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Abstract

Let £ ={0,1} be the binary alphabet, and A ={0,01, 11} the set of three strings
0,01,11 over L. Let A* denote the Kleene closure of A, Z° the set of nonnegative
integers, and Z" the set of positive integers. A sequence in A* is called a Jacobsthal
binary sequence. Let J(n) denote the set of Jacobsthal binary sequences of length
n. For k€ Z™", {s1,s9,...,5k) CZ% and n—1>s; >5s9 >...>5s, >0, let
Ji(m;s1,89,...,8K) denote the subset Ji(n;si,so,...,5¢) = {an_1an_2...a1ag €
J(n):as, =1 (1 <i<k)} of J(n), andlet Ny(n;s1,s2,...,5k) = [J1(n;s1,82,...,8%)
When k = 1, a formula for Nq(n;s) has been derived recently. In this paper we con-
sider the general case of Nj(n;sq,s82,...,8k), and study some other special types
of Jacobsthal binary sequences. Some identities involving these numbers are also
given.

Keywords. Jacobsthal numbers, combinatorial identities, combinatorial enumera-
tion

Introduction

Let £ ={0, 1} be the binary alphabet, and A ={0,01, 11} the set of three strings 0,01, 11
over L. Let A* denote the Kleene closure of A, Z° the set of nonnegative integers, and
7" the set of positive integers. A sequence in A* is called a Jacobsthal binary sequence.
Let J(n) denote the set of Jacobsthal binary sequences of length n and let |J(n)| denote
the cardinality of J(n).

The Jacobsthal numbers are defined by the recursion
]n:In—1+2]n—27 n>2 (1)

together with the initial values

Jo=T1=1 (2)
Note that some other authors use the initial values Jo = 0, J; = 1 instead. Using the
initial values in (2), a known result can be stated more conveniently as

T = Tn. (3)



Jn is also called the nt™ Jacobsthal number. For convenience, we also define
Jm=0,YmeZ m<O0. (4)
Based on (4), we state an obvious fact and a known result as a lemma for easy reference.

Lemma 1 The recursion (1) can be extended as
Je =Jt—1+2Jt—2, t€Z, t#0.

The value of Jn (n € Z°) can be computed by
1
Jo =32 (=), neZ’. (5)

The Jacobsthal numbers have applications in such areas as tiling, graph matching,
alternating sign matrices, etc. ([1, 2, 4, 5]).

Let
keZ", {s1,82,...,8k-1,5k) CZ%n—1>s; >s9>...> s, > 0. (6)
Let J1(n;s1,89,...,sk) denote the following subset of J(n):
Ji(ngsy,s2,...,sk) ={an—1an_2...a1ap € J(n) : a5, =1 (1 <i <k},

i.e., the subset of Jacobsthal binary sequences that have the digit 1 at each of the
s;‘h (1 €1 < k) positions from the right. Let Ny(n;s1,82,...,8k) =1J1(n;s1,82,...,8K)].
R. Grimaldi[4] considers the case where k = 1, establishing a recursion for Nj(n;s;) and
then deriving the following formula:

1
Ni(nss) = 5(2TL + (=)™ + (=1)"%2%) (7)
2% n—s n—s—1

= ]n_§(2 + (=1 ). (8)
For the general case, finding a formula for Ni(n; s, so, ..., sk) by using a recursion seems
extremely difficult. In this article we employ a different approach to dealing with this

problem, namely, considering the following dual problem of Nq(n;sq,s2,...,sk).

Let

TeZ, {tity, .ttt CZY M —1 >t >t > >t > 0. (9)

Let Jo(n;ty, to, ..., t;) denote the following subset of J(n):
Jomstr,to, ..., ty) ={an_1an2...a1ap € J(n) 1 a;, =0 (1 <i< 1)},

i.e., the subset of Jacobsthal binary sequences that have the digit 0 at each of the
tih (1 <1< 1) positions from the right. Let No(n;ty,ta, ..., t:) =[Jo(Mti, to, ..o, te)].

In the next section we present characterizations of the sets J(n) and Jo(n;t1,ta, ..., t).
Based on them, some combinatorial identities involving J.,, No(n;tq,t2,...,t;) and
Ni(n;sq,so,...,sk) are derived in Section 3. From these identities, formulas for
No(m;tg,ta,...,t) and Ny(n;sq,ss,...,Sk) are obtained in the last section.



1 Characterizations of the sets J(n) and Jy(n;t;, to,..., t;)

For easy reference we state a trivial fact, that is

Lemma 2 For any i,j € Z", JAII(G) € J(i +3), where JAITG) ={allb: a € J(i),b €
J(3) and || stands for the concatenation operation on strings.

We now characterize the set J(n). We need

Lemma 3 Letl € Z*. The string « of the 0-digit followed by 1—1 1-digits is a Jacobsthal
binary string of length 1.

Proof. If 1 =2m+1 for some m € Z°, the 1 — 1 = 2m 1-digits in « can be regarded
as m copies of the string 11. Since both strings 11, 0 € A, we know o« € A. If l = 2m
for some m € Z°, the last 1 — 2 = 2m — 2 1-digits in « can be regarded as m — 1 copies
of the string 11. Since both string 11, 01 € A, we know x € A. [

Theorem 1 For any n € Z", a binary sequence of length n is in J(n) if and only if it
s an all-1 sequence of even length or its first 0-digit from the left is preceded by an all-1
subsequence of even length.

Proof. Since the string 1 € A but the string 11 € A, the all-1 sequence of length n
is in J(n) if and only if n is even. Therefore, in what follows we only need to consider
the case in which the sequence an_1an—2...a;ag has at least one 0-digit.

Let an_i be the first 0-digit from the left. Then
An—1 =0apn—2 =...= an_(i_l) =1.

Since the two strings 1,10 € A, in order for an,_1an_2...0a10p to be in J(n), the subse-
quence an—1an-—2...0y_(i—1) has to be formed by copies of the element 11 € A. This
is impossible when i — 1 is odd.

We now prove that when 1 —1 is even, the sequence an_1an_o...0ajag is in J(n) by
induction on the number, say u, of 0-digits in the sequence. For the case where u =1,
let a; = 0,. By Lemma 3, the subsequence ajai_1...a1ag € J(i 4+ 1). Recalling that
Un—10n—2...air1 € J(n—1—1) we know an_1an_2...a1aq9 € J(n) by Lemma 2. This
establishes the induction basis.

For the inductive step, suppose that u > 1 and the conclusion is true for any sequence
having exactly u — 1 0-digits. Let a; be the first 0-digit from the right in a sequence
having u 0-digits. By Lemma 3, we know aja;_1...a9=011...1... a9 € J(1+1). By the
induction hypothesis, an_1an_2...a141 € J(n—1—1). Therefore, an_1an_2...ajag €
J(n) by Lemma 2. This completes the induction. [

From this theorem, one can obtain the known formula (5) for |J(n)|.

Corollary 1
B 2n+l + (71)1’1

I a—



Proof. Let J(n,1i) denote the set of such Jacobsthal binary sequences that have their
first 0-digit at the (2i+1)St position from the left, and A,, the set consisting of the all-1
sequence of length n when 2 | n, and A,, =) when 2 { n. Then

M= (J JTmi)ua,

0<ig(n—1)/2

is a partition of J(n). By Theorem 1, when n = 2m (m € Z*), we have :

Tl = Yyt 22m-Cirt 4 = Iymotgm-b g = 1ym 4iq1 =

s m n+1 _1\n
=2y N a1 = () 4 = A

When n =2m+ 1 (m € Z°%), we have :

J(n)| = Z{lo 92m+1—(2i+1) _ Zinlo 922(m—i) _ Z?lo 22t _

_ moo4i o o4mFlog o 2ntly(—nm
=) it4 = 3 = 3 - O

By Theorem 1 we can give a characterization of the set Jo(n;ti,t2,...,t:). Recall
that the parameters satisfy (9):

reZt {tite, ot e  CZ0 =1 >t >ty > >t 2 0.

Theorem 2 For any n € Z*, the binary sequence an_1an_o...aiag of length n is in
Jo(m;ti, to, ..., tr) if and only if the subsequence an_10an_2o...0a¢,+1 s in J(n —1—t;)
and ag, =0 (1 <i<r).

Proof. Let a; be the first 0-digit from the left. Then j > t;. By Theorem 1,
Gn—1an—2...0a1a9 € J(n) if and only if the entries before aj are all 1’s, i.e., 2In — 1 —3j,
which is the necessary and sufficient condition for an_1an—2...a¢,+1 tobein J(n—1—
t1). O

It is somewhat surprising that whether an,_1an_2...a1a9 € Jo(n;ty,ta,...,t:) or
not is determined only by the subsequence an_jan—2...a¢;+1 and ay, =0 (1 <1< 1),
but is independent of the digits a; (0 <j <t1 —1, j #ti).

Based on these theorems, some combinatorial identities involving J, Ng(n;tq,to,...,t;)
and Ni(n;sq,s9,...,8K) can be established, which will be presented in the next section.

2 Some Combinatorial Identities Involving J,,, Ng(n;tq, to, ..., t;)
and Nl(n; $1,89,..., Sk)

In this section some combinatorial identities involving Jn,, Ng(n;ty,ts,...,t;) and
Ni(n;sq,so,...,sk) are proved. Applying them to obtain formulas for Ng(n; tq, to,. .., t;)
and Nq(n;sq,S9,...,sk) will be the task of the next section.

We need a simple lemma :



Lemma 4 For anyn € Z9,
2" = 3Jn—1+ (71)n.

Proof. Recalling that J_1 = 0 (cf. (4)), we know that the statement is true when
n=0. When n € Z", the statement is equivalent to (5). O

We can now state the following

Theorem 3

No(msti,to, . oute) = BJg—r + (=" " g, (10)
NO(n; t17 t2) s 7tr) = ]n—r + (_1)n7t171]t1—r (11)
Proof. By Theorem 2, for a sequence an_1an_2...0a1ag in Jo(n;ty, ta, ..., t.), there

are [J(n—t; —1)| = Jn—_¢,—1 many choices for the subsequences an_jan_s...a¢, 1. For
each of these choices, there are two choices for each of the digits a; (0 <j <t; —1,j #
t2,t3,...,t). Noting that ay; =0 (1 <j < 1), we have

No(n;ty, te,...,ty) = |](n_t1_1)|.2t1+1*1‘

— ]n—tl—lztliﬂ_l-

By Lemma 4,
2’[1—T‘+1 — 3]‘[171‘ + (_1)t1—T+1‘

Therefore,
NO(“” ti,ta,. .. atT) = Inftlfl[gltlfr + (_1)t17r+1],

which is (10). Similarly, we can also write

No(n;ty, ta, ..., t) =

— ]n7t1712t1_r+1

— 1[2T‘L*t1 _|_ (_1)ﬂ7t171]2t171’+1

[2T‘L*T+I + (_1)1’\.7‘(1712’[171‘4»1]

—_— | =W

= S + (DT ()T TIE] 4 ()BT
= Jnr+ (_1)n7t171]t1_r,
which proves (11). O

From this theorem, an identity can be immediately derived.

Corollary 2 We have the identity
Bt —r + (=D g1 = T + (DT

This identity can also be checked by using (5).

Let us look at the casesr=1 and r = 2.



Corollary 3 Ifn—12>u >0, then

No(n;u) = [3]u—1+(_1)u]]n—u—1 (12)
No(miuw) = Jno1+ (D" uy (13)

Example 1 From (13) and Jo =]J1 = 1,J2 = 3, we have

No(1;0) = Jo+ (—1)°]_1 =1,
No(2;0) = Ji+(-1)'J_1 =1,
No(2;1) = Ji+(-1)T =2,
No(3;0) = Jo+(—1)*]_1 =3,
No(3;1) = Jo+(—1)'o =2,
No(3;2) Jo+ (=1)°]1 =4

The corresponding subsets of J(n) are

Jo(1;0) = {0}, Jo(2;0) = {00}, Jo(2;1) = {00,01}.
Jo(3;0) = {000,010, 110}, Jo(3; 1) = {000, 001}, Jo(3; 2) = {000,001, 010, 011}.

Corollary 4 If n—1>u>0, then

BJu1+ (D" -1 =Jn1 + (=)™ g

For Ni(n;sq,S8o,...,8%), we have

Theorem 4 Suppose that s1,S2,...,sk satisfy (6). Then Ni(n;si,s2,...,8¢) =
Jn+ 2 a0 X icick—rt1 (]::I) T + (=157 g ]
Proof. First of all, for any 1<t <k, by (11) we have :
Z1<11<12<...<u<k No(1;8iy, Sig, -5 8i,) =
2 i<iy<ip<..<ip<k Un—r + Fl)n_sil_l]sil—r]-

Since 1 < i1 <13 < ... < i, <k, the index 1; must satisfy 1 <1i; < k—7r+ 1. After

i, has been chosen from this range, there are (k;_lll) ways of choosing 1s,...,1;. Since
the summands Jn_+ + (—1)“7511*11311,r do not depend on the values of is,...,1i,, we

have :

Zlgil<12<...<irgk UTL—T + (_1)“-511—11511 —r] -

Zléilék—r+l (kri_lll) Jn—v+ (_1)n7811711811*r] .

Further, using i to substitute for i; in the summation on the right hand side, yields :



Zl<11<ig<...<iT<k No(1;8iy, Sigy -5 81,) =

D 1<i<k—r+1 (l::f) D 4+ (=15 g o]

By the inclusion-exclusion principle, Ni(n;sq,892,...,8k) =

Jn + Zlgrgk (=17 Zl<11<ig<...<iT<k No(1; 81y, Sy, - - -5 8i,)
]Tl + Zlgrgk (_1)T Z1<i§k—r+1 (1-::;) Un—r + (_1)n_si_llsi—‘r )

which proves (4) . O

Similarly, using (10) instead of (11) yields the following :

Theorem 5 Suppose that si,s2,...,sx satisfy (6). Then Ni(n;si,s2,...,sx) =

Jn+ 2 1cra (1" 2 icickria (]::I) [3]si—r 4+ (=15 " g 1.

Let us look at the cases for k=1, 2.

Corollary 5 For anyn € Zt andmn—1>u >0,
Ni(mu) = 2Jn o+ (1) "Ju
Ni(mu) = Jo = Blu—1+ (=1D)"Tn—u-1.
Proof. By Theorem 4 and Lemma 1,
Ni(mu) = Jn+ (D' 2) Dner + (D™
= Jn—Tna+ (=) "y
= 2Jn 2+ (=) Yy 1.
And by Theorem 5 we obtain :
Ni(mw) = Jn+ (=D Blua1 + (1) % n—u-1]
= Jn —BJu—1+ (=D)"n—wl. O

Example 2 By Corollary 5, we have :
Ni(1;0) =21 +]J-1 =0, Ni(2;0)=2Jp+]-1 =2, Ni(2;1) =2J]p—Jo =1,

Ni(3;0) =2]1 —=J-1 =2, Ni(3;1)=2]1 +Jo=3, Ni(3;2)=2]; -] =1.

The corresponding subsets of J(n) are

J1(1;0) =0, J1(2;0) ={01,11}, J1(2;1) = {11},

J1(3;0) = {001,011}, J1(3;1) ={010,011,110}, J1(3;2) = {110}.



Example 3 Applying Corollary 5, we have

Ni(1;0)=T1 —BJ-1+UJo=1-1=0.
Ni(2;0) =] —BJ-1+ 11 =3-1=2.
Ny (1) =Jo = BJo—1Jo=3-2=1
Ni(3;0) =J3—BJ-1+1J2=5-3=2.
Ni(3;1) =J3—BJo—1J1i=5—-2=
Ni(3;2)=J3-Bli+1lJo=5—-4=

The corresponding subsets of J(n) have been shown in Example 2.

Now let us turn to the case of k = 2. In this case, n > 1.

Corollary 6 Forany n€Z™, n>2, and n—1>u>v >0, we have :

Nl(n; u,v) = 2[]71—2 - ]n—3] + (_1)n7uUu—1 - ]u—Z] + (_1)117\1]\}_1' (14)
Forany n€Z"™",n>3, n—1>u>v>0, u>2, wehave :
Ni(nw,v) =4Jnga + (=) 2J 3+ (=)™ V]y—1. (15)

Proof. By Theorem 4, Ni(n;si,ss) =

Jn 4 ( Z1<1<2 (%:})Unfl + (=Sl )+
+ (321) Unoa+ (15171, ] =
Jn = n-1+ (_1)1173171151—1 +Jn-1+ (—1)“75271152_1] +
+ Jno + (D) 5171 o] =

In - 2]7171 + ]nf2 + (71)71—51]5171 + (71)11—52]5271 +
+(_1)n_81_118172 =
2[]n—2 - ]n—3] + (_1)11751[]51—1 - 151—2] + (_1)n752152_1
Substituting u,v for sy, s9, respectively, gives (14).
When n > 3, and s; > 2, by Lemma 1 we have :

]n—2 - In—3 - 2]n—47 ]sl—l - 151—2 = 2]31—3'
So ,

Ni(n;si,s2) = 20n—2 —Jn-al +(=1)""* s, 1 — Js,—2] + (=1)" 25,1
= 4]71—4 + (_1)117512]51—3 + (_1)11752]32_1.

Substituting u,v for s, s9, respectively, gives (15). O

The identities in this section can be used to give formulas for Ng(n; t1,ta,...,t;) and
Ny(m;sq1,89,...,8%), which will be presented in the next section.



3 Formulas for Ny(n;tq,to,...,t.) and Ni(n;sq,s9, ..., Sk)

For Np(n;tq,to,...,t:), we have:

Theorem 6 The following holds :
1

No(nity, to, ..., ty) = (5)2““”[2“7t1 + (=il (16)

Proof. From the proof of Theorem 3 and equality (5), we have
No(mst, ta, .. te) = Jnoig, - 2077
_ 12t1+17r[2n7t1 + (_1)T‘Lft171] O
3
Note that Ng(n;ty,ts,...,t:) only depends on the parameters n,t; and r, and is
independent of the values of the parameters to, ..., t;.

Theorems 3 and 4 provide an explicit formulas for Ny (n;s1,89,...,5k), as shown in

the following theorem. Its proof is obvious and will be omitted.
Theorem 7 Suppose that si,S2,...,sk satisfy (6). Then Ni(n;si,so,...,sk) =
(M + (-1)™) +

+ (%) Zlgrgk(_l)r Zlgigk—r+1 (E:;)QsifrJrl(ansi + (_1)11751*1)'

When k = 1, we have :
Corollary 7

Nifnss) = 22" = 2525 4 (1)1 4 (1)) (a7)
Example 4 By (17), the first several values of Ni(n:s) can be computed as follows.
Ni(10) = 527~ 2% + (-1 + (1)} =0,
Ni(2:0) = - 20+ (-4 (-1 =2
NiZ1) = 3082+ (14 (-1 = 1,
Ni(3:0) = 32" 20 + (-1 + () =2,
Ni(B1) = 32— 2%+ (1) ()Y =3,
Ni(32) = {0420+ (04 (C1P =1

The corresponding subsets of J(n) have been shown in Example 2.
When k = 2, we have :

Corollary 8 Forany n>2 and n—1>u>v >0, we have :

Ni(riwy) = (5) Y (SRR (1Y o (1),
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