,

which proves (4) . �

Similarly, using (10) instead of (11) yields the following :

Theorem 5 Suppose that s1, s2, . . . , sk satisfy (6). Then N1(n; s1, s2, . . . , sk) =

Jn +
∑

16r6k(−1)r
∑

16i6k−r+1

(
k−i
r−1

)
[3Jsi−r + (−1)si−r+1]Jn−si−1.

Let us look at the cases for k = 1, 2.

Corollary 5 For any n ∈ Z+ and n− 1 > u > 0,

N1(n;u) = 2Jn−2 + (−1)n−uJu−1

N1(n;u) = Jn − [3Ju−1 + (−1)u]Jn−u−1.

Proof. By Theorem 4 and Lemma 1,

N1(n;u) = Jn + (−1)1
(
1−1
1−1

)
[Jn−1 + (−1)n−u−1Ju−1

= Jn − Jn−1 + (−1)n−uJu−1

= 2Jn−2 + (−1)n−uJu−1 .

And by Theorem 5 we obtain :

N1(n;u) = Jn + (−1)1
(
1−1
1−1

)
[3Ju−1 + (−1)uJn−u−1]

= Jn − [3Ju−1 + (−1)uJn−u−1]. �

Example 2 By Corollary 5, we have :

N1(1; 0) = 2J−1 + J−1 = 0, N1(2; 0) = 2J0 + J−1 = 2, N1(2; 1) = 2J0 − J0 = 1,

N1(3; 0) = 2J1 − J−1 = 2, N1(3; 1) = 2J1 + J0 = 3, N1(3; 2) = 2J1 − J1 = 1.

The corresponding subsets of J(n) are

J1(1; 0) = ∅, J1(2; 0) = {01, 11}, J1(2; 1) = {11},

J1(3; 0) = {001, 011}, J1(3; 1) = {010, 011, 110}, J1(3; 2) = {110}.
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Example 3 Applying Corollary 5, we have

N1(1; 0) = J1 − [3J−1 + 1]J0 = 1 − 1 = 0.
N1(2; 0) = J2 − [3J−1 + 1]J1 = 3 − 1 = 2.
N1(2; 1) = J2 − [3J0 − 1]J0 = 3 − 2 = 1.
N1(3; 0) = J3 − [3J−1 + 1]J2 = 5 − 3 = 2.
N1(3; 1) = J3 − [3J0 − 1]J1 = 5 − 2 = 3.
N1(3; 2) = J3 − [3J1 + 1]J0 = 5 − 4 = 1.

The corresponding subsets of J(n) have been shown in Example 2.

Now let us turn to the case of k = 2. In this case, n > 1.

Corollary 6 For any n ∈ Z+, n > 2, and n− 1 > u > v > 0, we have :

N1(n;u, v) = 2[Jn−2 − Jn−3] + (−1)n−u[Ju−1 − Ju−2] + (−1)n−vJv−1. (14)

For any n ∈ Z+, n > 3, n− 1 > u > v > 0, u > 2, we have :

N1(n;u, v) = 4Jn−4 + (−1)n−u2Ju−3 + (−1)n−vJv−1. (15)

Proof. By Theorem 4, N1(n; s1, s2) =

Jn + (−1)1
∑

16i62

(
2−i
1−1

)
[Jn−1 + (−1)n−si−1Jsi−1] +

+
(
2−1
2−1

)
[Jn−2 + (−1)n−s1−1Js1−2] =

Jn − [Jn−1 + (−1)n−s1−1Js1−1 + Jn−1 + (−1)n−s2−1Js2−1] +

+ [Jn−2 + (−1)n−s1−1Js1−2] =

Jn − 2Jn−1 + Jn−2 + (−1)n−s1Js1−1 + (−1)n−s2Js2−1 +

+(−1)n−s1−1Js1−2 =

2[Jn−2 − Jn−3] + (−1)n−s1 [Js1−1 − Js1−2] + (−1)n−s2Js2−1.

Substituting u, v for s1, s2, respectively, gives (14).

When n > 3, and s1 > 2, by Lemma 1 we have :

Jn−2 − Jn−3 = 2Jn−4, Js1−1 − Js1−2 = 2Js1−3.

So ,

N1(n; s1, s2) = 2[Jn−2 − Jn−3] + (−1)n−s1 [Js1−1 − Js1−2] + (−1)n−s2Js2−1

= 4Jn−4 + (−1)n−s12Js1−3 + (−1)n−s2Js2−1.

Substituting u, v for s1, s2, respectively, gives (15). �

The identities in this section can be used to give formulas for N0(n; t1, t2, . . . , tr) and
N1(n; s1, s2, . . . , sk), which will be presented in the next section.
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3 Formulas for N0(n; t1, t2, . . . , tr) and N1(n; s1, s2, . . . , sk)

For N0(n; t1, t2, . . . , tr), we have:

Theorem 6 The following holds :

N0(n; t1, t2, . . . , tr) = (
1
3
)2t1+1−r[2n−t1 + (−1)n−t1−1] (16)

Proof. From the proof of Theorem 3 and equality (5), we have

N0(n; t1, t2, . . . , tr) = Jn−1−t1 · 2t1+1−r

=
1
3

2t1+1−r[2n−t1 + (−1)n−t1−1] . �

Note that N0(n; t1, t2, . . . , tr) only depends on the parameters n, t1 and r, and is
independent of the values of the parameters t2, . . . , tr.

Theorems 3 and 4 provide an explicit formulas for N1(n; s1, s2, . . . , sk), as shown in
the following theorem. Its proof is obvious and will be omitted.

Theorem 7 Suppose that s1, s2, . . . , sk satisfy (6). Then N1(n; s1, s2, . . . , sk) =

(1
3)(2n+1 + (−1)n) +

+ (1
3)

∑
16r6k(−1)r

∑
16i6k−r+1

(
k−i
r−1

)
2si−r+1(2n−si + (−1)n−si−1).

When k = 1, we have :

Corollary 7

N1(n; s) =
1
3
{2n+1 − 2s[2n−s + (−1)n−s−1] + (−1)n}. (17)

Example 4 By (17), the first several values of N1(n; s) can be computed as follows.

N1(1; 0) =
1
3
{22 − 20[22 + (−1)1] + (−1)1} = 0,

N1(2; 0) =
1
3
{23 − 20[22 + (−1)1] + (−1)2} = 2,

N1(2; 1) =
1
3
{23 − 21[21 + (−1)0] + (−1)2} = 1,

N1(3; 0) =
1
4
{24 − 20[23 + (−1)2] + (−1)3} = 2,

N1(3; 1) =
1
4
{24 − 21[22 + (−1)1] + (−1)3} = 3,

N1(3; 2) =
1
4
{24 − 22[21 + (−1)0] + (−1)3} = 1.

The corresponding subsets of J(n) have been shown in Example 2.

When k = 2, we have :

Corollary 8 For any n > 2 and n− 1 > u > v > 0, we have :

N1(n;u, v) = (
1
3
) [2n−1 + (−1)n−u2u−1 + (−1)n−v2v + (−1)n].
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