
Public key cryptosystem MST3: cryptanalysis and realization

Pavol Svaba
Tran van Trung

Institut für Experimentelle Mathematik
Universität Duisburg-Essen

Ellernstrasse 29
45326 Essen, Germany

{svaba,trung}@iem.uni-due.de

Abstract

A new type of public key cryptosystem, called MST3, has been recently introduced
on the basis of covers and logarithmic signatures for non-abelian finite groups. The
class of Suzuki 2-groups has been proposed for a possible realization of the generic
scheme. Due to their simple structure, the groups enable us to study the security of the
system and also provide an efficient implementation. An earlier relevant result of the
cryptanalysis has shown that the transversal logarithmic signatures are unfit for use in
this realization. In this paper we present a revised version of MST3 for the Suzuki 2-
groups and show a thorough study of its security. Using heuristic and algebraic methods
we establish strong lower bounds for the workload of conceivable direct attacks on the
private key of the scheme. We then develop a powerful chosen plaintext attack which
allows us to rule out the usage of a certain class of logarithmic signatures. In addition,
we show a class of logarithmic signatures withstanding this attack and thus to our
knowledge they could be used in the realization of the scheme. Finally, we describe
and discuss the implementation issues of the scheme in detail and include data of its
performance obtained from an experimental result.

1 Introduction

In recent times, asymmetric cryptography has become essential to many information sys-
tems. Many public key cryptosystems have been proposed, but only few of such systems
remain unbroken. Most of these are based on the perceived intractibility of certain math-
ematical problems in very large, finite cyclic groups in certain particular representations.
Prominent hard problems are i) the problem of factoring large integers, ii) the Discrete
Logarithm Problem (DLP) in particular representations of large cyclic groups, and iii)
finding a short basis for a given integral lattice L of large dimension. Unfortunately, in
view of P. Shor’s quantum algorithms for integer factoring, and solving the DLP [12], the
known public-key systems will be insecure when quantum computers become practical. A
recent report edited by P. Nguyen [11] identifies these and other problems facing the field
of information security in the future.

Recently, a new type of public key cryptosystem, called MST3 [6], has been developed on
the basis of logarithmic signatures and covers of finite non-abelian groups. For a possible
realization of the generic version of this system, the Suzuki 2-groups have been suggested.

1

Due to their simple structure, these groups make it possible for studying the security of the
scheme. As shown in previous results, a lower bound for the work effort required in terms
of the size of the underlying groups is obtained [6]. By exploiting the distinguishing feature
of the group operation in the Suzuki 2-groups, a further analysis in [10] has shown that the
transversal logarithmic signatures are unfit to use in this realization.

In this paper we present an approach to re-designing MST3 for the Suzuki 2-groups. The
method makes use of the characteristics of the group operation as well as the structure
of these groups. We present a thorough study of the security of the scheme by using
heuristic and algebraic methods. We first determine the complexity for the lower bounds of
conceivable direct attacks to recover the private key in terms of the size of the groups. These
bounds give a hint of the strength of the system. We further develop a powerful method for
a chosen plaintext attack showing that a certain class of transversal logarithmic signatures
cannot be used. Moreover, there are classes of logarithmic signatures that withstand this
attack when used in MST3. We examine the usage of one such class in the realization of
the scheme for which we are able to determine the complexity of this type of attack.

The paper is organized as follows: In Section 2 we summarize some basic facts above
covers and logarithmic signatures for finite groups and their related induced mappings; a
description of the Suzuki 2-groups is included. In Section 3 we present a revised version
of the cryptosystem MST3 and show its encryption, decryption. In Section 4 we study
various direct attacks on the scheme, namely determining the private key from the public
key, and show the lower bounds on the complexity of such attacks. In Section 5 we describe
algorithms for generating logarithmic signatures for use in a possible implementation of
the scheme. Also methods for factorization with respect to these logarithmic signatures
are shown. Section 6 deals with the development of a powerful chosen plaintext attack
on the scheme utilizing transversal logarithmic signatures. It is shown that the class of
fused transversal logarithmic signatures withstands this type of attack. In Section 7 we
present data of performance (including the attack complexity) of the scheme for various
parameter sets from an experimental implementation. In addition, a method of reducing
the key storage is described. We provide a conclusion in Section 8.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic
signatures, covers for finite groups and their induced mappings. For more details the reader
is refered to [8], [9]. The group theoretic notation used is standard and may be found in [4]
or in any textbook of group theory.

Let G be a finite abstract group, we define the width of G to be the positive integer
w = dlog |G|e. Denote by G[Z] the collection of all finite sequences of elements in G and view
the elements of G[Z] as single-row matrices with entries in G. Let X = [x1, x2, . . . , xr] and
Y = [y1,y2, . . . ,ys] be two elements in G[Z]. We define

X · Y = [x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . , x2ys, . . . , xry1, xry2, . . . , xrys]

Instead of X · Y we will also write X⊗ Y as ordinary tensor product of matrices, or for short
we will write XY. If X = [x1, . . . , xr] ∈ G[Z], we denote by X the element

∑r
i=1 xi in the

group ring ZG.

2

Suppose that α = [A1,A2, . . . ,As] is a sequence of Ai ∈ G[Z], such that
∑s

i=1 |Ai| is
bounded by a polynomial in log |G|. Let

A1 ·A2 · · ·As =
∑
g∈G

agg , ag ∈ Z (2.1)

Let S be a subset of G, then we say that α is

(i) a cover for G (or S), if ag > 0 for all g ∈ G (g ∈ S).

(ii) a logarithmic signature for G (or S), if ag = 1 for every g ∈ G (g ∈ S).

Thus, a cover α = [A1, . . . ,As] for a subset S of a finite group G can be viewed as an
ordered collection of subsets Ai of G with |Ai| = ri such that each element h ∈ S can be
expressed in at least one way as a product of the form

h = g1 · g2 · · ·gs−1 · gs (2.2)

for gi ∈ Ai.

If every h ∈ S can be expressed in exactly one way by Equation (2.2), then α is called a
logarithmic signature for S. Thus, logarithmic signatures are a special class of covers.

The Ai are called the blocks, and the vector (r1, . . . , rs) with ri = |Ai| the type of α.
We say that α is nontrivial if s > 2 and ri > 2 for 1 6 i 6 s; otherwise α is said to be
trivial. Cover α is called tame (or factorizable) if the factorization in Equation (2.2) can
be achieved in time polynomial in the width w of G, it is called wild if it is not tame. Let
γ : 1G = G0 < G1 < · · · < Gs = G be a chain of subgroups of G, and let Ai be an ordered,
complete set of right (or left) coset representatives of Gi−1 in Gi. It is clear that [A1, . . . ,As]

forms a logarithmic signature for G, called transversal logarithmic signature. Transversal
logarithmic signatures are an important example of tame logarithmic signatures [9].

In general, the problem of finding a factorization in Equation (2.2) with respect to a
randomly generated cover is presumedly intractable. There are strong evidences in support
of the hardness of the problem. For example, let G be a cyclic group and g be a generator
of G. Let α = [A1,A2, . . . ,As] be any cover for G, for which the elements of Ai are written
as powers of g. Then the factorization with respect to α amounts to solving the Discrete
Logarithm Problem (DLP) in G.

Remark 2.1 It is worth noting that the problem of how to generate random covers for
finite groups of large order is completely solved in [13]. Probabilistic method shows that
generation of random covers for groups of large order can be done with high efficiency and
at minimum cost.

The crucial point that makes covers useful for group based cryptography is that if the
above factorization problem is intractable, then the covers essentially induce one-way func-
tions. This can be described as follows. Let α = [A1,A2, . . . ,As] be a cover of type
(r1, r2, . . . , rs) for G with Ai = [ai,1,ai,2, . . . ,ai,ri

] and let m =
∏s

i=1 ri. Let m1 = 1 and
mi =

∏i−1
j=1 rj for i = 2, . . . , s. Let τ denote the canonical bijection from Zr1⊕Zr2⊕· · ·⊕Zrs

on Zm; i.e.

3

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm

τ(j1, j2, . . . , js) :=

s∑
i=1

jimi.

Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → G

ᾰ(x) := a1,j1 · a2,j2 · · ·as,js ,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the mapping
ᾰ(x) is efficiently computable.

Conversely, given a cover α and an element y ∈ G, to determine any element x ∈ ᾰ−1(y) it
is necessary to obtain any one of the possible factorizations of type (2.2) for y and determine
indices j1, j2, . . . , js such that y = a1,j1 · a2,j2 · · ·as,js . This is possible if and only if α is
tame. Once a vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js) can be
computed efficiently.

There are different types of transformations that can apply to covers. Here, we consider
just one type, which is used in the next sections.

Assume that α = [A1,A2, . . . ,As] is a cover for G. Let g0,g1, . . . ,gs ∈ G, and consider
β = [B1,B2, . . . ,Bs] with Bi = g−1

i−1Aigi. We say that β is a two sided transform of α by
g0,g1, . . . ,gs; in the special case, where g0 = 1 and gs = 1, β is called a sandwich of α.
Note that β is a cover for G.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆. For example,
if β is a sandwich of α, then α and β are obviously equivalent.

We make use of following cryptographic hypothesis that if α = [A1,A2, . . . ,As] is a
random cover for a “large” subset S of a group G, then finding a factorization in (2.2) is an
intractable problem. In other words, the mapping

ᾰ : Zm → S

induced by α with m =
∏s

i=1 |Ai| is a one-way function.

2.1 Suzuki 2-groups

In [6] a generic version of the public-key cryptosystem MST3 is described for an arbitrarily
abstract non-abelian group G. The group G should only satisfy the following property: G

has a nontrivial center Z such that G does not split over Z, i.e. there is no subgroup H < G

with H∩Z = 1 such that G = Z ·H. Moreover, we assume that the order of Z is sufficiently
large so that exhaustive search problems are computationally infeasible in Z.

The Suzuki 2-groups have been suggested for use in a possible realization of the generic
version of MST3. On one hand, due to their structure, the Suzuki 2-groups allow one to
study the security of the system, and on the other hand they possess a simple presentation
allowing an efficient implementation of the scheme. Before we present a new version of MST3

using the Suzuki 2-groups in the next section, we describe for the sake of completeness this
special class of 2-groups.

4

To begin with, we recall some basic facts about finite p-groups, where p denotes a prime
number. A finite group G of order a power of p is called a p-group, i.e. |G| = pn for a
certain positive integer n. The least common multiple of the orders of the elements of G

is called the exponent of G. An abelian (commutative) p-group G of exponent p is called
elementary abelian p-group. The set Z(G) = {z ∈ G : zg = gz, ∀g ∈ G} is called the center
of G. It is well-known that Z(G) is a subgroup of order at least p for any p-group G. The
subgroup G ′ generated by all the elements of the form x−1y−1xy with x,y ∈ G is called
the commutator subgroup of G. The so-called Frattini subgroup of G denoted Φ(G) is by
definition the intersection of all the maximal subgroups of G. If G is a p-group, the factor
group G/Φ(G) is elementary abelian. In particular, if G is a 2-group, Φ(G) =< g2|g ∈ G >.
Finally, an element of order 2 in a group is called an involution.

Formally a Suzuki 2-group is defined as a nonabelian 2-group with more than one invo-
lution, having a cyclic group of automorphisms which permutes its involutions transitively.
This class of 2-groups was studied and characterized by G. Higman [3]. In particular, in any
Suzuki 2-group G we have Z(G) = Φ(G) = G ′ = Ω1(G), where Ω1(G) =< g ∈ G : g2 = 1 >

and |Z(G)| = q = 2m, m > 1. It is shown in [3] that the order of G is either q2 or q3. Thus
all the involutions of G are in the center of G, therefore Z(G) and the factor group G/Φ(G)

are elementary abelian. Consequently, all elements not in Z(G) have order 4, i.e. G is of
exponent 4. It is known that G has an automorphism ξ of order q − 1 cyclically permuting
the involutions of G [3], (see also [5]).

In our realization of MST3 we only consider the class of Suzuki 2-groups having order
q2. Using Higman’s notation a Suzuki 2-group of order q2 will be denoted by A(m, θ). Let
q = 2m with 3 6 m ∈ N such that the field Fq has a nontrivial automorphism θ of odd
order. This implies that m is not a power of 2. The groups A(m, θ) can be defined as
matrix groups.

In fact, if we define
G := {S(a,b) | a,b ∈ Fq},

where

S(a,b) =

 1 a b

0 1 aθ

0 0 1


is a 3×3 -matrix over Fq, then it is shown that the group G is isomorphic to A(m, θ). Thus
G has order q2 and we have

Z := Z(G) = Φ(G) = G ′ = Ω1(G) = {S(0,b) | b ∈ Fq}.

As the center Z(G) is elementary abelian of order q, it can be identified with the additive
group of the field Fq. Also the factor group G/Φ(G) is an elementary abelian group of order
q. It is then easily verified that the multiplication of two elements in G is given by the rule:

S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2). (2.3)

In this matrix form representation the Suzuki 2-groups A(m, θ) can be considered as
subgroups of the general linear group GL(3,q) over Fq.

It has been shown in [3] that the groups A(m, θ) and A(m,φ) are isomorphic if and only
if φ = θ±1 .

5

For any 0 6= λ ∈ Fq the matrix

Λ =

 1 0 0
0 λ 0
0 0 λθ+1


induces an automorphism of A(m, θ). And Λ acts on A(m, θ) according to the rule

Λ−1S(a,b)Λ = S(aλ,bλθ+1).

If λ = φ is a primitive element in Fq, then Λ has order q− 1 and permutes cyclically the
q − 1 involutions in the center of A(m, θ).

3 Public key cryptosystem MST3 on Suzuki 2-groups

Notation

– From now on let G := A(m, θ) be a Suzuki 2-group defined on Fq with q = 2m.

– As Z = Z(G) is an elementary abelian 2-group of order q, we may view Z as a vector
space of dimension m over F2. Therefore, the automorphism group of Z is the general
linear group GL(m, 2), (i.e. the group is formed by all m×m invertible matrices over
F2). Denote Aut(Z) := GL(m, 2). If z = S(0,b) ∈ Z and ϕ ∈ Aut(Z), then the action
of ϕ on z is defined by zϕ := S(0,bϕ).

– Let g = S(x,y) ∈ G. We denote g.a := x and g.b := y.

Remark 3.1 Let f be any homomorphism from G to Z. Let N = Ker(f). Then N is normal
subgroup of G and G/N ∼= f(G) ⊆ Z. So, the factor group G/N is abelian. As the commutator
group G ′ = Z we have N > Z. It follows that f(z) = 1 for every z ∈ Z.

Key generation

Select a large group G as described above and generate

1. a factorizable logarithmic signature β = [B1, . . . ,Bs] := (bij) of type (r1, . . . , rs) for
Z.

2. a random cover α = [A1,A2, . . . ,As] := (aij) of the same type as β for a certain
subset J of G such that A1, . . . ,As ⊆ G \ Z. The elements in each block Ai =

[ai,1,ai,2, . . . ,ai,ri
] satisfy the following conditions:

(i) a(ij1).a 6= a(ij2).a, for j1 6= j2. This is equivalent to say that a(ij1) and a(ij2) are
not in the same coset of Z.

(ii)
∑

j=1,...,ri
a(ij).a = 0. The meaning of this condition will be obvious when we

discuss the security of the system in the subsequent section.

Further select

6

3. t0, t1 . . . , ts ∈ G \ Z.

4. a homomorphism f : G −→ Z

and compute

5. γ = (hij), hij = t−1
i−1.aij.f(aij).bij.ti

Then α = (aij) and γ = (hij) are the public key. The items β = (bij), t0, . . . , ts, and f are
the private key.

Encryption

Input: A message x ∈ Z and the public key α and γ.

Output: A ciphertext (y1,y2) of the message x.

1. choose a random R ∈ Z|Z| and compute

2. y1 = ᾰ(R).x,

y2 = γ̆(R).x = t−1
0 .ᾰ(R).f(ᾰ(R)).β̆(R).ts.x

Decryption

Input: A ciphertext pair (y1,y2) and the private key β = (bij), t0, . . . , ts, f.

Output: The message x ∈ Z that corresponds to the ciphertext (y1,y2).

1. Using the fact that f(y1) = f(ᾰ(R)) (from Remark 3.1) compute
β̆(R) = f(ᾰ(R))−1.y−1

1 .t0.y2.t−1
s = f(y1)

−1.y−1
1 .t0.y2.t−1

s

2. Recover R from β̆(R) which is efficiently computable as β is factorizable. By computing
ᾰ(R) we then recover x from y1.

Specification of the homomorphism f

For the realization of the cryptosystem MST3 we use the following class of homomorphisms.
Let g = S(g.a,g.b) ∈ G, and let σ ∈ Aut(Z) := GL(m, 2). Define

f : G −→ Z

f(g) := S(0,gσ
.a).

Then f is a homomorphism from G to Z.

The MST3 as just described for the Suzuki 2-groups can be generalized, of course, for
many other classes of finite groups, for example, the class of special p-groups. An interesting
class of p-groups, also dubbed Suzuki p-groups, for odd primes p, see [1], may be viewed as
a natural candidate for the underlying groups of MST3.

7

The encryption method of MST3 as described above is a randomized encryption. However,
if we consider Z|Z| as the message space and encrypt a message z ∈ Z|Z| by computing

(y1,y2) = (ᾰ(z), γ̆(z))

as ciphertext, we obtain a non-randomized encryption. It is worth noting that the non-
randomized encryption can be set up within the framework of the randomized encryption
method: replace R by z and take x = 1Z.

To make the discussion of the cryptanalysis of the scheme in the subsequent sections
simpler, we only consider the non-randomized encryption.

4 Attack on private key

In this section we investigate various types of possible direct attacks on the private key of
MST3. We aim to find lower bounds on the workload with respect to those attacks. It turns
out that those bounds have a very large size in terms of the order of the groups used.

4.1 Logarithmic signatures for Z and their two sided transformations

First we remark that if the adversary attempts to extract information about β = (bij),
a main part of the private key, it is sufficient for him to obtain a logarithmic signature
β ′ equivalent to β, i.e. any β ′ which is a sandwich transform of β. A stronger result in
[10] shows that it is even sufficient for the adversary to break the system if he is able to
determine a logarithmic signature β∗ for Z such that

β̆∗(x) = β̆(x).c (4.4)

for all x ∈ Z|Z|, where c ∈ Z is a fixed element. For example, if β∗ = [B∗1 , · · · ,B∗s] with B∗i =

z−1
i−1Bizi is a two sided transformation of β with z0, z1, · · · , zs ∈ Z, then β̆∗(x) = β̆(x).c,

where c = z0.zs.

The result shows a fact relevant to the way of counting the number of elements ti used
in generating γ. In fact, if we replace ti by t∗i = ti.zi, for zi ∈ Z, i = 0, . . . , s, we obtain a
β∗ such that β̆∗(x) = β̆(x).

∏s
i=0 zi. Consequently, the adversary only needs to know the

cosets of Z in G with coset representatives ti’s. Then (s)he can use any coset representative
t∗i = ti.zi in place of ti. Hence, in the security analysis of the system, it suffices to determine
the cosets of ti with respect to Z and not the element ti itself.

We call a logarithmic signature β∗ for Z satisfying (4.4) a translation of β.

Definition 4.1 Let K = [β, f, t0, . . . , ts] be a private key for MST3. We say that key
K ′ = [β ′, f, t ′0, . . . , t

′
s] is an equivalent to K if β ′ is a translation of β and t ′i = ti.zi for

some zi ∈ Z and all i ∈ {0, . . . , s}.

Our aim is to prove lower bounds on the work effort required for recovering an equivalent
private key. The workload is measured in terms of the size of the involved groups and we
will apply heuristic and algebraic methods to this analysis.

8

Now, the adversary attempts to extract information about the private key from the public
knowledge of α = (aij) and γ = (hij).

By this attack, as adversary, we try to construct a key K ′ = [β ′, f, t ′0, . . . , t
′
s] equivalent

to the private key K = [β, f, t0, . . . , ts]. We first build an equation with unknowns involv-
ing information about the private key and then investigate the complexity of solving this
equation. For this purpose we particularly exploit the operation (multiplication) in the
underlying Suzuki 2-groups.

4.2 Building an equation

For convenience recall that

• S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2)

• ti ∈ G, ti = S(t(i).a , t(i).b), α := (aij), aij = S(a(i,j).a , a(i,j).b).

• g = S(g.a,g.b) ∈ G, f(g) := S(0,gσ
.a) where σ ∈ Aut(Z) = GL(m, 2).

Further recall that gZ = hZ in G with g = S(x1, x2) and h = S(y1,y2), if and only if
x1 = y1.

We start with

γ = (hij) = (t−1
i−1 aij bij f(aij) ti) = (S(h(i,j).a , h(i,j).b))

and focus on one block of γ. W.l.o.g., let us consider the first block. The elements in this
block are h11,h12, · · · ,h1r1 . Let J ⊆ {1, . . . , r1} be a subset such that |J| is even. Then, if
we sum up the elements of the first block having indices in J, we obtain the following two
expressions corresponding to the ”.a part” and ”.b part” of the sum.

∑
j∈J, |J|even

h(1,j).a =
∑
j∈J

a(1,j).a (4.5)

∑
j∈J, |J|even

h(1,j).b =
∑
j∈J

a(1,j).b +
∑
j∈J

b(1,j).b +
∑
j∈J

aσ
(1,j).a

+ t(0).a.
∑
j∈J

aθ
(1,j).a + tθ

(1).a.
∑
j∈J

a(1,j).a (4.6)

Adding
∑

j∈J a(1,j).b to (4.6) results in equation∑
j∈J

a(1,j).b +
∑
j∈J

h(1,j).b =
∑
j∈J

b(1,j).b +
∑
j∈J

aσ
(1,j).a

+ t(0).a.
∑
j∈J

aθ
(1,j).a + tθ

(1).a.
∑
j∈J

a(1,j).a (4.7)

Note that the left side of Equation (4.7) is known.

From h(1,1).a = t(0).a + a(1,1).a + t(1).a we obtain

t(0).a = h(1,1).a + t(1).a + a(1,1).a

9

Replacing t(0).a in (4.7) yields∑
j∈J, |J|even

(a(1,j).b + h(1,j).b) =
∑
j∈J

b(1,j).b +
∑
j∈J

aσ
(1,j).a

+
(
a(1,1).a + t(1).a + h(1,1).a

)
.
∑
j∈J

aθ
(1,j).a

+ tθ
(1).a.

∑
j∈J

a(1,j).a

Considering t(1).a as an unknown we end up with a trinomial of the form

Atθ
(1).a + Bt(1).a + X = 0 (4.8)

where

A =
∑
j∈J

a(1,j).a

B =
∑
j∈J

aθ
(1,j).a

X =
∑
j∈J

a(1,j).b +
∑
j∈J

h(1,j).b +
∑
j∈J

b(1,j).b +
∑
j∈J

aσ
(1,j).a

+ (a(1,1).a + h(1,1).a).
∑
j∈J

aθ
(1,j).a

We should remark that the term (t(1).a)θ in the trinomial expresses the action of θ on
element t(1).a ∈ Fq. Since θ is an automorphism of Fq with q = 2m, it can be written as
a power of the Frobenius automorphism φ : a → aφ = a2 of Fq. Thus the term (t(1).a)θ

becomes (t(1).a)2
n
, if θ = φn for some 1 6 n < m.

Note that A and B are known, but the term X contains two unknown sums
∑

j∈J b(1,j).b,
and

∑
j∈J aσ

(1,j).a.

4.3 Analysis of the equation

The aim of the adversary is to extract information about β. As a matter of the structure of
the system (s)he needs to determine t(1).a. As in Equation (4.8) the value of X is unknown,
the adversary has to guess a value for t(1).a. There are (q − 1) possible choices for t(1).a.

Having guessed a value for t(1).a, the adversary can compute a corresponding value for
X from Equation (4.8). In particular, (s)he computes

CJ :=
∑
j∈J

b(1,j).b +
∑
j∈J

aσ
(1,j).a. (4.9)

10

It is important to note that in (4.9) both sums
∑

j∈J b(1,j).b,
∑

j∈J aσ
(1,j).a remain unknown.

For the sake of simplicity define

bJ :=
∑
j∈J

b(1,j).b (4.10)

aσ
J :=

∑
j∈J

aσ
(1,j).a.

Thus

CJ = bJ + aσ
J , (4.11)

where the values of bJ and aσ
J are not determined. Note that we have to determine σ to

recover values bJ and thus gain partial information about β. On the other hand, knowing
β would lead to reconstructing σ.

4.3.1 Attack on bJ

By this attack the adversary seeks to determine a value for bJ in order to get an equation
of the form aσ

J = CJ − bJ for σ. Note here that aJ is known. (S)he will try constructing a
system of those linearly independent equations and then solving the system to determine σ.
Now, as the elements in the first block B1 = [b11, . . . ,b1r1] of β are not known, (s)he needs
to guess a value for bJ for a given even subset J. As each bJ can take on any value from
Fq, where q = 2m, and as the adversary needs at least m equations to reconstruct σ, this
approach leads to a complexity of size O(qm). Obviously, this type of brute force attack is
not feasible as q is large.

4.3.2 Attack on aJ

We describe a more subtle and involved attack using Equation (4.11) on the first block of
γ. The attack is described by the following algorithm.

Algorithm 4.2 (Attack on aJ)

(i) Determine subsets J ⊆ {1, . . . , r1} of even size such that aJ = 0 and collect equations
bJ = CJ.

(ii) Try to solve a system of equations from (i) for a set of unknown D1 ⊆ B1.
(iii) Let D1 = {b1j1 , . . . ,b1jt}. Use the b1ji

∈ D1 from step (ii) to build non-trivial equa-
tions of the form aσ

J∗ = dJ∗ , where dJ∗ := CJ∗ − bJ∗ is known and J∗ ⊆ {j1, . . . , jt} is a
subset of even size. Then solve the system of these equations to determine σ.

We observe that in order to apply this attack the block size of B1 should satisfy: r1 > m.
If this is not the case, we have to fuse block B1 and B2, . . . ,B` (i.e. B1 ⊗ B2 ⊗ . . .⊗ B`), to
form a larger block satisfying the condition. So, for the rest of the analysis of Algorithm
4.2 we implicitly assume that r1 > m.

11

Before we go into detailed analysis of Algorithm (4.2), it is worth mentioning that if
aJ = 0 then aσ

J = 0. An equation aJ = 0 does not give any information about σ, however
it does yield an equation for bJ, namely bJ = CJ.

We now examine the complexity of the three steps of Algorithm (4.2).

(i) As a(1j).a’s are known, the best known efficient way of determining aJ = 0 for a
certain subset J is to use the birthday attack. More precisely, take two disjoint random
subsets J1 and J2 of {1, . . . , r1} such that |J1 ∪ J2| is even and check if aJ1 = aJ2 . If
yes, an aJ = 0 is found, where J = J1 ∪ J2. Such a subset J gives rise to an equation
bJ = CJ. Finding a subset J with aJ = 0 by the birthday attack has a complexity of
size roughly O(q1/2). Note that in step (i) each even subset J has size at least four,
this is because all elements in each block of α belong to distinct cosets modulo Z,
i.e a(1,j).a 6= a(1,h).a for h 6= j. Of course, the assumption

∑
j∈{1,...,r1} a(1,j).a = 0 is

taken into account. We discuss this condition in the remark below.

(ii) Let denote P = {J0 = ∅, J1, . . . , Jw} where Ji ⊆ {1, . . . , r1} is an even subset with |Ji| > 4
such that aJi

= 0 for i > 1. Let
⋃w

i=0 Ji = {j1, . . . , jt}. Each subsum aJ = 0 from
step (i) corresponds to an equation bJ = CJ. The unknowns of these equations are
elements b1j1 , . . . ,b1jt of B1. Let denote

EP = {bJ = CJ : J ∈ P}.

Since there are t unknowns, we can view the coefficients of each equation in EP as a
vector in F2t , viewed as a vector space of dimension t over F2. Each such 0-1 vector
has an even Hamming weight of size at least 4. Any linear combination of such two
vectors gives rise to a vector corresponding to a subsum aJ = 0 with J ∈ P and hence
to an equation in EP. In other words, the coefficient vectors of the equations in EP

span a linear subspace V of F2t , where each non-zero vector of V has a weight at least
4. And therefore, the dimension of V is at most t − 3. This is equivalent to say that
by using elementary row operations the coefficient matrix, say M, of any system of
equations from EP will be transformed into a matrix of row echelon form, for which
each row necessary has weight at least 4. Hence, such a system of equations gives
rise to at least 3 parameters that can be freely chosen, i.e. the rank of M, denoted
rank(M), is at most t − 3. Since each parameter can take on any value from Fq,
solving equations for b1j ∈ D1 in this step requires a complexity of size at least O(q3).
Having an accurate estimate of rank(M) appears to be a difficult problem. This is
because the rank of M depends on the set P, which in turn depends on the random
values of a(1,i1).a, . . . ,a(1,it).a.

Note that t > 4. If t = 4, we have rank(M) = t − 3 = 1. This fact is easy to see ,
since J∗ = {j1, j2, j3, j4} is the only one non-empty subset with aJ = 0. Consequently
b1,j1 + b1,j2 + b1,j3 + b1,j4 = CJ is the only possible equation with 4 unknowns we can
obtain.

If t > 4, we can prove an even stronger bound that rank(M) 6 t − 4. As above we
denote V the linear subspace of F2t spanned by the coefficient vectors of the equations
in EP. If any vector of V has weight at least 6, the dimension of V is at most t−5. And
therefore rank(M) 6 t−5 < t−4. So, we assume that V contains a vector v of weight
4. Without loss of generality, we can assume that v is of the form v = 111100 . . . 0 (just
by renaming the unknowns). Consider w4 = 111110 . . . 0 ∈ F2t . Let w1 = 1000 . . . 0,
w2 = 0100 . . . 0, w3 = 0010 . . . 0. Then w1,w2,w3,w4 6∈ V. Let W be the subspace

12

of F2t spanned by w1,w2,w3,w4. Then W has dimension 4. It can be checked that
x + v has weight at most 3 for 14 non-zero vectors x ∈ W, i.e. x 6∈ V, except for
x = y = 000110 . . . 0 ∈ W. But y 6∈ V, as its weight is 2. So we have W ∩ V = {0}.
Hence the dimension of V is at most t − 4. Consequently, rank(M) 6 t − 4. In order
to continue the attack we need to guess the values for at least 4 unknowns b1j ∈ Fq.
Therefore the complexity of step (ii) in this case is at least O(q4).

(iii) Let D1 = {b1j1 , . . . ,b1jt} be the subset determined after step (ii). In order to be
able to recover σ ∈ GL(m, 2) it is necessary that t > m. Using elements in D1 the
adversary can construct non-zero subsum aσ

J = CJ − bJ 6= 0 from Equation (4.9) and
tries to solve such a system of equations to recover σ. This can be done in polynomial
time.

Note that t > m > 4. We record the result of this attack in the following proposition.

Proposition 4.3 The complexity required to recover a key equivalent to the private key
[β, f, t0, . . . , ts] by using Algorithm 4.2 amounts to a size at least O(q5.q1/2).

This complexity is composed by

• the complexity O(q) of selecting a correct value for t(1).a in trinomial (4.8),

• the complexity O(q1/2) of the birthday attack in step (i) and the complexity of size
at least O(q4) of solving equations for b1,j’s in step (ii).

It is a challenging open problem to determine a better lower bound on the workload to
recover the private key of the system. The task appears to be difficult.

Remark 4.4 We observe that the upper bound for the rank of the matrix M obtained in
step (ii) above is far away from its actual value, since, for the reason of simplicity of the
discussion, we do not make any restriction on a1j’s, i.e. in the argumentation we freely use
all possible values for a1j’s, when we estimate the dimension of V. Evidently, the dimension
of V depends on the choice of a1j’s. One can expect that the dimension of V is much smaller
and so is the rank of M. Therefore the complexity of the attack on aJ is much higher than
O(q5.q1/2). We conjecture that the values t − rank(M) − 1 increase in proportion to the
growth of t (i.e. rank(M) becomes proportionally smaller, when t becomes larger).

Remark 4.5 In step (ii) of Algorithm 4.2 the assumption
∑

j∈{1,...,r1} a(1,j).a = 0 is taken
into account. If this condition is removed, we shall have

∑
j∈{1,...,r1} a(1,j).a 6= 0 in general.

Suppose that we guess a value for u =
∑

j∈{1,...,r1} b(1,j).b. This can be done with the
complexity O(q). Consequently, each subsum aJ = 0 obtained from the birthday attack
likely yields CK − (u − bJ) = aK =

∑
j∈K a(1,j).a 6= 0, where K = {1, . . . , r1} \ J. Each

aK 6= 0 corresponds to a non-trivial linear equation for σ. So, if the adversary would collect
m linearly independent equations, (s)he could reconstruct σ, as in step (iii). In this case
the complexity of recovering a key equivalent to the private key [β, f, t0, . . . , ts] would reduce
to O(q2.q1/2).

13

4.3.3 Combined Attack on bJ and aJ

We can envisage a further method of reconstructing σ from equation aσ
J + bJ = CJ. Two

main steps of the following algorithm describe this attack.

Algorithm 4.6 (Attack on bJ and aJ)

(a) Construct 2m linearly independent vectors of size 2m over F2 to form an 2m × 2m

regular binary matrix A. Each row of A is of the form aJ||bJ, (|| denotes the concate-
nation), where aJ and bJ are considered as vectors of length m over F2.

(b) Let M denote the 2m×m matrix, whose rows are CJ. Observe that M is known after
t(1).a has been chosen. Compute a 2m×m binary matrix X such that A.X = M, i.e.
X = A−1.M.

We are making a close look at Algorithm (4.6). We write

X :=
(σ∗

Y

)
and σ∗ and Y are m ×m binary matrices. First observe that any matrix A constructed
in step (a) yields a matrix X = A−1.M, as M is known. Each row of A takes on a value
aJ||bJ corresponding to an even index subset J. The first part aJ can be computed, because
a(1j).a’s are known, but we have to guess a value for bJ (an m bit vector) from the unknonws
b(1j)’s, since they are part of the private key. So, there are q possible choices for each row
of A corresponding to q possible values for bJ. If all 2m rows of A are correctly selected
(i.e. each value of bJ is guessed correctly), the matrix X will have the form

X :=
(σ

I

)
,

where I is the m × m identity matrix. This implies that the complexity of a successful
reconstruction of σ (i.e. σ∗ = σ), after all 2m rows of A are determined is O(q2m). In this
case we have Y = I.

Remark 4.7 An pertinent implication of the combined attack is the following fact. If
logarithmic signature β = (bij) is of the form β = (bij) = (eij)

σ1, where (eij) are known
and σ1 is an unknown m×m regular matrix over F2, this attack will enable to reconstruct
σ and σ1 as well. The reason can be seen as follows. Equation (4.11) can now be written
as aσ

J + bJ = aσ
J + eσ1

J = CJ. If in step (a) we can construct a regular 2m× 2m matrix A

with rows of the form aJ||eJ, the matrix X = A−1.M obtained from step (b) will have the
form

X =
(σ

σ1

)
,

i.e. we are able to recover σ and σ1. We see that this is only possible because both a(1j).a’s,
e(1j)’s are completely known.

We close the discussion of the security analysis of the direct attacks with a record of the
obtained results.

14

Proposition 4.8 Comparing the three attacks presented in this section, the strongest one,
the Attack on aJ, provides an actual estimate of workload required for recovering a key
equivalent to the private key. The workload is lower bounded by O(q5.q1/2), where q =

√
|G|.

Remark 4.9 Let α := (S(a(i,j).a,a(i,j).b)) be a cover used in a set-up of MST3 such that
a(i,j).a ∈ H < Z, where H is a subgroup of Z of order q0 = 2`. Then the lower bound

given by Proposition 4.8 becomes O(q4.q3/2
0). The bound is obtained because in the previous

analysis the number of possible choices for t(1).a and the workload required for the birthday
attack in step (i) of Algorithm 4.2 will be reduced according to the order of H.

5 Generation of logarithmic signature β and its factorization

In this section we describe a method of generating logarithmic signature β for the realization
of MST3 and show methods of factorization with respect to β. As the center Z of G is an
abelian group, we will use the following possible transformations in generating logarithmic
signature β.

5.1 Transformations of logarithmic signatures

Let ε = [E1, . . . ,Ev] := (eij) be a logarithmic signature of type (t1, . . . , tv) for an abelian
group H. We define the following transformations on ε:

T1 transform each element of ε with an automorphism ϕ of H

T2 fuse j blocks Ek1 , . . . ,Ekj
, i.e. replace blocks Ek1 , . . . ,Ekj

with a new block of the form
(((Ek1 .Ek2).Ek3) . . .Ekj

), where
Ei · Ej := Ei ⊗ Ej = [ei1ej1, . . . , ei1ejtj

, ei2ej1, . . . , ei2ejtj
, . . . , eiti

ejtj
]

T3 permute the elements within each block Ei with a permutation πi in Sti

T4 permute the blocks Ei’s with a permutation ξ ∈ Sv (where Sv is symmetric group on
v symbols)

It is obvious that β obtained from ε by using transformations T1, T2, T3 and T4 is a
logarithmic signature for H. If ε is tame, we can factorize with β using the knowledge
of the transformations Ti in polynomial time (as shown by an algorithm presented in a
subsequent section).

5.2 Algorithm for generation of β

We will describe an algorithm for generation of a logarithmic signature β for use in MST3.
For the sake of completeness we first include a description of canonical signatures for ele-
mentary abelian 2-groups, which are defined in [10]. We will identify the center Z of G with
a vector space V of dimension m over F2.

15

Definition 5.1 1. Let V be a vector space of dimension m over F2. Let P = K1∪· · ·∪Kv,
|Ki| = ki,

∑s
i=1 ki = m, be a random partition of the set {1, . . . ,m}. A logarithmic

signature δ = [D1, . . . ,Dv] := (dij) for V is called canonical if for each i ∈ {1, . . . , v},
block Di has all possible 2ki vectors with bits set on the positions defined by the subset
Ki and zeros elsewhere.

2. A canonical logarithmic signature is said in standard form, if K1 = {1, . . . ,k1}, K2 =

{k1 + 1, . . . ,k1 +k2}, . . . , Kv = {k1 + · · ·+kv−1 + 1, . . . ,m}, and for all i and j1 < j2 it
holds int(dij1) < int(dij2), where int(dij) is the integer representation of the vector
dij (i.e. the vectors within Di are sorted by their integer values).

A canonical signature δ for V of type (t1, t2, . . . , tv), ti = 2ki , can be generated by using
the following algorithm.

Algorithm 5.2 (Generation of a canonical logarithmic signature)

1. Select a random partition P = K1 ∪ · · · ∪ Kv of the set {1, . . . ,m} with |Ki| = ki.
2. For each i ∈ {1, . . . , v}, construct a block Di by taking all possible 2ki vectors in V

having bits equal to 0 at positions with indices not in Ki.

The following statement is not difficult to prove, see, for instance, [10].

Proposition 5.3 Let δ := (dij) be a canonical logarithmic signature for an elementary
abelian 2-group V of order 2m. Let ρ ∈ GL(m, 2) be a regular m ×m matrix and define
δ∗ := (d

ρ
ij). Then δ∗ is a tame logarithmic signature.

It is clear that the signature δ∗ obtained from Proposition 5.3 is a transversal signature
for a certain chain of subgroups 1V = V0 < V1 < · · · < Vs = V of V.

Moreover, it is shown in [10] that the factorization with respect to a canonical logarithmic
signature will have time complexity O(1).

We now describe an algorithm for generating logarithmic signature β.

Algorithm 5.4 (Generation of logarithmic signature β)

1. Let ε = [E1,E2, . . . ,Ev] := (ei,j) be the canonical logarithmic signature in standard
form of type (t1, t2, . . . , tv) for Z (viewed as an m dimensional vector over F2) cor-
responding to the partition {K1,K2, . . . ,Kv} on the set {1, . . . ,m} with |Ki| = ki and
ti = 2ki (in Definition 5.1).

Denote ε∗ = (e∗i,j) a logarithmic signature obtained from ε by filling the positions
K1∪. . .∪Ki−1 of each block Ei with random bits, i = 2, . . . , v. We call ε∗ a randomized
canonical logarithmic signature.

2. [transformation T1] Select a random matrix ρ ∈ GL(m, 2) and compute

δ = [D1, . . . ,Dv] = (di,j) := ((e∗i,j)
ρ).

16

3. [transformation T2]
Select a partition P = {P1, . . . ,Ps}, 0 < |Pj|, of a set {1, . . . , v}, such that for each
Pj = {i1, . . . , iu}, i.e. |Pj| = u, we have ih 6= i` + 1 for h, ` ∈ {1, . . . ,u}. Fuse
blocks Di1 , . . . ,Diu , i.e. construct the product Cj := (((Di1 .Di2).Di3 . . .Diu). Let
ω = [C1, . . . ,Cs] := (ci,j) be the resulting logarithmic signature of type (r1, . . . , rs)

obtained after this step.

4. [transformation T3]
Select random permutations πi ∈ Sri

, i = 1, . . . , s, where Sri
is the symmetric group

of degree ri. Define

C∗
i := C

πi
i = [ci,1πi , ci,2πi , . . . , ci,ti

πi],

i.e. C∗
i is obtained from Ci by permuting the positions of its elements with permuta-

tion πi. Denote χ = [C∗
1 , . . . ,C

∗
s].

5. [transformation T4]
Select a random permutation ξ ∈ Ss and define

β = [B1, . . . ,Bs] := [C∗
1ξ , . . . ,C∗

sξ],

i.e. β is obtained from χ by permuting the positions of its blocks with ξ.

It should be noted that in order to have an efficient factorization with respect to β created
using Algorithm 5.4, we keep track of the information about matrix ρ, logarithmic signature
ε∗, partition P, and all permutations used in steps (4) and (5).

Definition 5.5 We call β fused transversal (FT) logarithmic signature, if β is generated
by Algorithm 5.4. If step (3) (i.e. fusion of blocks) of the algorithm is not applied, β is
called non-fused transversal (NFT) logarithmic signature.

5.3 Factorization with β

In this section we present algorithms for the factorization with β generated by Algorithm
5.4. We begin by proving the following useful proposition.

Proposition 5.6 Let β := [B1, . . . ,Bv] be a transversal logarithmic signature for an abelian
group H. Let β ′ := [B ′

1, . . . ,B
′
s] be a fused logarithmic signature of H obtained by fusion of

blocks of β [transformation T2]. Then β ′ is equivalent to a non-fused logarithmic signature
β ′′ obtained from β by using certain permutation µ ∈ Sv on blocks Bi [transformation T4].
In other words β ′ and β ′′ induce the same function, i.e. β̆ ′ = β̆ ′′.

Proof. We observe that β ′ is obtained from β by using the following two operations:

(a) select an appropriate permutation µ ∈ Sv and compute

β ′′ := [B ′′
1 , . . . ,B ′′

v] := [B1µ , . . . ,Bvµ].

17

(b) select a partition R = {R1, . . . ,Rs} on the set {1, . . . , v} with R1 = {1, . . . , i1},R2 =

{i1 + 1, . . . , i2}, . . . ,Rs = {is−1 + 1, . . . , is} with |Rj| = uj for j ∈ {1, . . . , s}. Fus-
ing the blocks of β ′′ according to this partition yields the logarithmic signature
β ′ := [B ′

1, . . . ,B
′
s] of type (r1, . . . , rs) with B ′

j = ((B ′′
ij−1+1.B

′′
ij−1+2) . . .B ′′

ij
), where

rj = |B ′′
ij−1+1|.|B

′′
ij−1+2| . . . |B

′′
ij

| for j = 1, . . . , s and i0 = 0.
(i.e. each block B ′

i is obtained by fusing certain consecutive blocks of β ′′.)

It is clear that β ′ is equivalent to β ′′. �

Remark 5.7 Let P = {P1, . . . ,Ps} be a partition on the set {1, . . . , v} with P1 = {i1,1, . . . , i1,u1},
P2 = {i2,1, . . . , i2,u2}, . . . ,Ps = {is,1, . . . , is,us} from the step (3) of Algorithm 5.4. The per-
mutation µ ∈ Sv from Proposition 5.6 is given by(

1 2 . . . u1 u1 + 1 . . . u1 + u2 . . . (u1 + u2 + . . . + us)

i1,1 i1,2 . . . i1,u1 i2,1 . . . i2,u2 . . . is,us

)
and the corresponding partition is

R :=
{
R1 = {1, 2, . . . , u1},R2 = {u1 + 1, . . . ,u1 + u2}, . . . ,

Rs = {u1 + · · ·+ us−1 + 1, . . . ,u1 + · · ·+ us}
}
.

An important consequence of Proposition 5.6 is the construction of the Algorithm 5.8
which allows efficient factorization with respect to the FT logarithmic signature β.

Let ε∗ be the randomized canonical signature created after step (1) of Algorithm 5.4.
Also let µ be the permutation with corresponding partition R from Remark 5.7. Then we
may efficiently factorize β̆(x) using the following algorithm

Algorithm 5.8 (Factorization with FT signature β)

Input: y, ε∗, µ, R = {R1, . . . ,Rs}, ξ, π1, . . . ,πs, ρ.
Output: x = x1||x2|| . . . ||xs, where y = β̆(x).

1. Compute z = (yρ−1
) and write z = z1||z2|| . . . ||zv. Each zi is of bit length ki.

2. Factorize z with respect to ε∗ by using Algorithm 5.9. Let denote j ′1, . . . , j
′
v the indices

obtained by this factorization.

3. Compute j` = j ′
`µ−1 for ` = 1, . . . , v.

4. According to R` = {i1, i2, . . . , iu`
} set x ′` = ji1‖ji2‖ . . . ‖jiu`

for ` = 1, . . . , s.

5. Compute x ′′` = (x ′`)
π−1

` and finally x` = x ′′
`ξ−1 for ` = 1, . . . , s.

In the following we present an algorithm for factorization with respect to an NFT logarith-
mic signature. To make the description clearer we start with an algorithm for factorization
with respect to a randomized canonical logarithmic signature ε∗ generated in step (1) of
Algorithm 5.4.

18

Let x = x1||x2|| . . . ||xv be a binary vector of length m, where xi is of length ki for
i = 1, . . . , v and ti = 2ki . Let y = ε̆∗(x). Write y = y1||y2|| . . . ||yv, where each yi is of bit
length ki.

In order to factorize y with respect to ε∗ we have to determine indices xi, for i = 1, . . . , v.
This can be done with the following algorithm.

Algorithm 5.9 (Factorization with ε∗)

Input: y = y1||y2|| . . . ||yv, ε∗.
Output: x = x1||x2|| . . . ||xv, where y = ε̆∗(x).

(F) Starting with yv we find an element e∗v,j in block E∗v such that the last kv bits of e∗v,j

are equal to yv. Such e∗v,j is uniquely determined since the last kv bits of elements in
E∗v form a vector space of dimension kv. The index j of e∗v,j in block E∗v determines
the index xv.

(R) Compute y ′ = y ∗ (e∗v,j)
−1 and write y ′ = y ′

1||y
′
2|| . . . ||y

′
v−1 where each y ′

i is of bit
length ki. Repeat step (F) with y ′

v−1 for block E∗v−1 to find xv−1. Continue this
process until x1 is found.

Now we describe an algorithm for factorization with respect to an NFT logarithmic
signature β∗.

Again, let x = x1||x2|| . . . ||xv be a binary vector of length m where xi is of bit length ki

for i = 1, . . . , v and ti = 2ki . Let z = β̆∗(x). Write z = z1||z2|| . . . ||zv where each zi is of bit
length ki.

Algorithm 5.10 (Factorization with NFT signature β∗)

Input: z = z1||z2|| . . . ||zv, β∗, ξ, π1, . . . ,πv, ρ.
Output: x = x1||x2|| . . . ||xv, where z = β̆∗(x).

1. Using ξ−1, π−1
1 , . . . ,π−1

v and ρ−1 construct ε∗ from β∗.

2. Compute y = (zρ−1
) and write y = y1||y2|| . . . ||yv. Each yi is of bit length ki.

3. Factorize y with respect to ε∗ by using Algorithm 5.9. Let denote x ′1, . . . , x
′
v the

indices obtained by this factorization.

4. Compute x ′′i = (x ′i)
π−1

i and finally xi = x ′′
iξ−1 for i = 1, . . . , v.

6 Attack on ciphertexts

This section deals with an elaborated chosen plaintext attack on MST3, when transversal
logarithmic signatures are used. This is the case when β is generated by Algorithm 5.4
without applying the fusion step (3). In fact, those logarithmic signatures may essentially

19

be viewed as those from a chain of subgroups of Z. However, the structure of β will be
changed if the the fusion step (3) is applied.

The Matrix-permutation attack developed in this section appears to be powerful, as it
provides a proof of the fact that the class of non-fused transversal logarithmic signatures
cannot be used in a realization of MST3. The class of fused transversal logarithmic signa-
tures, however, withstands the Matrix-permutation attack, as shown below.

Before we present the Matrix-permutation attack, we would like to mention a simple
attack which emerges naturally from the representation of the elements in the Suzuki 2-
groups.

6.1 The Basis attack

Based on the description of the scheme, the a.part of α and γ, are merely random covers for
the center Z. Note that Z is a vector space of dimension m over F2 and we also indentify
Z with Fq. So we call elements of Z vectors as well. Let denote α.a the cover of Z whose
blocks are formed by the a.part of α. Define J := ᾰ.a(Z|Z|). Thus J is a subset of Z and the
ratio ρ := |Z|/|J| may be viewed as the average number of representations for each element of
J with respect to α.a. More precisely, due to the connection between generation of random
covers and the occupancy problem, see for instance [13], we can derive an approximation
for the ratio ρ given by the following formula

ρ ≈ λ
(eλ

eλ − 1
)

where λ = 1
|Z1|

∏s
i=1 ri, and (r1, . . . , rs) is the type of α.a, and Z1 is the smallest subgroup

of Z containing J. As a matter of linear algebra we may find a maximal subset of linearly
independent vectors which come from all the blocks of α.a. By using the two sided trans-
formation on α.a we may assume that the first s − 1 blocks contain the zero vector. The
linearly independent vectors together with the zero vectors form a cover which allows an
efficient factorization of a certain amount of ciphertexts created by ᾰ.a. This amount is
approximately 1

ρ

∏s
i=1(ki +1), where ki = dlog2rie. Therefore the probability that a given

ciphertext could be correctly decrypted is given by

≈ 1
ρ

s∏
i=1

(ki + 1)

ri

As a result, if ρ or/and ri are increased, this probability will be decreased. So, if we select
the elements of α.a from a subspace Z1 of Z such that ρ = |Z|/|Z1| is large, then this simple
attack becomes infeasible.

6.2 The Matrix-permutation attack on NFT-MST3

We now present the Matrix-permutation attack on a realization of MST3 that uses a non-
fused transversal logarithmic signature β (for short we call NFT-MST3). This strong attack
is a chosen plaintext attack type, which attempts to reverse the encryption function of the
system. The main idea of the Matrix-permutation attack is to construct a series of matrices
and to recover permutations used in generating β that would eventually allow the adversary
to decrypt any given ciphertext.

20

Used notation:

Let ω := (wi,j) be a cover of type (r1, . . . , rs) for G, and let x ∈ Z|Z| correspond to
(j1, . . . , js) ∈ Zr1 ⊕ . . .⊕ Zrs [see Preliminaries]. Let φ ∈ Ss and v` := `φ for ` ∈ {1, . . . , s}.
Define

ω̆k,φ(x) :=

k∏
i=1

wvi,jvi
(6.12)

We consider an NFT-MST3 scheme. Let [α,γ] be the public key with the corresponding
private key [β, f, t0, . . . , ts]. Recall that α := (ai,ji

), β := (bi,ji
) and γ := (hi,ji

) are of type
(r1, . . . , rs) and that ξ is a permutation used in step (5) and π1, . . . ,πs are permutations
used in step (4) of Algorithm 5.4.

Proposition 6.1 Let α, β, γ be the covers of type (r1, . . . , rs) as described above. Let
x ∈ Z|Z| correspond to (j1, . . . , js) ∈ Zr1 ⊕ . . .⊕ Zrs and v` := `ξ for ` ∈ {1, . . . , s}. Further

let ᾰ`,ξ(x), β̆`,ξ(x), γ̆`,ξ(x) be the values computed by Equation (6.12). Let k` := dlog2r`e.
Then there exists a binary (2m + 1)× kv`

matrix Mv`
such that(

ᾰ`,ξ(x).a || ᾰ`,ξ(x).b + γ̆`,ξ(x).b || 1
)

Mv`
= πv`

(jv`
). (6.13)

where “1” is the bit set to one.

Proof. First we show that there exists a binary (2m + 1)×m matrix Nv`
such that(

ᾰ`,ξ(x).a || ᾰ`,ξ(x).b + γ̆`,ξ(x).b || 1
)

Nv`
=
(

β̆`,ξ(x).b

)
(6.14)

We begin with

ᾰ`,ξ(x).b + γ̆`,ξ(x).b =
∑̀
i=1

b(vi,jvi
).b + t(0).a

∑̀
i=1

aθ
(vi,jvi

).a + tθ
(v`).a

∑̀
i=1

a(vi,jvi
).a

+
∑̀
i=1

aσ
(vi,jvi

).a + C`

where C` = t(0).b + tθ+1
(0).a + t(v`).b + t(0).atθ

(v`).a
. As the elements t(0).a, t(v`).a ∈ Fq are

constants, the products t(0).a

∑
aθ

(vi,jvi
).a and tθ

(v`).a

∑
a(vi,jvi

).a present linear mappings.
Therefore there exist binary m×m matrices T0 and Tv`

such that

t(0).a

∑̀
i=1

aθ
(vi,jvi

).a =
∑̀
i=1

a(vi,jvi
).a T0

tθ
(v`).a

∑̀
i=1

a(vi,jvi
).a =

∑̀
i=1

a(vi,jvi
).a Tv`

21

Set

Nv`
=

T0 + Tv`
+ σ

Im

C`


where Im is the m×m identity matrix. Now it is not difficult to check that the (2m+1)×m

matrix Nv`
satisfies Equation (6.14). Define ε ′ := (e ′i,j) with e ′i,j = b

ρ−1

i,j . Clearly

(
β̆`,ξ(x).b

)ρ−1

=
(

ε̆ ′`,ξ(x).b

)
Consider the linear mapping ϕ` defined by

ε̆∗`,id(x).b =
∑̀
i=1

e∗(i,ji).b
ϕ`7−→ j`

where id is identity permutation.This mapping is well defined for the class of transversal
logarithmic signatures, in particular for ε∗ created in Algorithm 5.4 after step (1). Note
that j` is the binary representation of the index for e`,j`

and is identical with the k` bit
vector of e`,j`

at the positions K`. Let ε ′′ := (e ′′ij) be obtained from ε∗ by applying step (4)
of Algorithm 5.4. Now observe that ϕ` acts on ε̆ ′′`,id(x).b as follows

ε̆ ′′`,id(x).b =
∑̀
i=1

e ′′(i,ji).b
ϕ`7−→ π`(j`)

Applying step (5) of Algorithm 5.4 on ε ′′ we get ε ′. Therefore ϕ` acts on ε̆ ′`,ξ(x).b according
to

ε̆ ′`,ξ(x).b =
∑̀
i=1

e ′(vi,jvi
).b

ϕ`7−→ πv`
(jv`

)

Let Pv`
be the m× kv`

binary matrix represention of the mapping ϕ`. Then we can write(
ε̆ ′`,ξ(x).b

)
Pv`

= πv`
(jv`

)

Define the matrix Mv`
as

Mv`
:= Nv`

· ρ−1 · Pv`

Then Mv`
is the binary matrix that satisfies Equation (6.13). �

Let M`,p denote the p-th column of the matrix M`, where p = 1, . . . ,k`. We observe
that π`(j`) is a binary vector of length k`. Similarly, we denote π`,p(j`) the p-th bit of
π`(j`). Using this notation and Proposition 6.1 we obtain the following

22

Proposition 6.2 Let v` := `ξ and Mv`,p be the p-th column of Mv`
and πv`,p(jv`

) be the
p-th bit of πv`

(jv`
) from Propositon 6.1. Then we have(
ᾰ`,ξ(x).a || ᾰ`,ξ(x).b + γ̆`,ξ(x).b || 1

)
Mv`,p = πv`,p(jv`

). (6.15)

Proposition 6.3 Let α, β, γ be the covers of type (r1, . . . , rs) as described above. Let
x ∈ Z|Z| correspond to (j1, . . . , js) ∈ Zr1 ⊕ . . . ⊕ Zrs. Further let v` := `ξ for ` ∈ {1, . . . , s}
and k` := dlog2r`e. Then there exists a binary (2m + 1)× kv`

matrix Lv`
such that(

ᾰ(x).a + A` ᾰ(x).b + γ̆(x).b + B` 1
)
Lv`

= πv`
(jv`

) (6.16)

where

A` :=

s∑
i=`+1

a(vi,jvi
).a

B` :=

s∑
i=`+1

(
a(vi,jvi

).b + h(vi,jvi
).b

)
+

s∑
i=`+1

aθ
(vi,jvi

).a

(
t(0).a + t(vi−1).a

)
+

s∑
i=`+1

a(vi,jvi
).a

(
t(vi).a + t(s).a

)θ
for ` ∈ {1, . . . , s − 1}, As = Bs := (0, . . . , 0), and “1” is the bit set to one.

Proof. For ` = s Equation (6.16) is obtained from Proposition 6.1.

So, from now on we assume that ` ∈ {1, . . . , s − 1}.

Note that

ᾰ(x).a +

s∑
i=`+1

a(vi,jvi
).a =

∑̀
i=1

a(vi,jvi
).a

β̆(x).b +

s∑
i=`+1

b(vi,jvi
).b =

∑̀
i=1

b(vi,jvi
).b

First we show that there exists a (2m + 1)×m binary matrix Nv`
such that

(∑̀
i=1

a(vi,jvi
).a ᾰ(x).b + γ̆(x).b + B` 1

)
Nv`

=
∑̀
i=1

b(vi,jvi
).b (6.17)

Here we have

ᾰ(x).b + γ̆(x).b + B`

= ᾰ(x).b + γ̆(x).b +

s∑
i=`+1

(
a(vi,jvi

).b + h(vi,jvi
).b

)
+

s∑
i=`+1

aθ
(vi,jvi

).a

(
t(0).a + t(vi−1).a

)
+

s∑
i=`+1

a(vi,jvi
).a

(
t(vi).a + t(s).a

)θ
23

=

s∑
i=1

b(vi,jvi
).b +

s∑
i=1

aσ
(vi,jvi

).a + t(0).b + tθ+1
(0).a + t(s).b + t(0).atθ

(s).a+

t(0).a

s∑
i=1

aθ
(vi,jvi

).a + tθ
(s).a

s∑
i=1

a(vi,jvi
).a +

s∑
i=`+1

b(vi,jvi
).b +

s∑
i=`+1

aσ
(vi,jvi

).a+

s∑
i=`+1

(
t(vi−1).aaθ

(vi,jvi
).a + a(vi,jvi

).a tθ
(vi).a

+ t(vi−1).atθ
(vi).a

+ t(vi−1).b+

tθ+1
(vi−1).a + t(vi).b

)
+ t(0).a

s∑
i=`+1

aθ
(vi,jvi

).a +

s∑
i=`+1

aθ
(vi,jvi

).a t(vi−1).a+

s∑
i=`+1

a(vi,jvi
).a tθ

(vi).a
+ tθ

(s).a

s∑
i=`+1

a(vi,jvi
).a

=
∑̀
i=1

b(vi,jvi
).b +

∑̀
i=1

aσ
(vi,jvi

).a + t(0).a

∑̀
i=1

aθ
(vi,jvi

).a + tθ
(s).a

∑̀
i=1

a(vi,jvi
).a + C`

where the term

C` =

s∑
i=`+1

(
t(vi−1).atθ

(vi).a
+ t(vi−1).b + tθ+1

(vi−1).a + t(vi).b

)
+

t(0).b + tθ+1
(0).a + ts.b + t(0).atθ

s.a

is viewed as a constant in F2m . Therefore, Equation (6.17) becomes
∑̀
i=1

a(vi,jvi
).a

∑̀
i=1

b(vi,jvi
).b +

∑̀
i=1

aσ
(vi,jvi

).a+

t(0).a

∑̀
i=1

aθ
(vi,jvi

).a+

tθ
s.a

∑̀
i=1

a(vi,jvi
).a + C`

1


Nv`

=
∑̀
i=1

b(vi,jvi
).b (6.18)

Because the elements t(0).a and t(s).a are constants, and θ is a linear mapping, there exist
m×m matrices T0, T` such that

t(0).a

∑̀
i=1

aθ
(vi,jvi

).a =
∑̀
i=1

a(vi,jvi
).a T0

tθ
(s).a

∑̀
i=1

a(vi,jvi
).a =

∑̀
i=1

a(vi,jvi
).a T`

Now set

Nv`
=

T0 + T` + σ

Im

C`



24

where Im is the m ×m identity matrix. Then it is easy to check that the (2m + 1) ×m

matrix Nv`
satisfies Equation (6.18). Similar to the proof of Proposition 6.1, by using(∑̀

i=1

b(vi,jvi
).b

)
ρ−1 =

∑̀
i=1

e ′(vi,jvi
).b := ε̆ ′`,ξ(x).b

and (
ε̆ ′`,ξ(x).b

)
Pv`

= πv`
(jv`

)

we define

Lv`
:= Nv`

· ρ−1 · Pv`

Then Lv`
is the binary matrix that satisfies Equation (6.16). �

We are now in a position to describe an algorithm for recovering permutations π1, . . . ,πs

by using Proposition 6.2. The algorithm delivers the permutation ξ as well.

Algorithm 6.4 (Matrix-permutation Attack on NFT-MST3: Permutation recovery)

Input: Public key [α,γ].
Output: Permutations [π1, . . . ,πs, ξ].

For `← s downto 1 do

(A) Choose random plaintexts x(i) 7→ (j
(i)
1 , . . . , j(i)s), and construct vectors y(i) :=(

ᾰ`,id(x)
(i)
.a || ᾰ`,id(x)

(i)
.b + γ̆`,id(x)

(i)
.b || 1

)
, as in Proposition 6.2. Define n` to be the

maximum number of linearly independent vectors y(i), where n` = n ′
`+1+

∑`
m=1 km.

Here n ′
` is the maximum number of linearly independent columns of the matrix formed

by vectors
(

ᾰ`,id(x)
(i)
.a

)
.

(B) Set v← 1.

(C) For p← 1 to kv do

(C.1) Select a set Jv of kv randomly chosen vectors in F2kv .

(C.2) Choose a random binary vector w = (w1, . . . ,wkv) ∈ F2kv , and set
πv,p(ji) = wi for each ji ∈ Jv.

(C.3) Choose random plaintexts x(i) 7→ (j
(i)
1 , . . . , j(i)v , . . . , j(i)s), where j

(i)
v ∈ Jv and

construct vectors y(i) :=
(

ᾰ`,id(x)
(i)
.a || ᾰ`,id(x)

(i)
.b + γ̆`,id(x)

(i)
.b || 1

)
, as in Propo-

sition 6.2.
Repeat this step for an appropriate number of choices of x(i) and form a matrix
Yv with rows being the linearly independent vectors y(i). If rank(Yv) < n` then
return to (C.1).

(C.4) Let x(i) 7→ (j
(i)
1 , . . . , j(i)v , . . . , j(i)s), for (i) = 1, . . . ,n`, be the plaintext used to

construct row (i) of the n` × (2m + 1) binary matrix Yv in the previous step.
Form the n` × 1 matrix Zv,p with value πv,p(j

(i)
v) as entry in row (i).

25

(C.5) Construct a (2m + 1)× n` binary encoding matrix Ev, such that
rank(Yv.Ev) = n`

(C.6) Compute matrix Mv,p = Ev.(Yv.Ev)−1.Zv,p

(C.7) For each jv ∈ F2kv \ Jv choose a random plaintext x 7→ (j1, . . . , jv, . . . , js) and
compute the value for πv,p(jv) by

πv,p(jv) :=
(

ᾰ`,id(x).a || ᾰ`,id(x).b + γ̆`,id(x).b || 1
)
.Mv,p

(C.8) Choose a random plaintext x 7→ (j1, . . . , jv, . . . , js) and compute the value

y =
(

ᾰ`,id(x).a || ᾰ`,id(x).b + γ̆`,id(x).b || 1
)
.Mv,p

If y 6= πv,p(jv) then return to (C.2) and try another choice for w ∈ F2kv (this
can be done in at most 2kv times). If no choice for w in (C.2) is possible, then
set v← (v + 1) and return to (C).
If y = πv,p(jv), repeat (C.8) for an appropriate number of times.

done

(D) Set transposition ξ` := (v, `). Permute the blocks of α and γ with transposition ξ` to
get α ′ and γ ′. Set α← α ′ and γ← γ ′.

(E) For each jv ∈ F2kv , by using πv,p(jv) for p = 1, . . . ,kv, one obtains πv(jv), and thus
determines permutation πv.

done
Return [π1, . . . ,πs, ξ], where ξ = ξs ◦ . . . ◦ ξ1.

We now clarify the steps of the Algorithm 6.4

(A) To determine the maximum value for the parameter n` we have to run this step for a
sufficient number of random inputs x(i).

(B) This step initializes the parameter v to start the subsequent steps of the algorithm to
determine v = `ξ.

(C) The inner loop is used to determine each bit πv,p(jv) of πv(jv) for p = 1, . . . ,kv,
separately, for which πv(jv) :=

(
πv,1(jv)‖ . . . ‖πv,kv(jv)

)
for all jv ∈ F2kv .

(C.1) The choice of the parameter kv, i.e. size of the set Jv, has an effect on the
behaviour of the algorithm. If |Jv| < kv, step (C.3) cannot be finished (i.e. we
always get rank(Yv) < n`). If |Jv| > kv, the workload required in step (C.2) will
be increased comparing with the case |Jv| = kv.

(C.2) In this step we guess the p-th bit πv,p(jv) of πv(jv) for all jv ∈ Jv.

(C.3) In this step a plaintext x(i) 7→ (j
(i)
1 , . . . , j(i)v , . . . , j(i)s) is chosen in such a way that

the component j
(i)
v belongs to Jv (chosen in step (C.1)). The other components

ju with u 6= v are arbitrarily chosen. We repeat this step until we get a matrix
Yv with rank(Yv) = n`.
If the elements of Jv, |Jv| = kv, are chosen in such a way that the set {πv(jv) | jv ∈
Jv} has less than kv linearly independent vectors (of size kv), the rank(Yv) will be

26

smaller than n`. In this case the algorithm returns to step (C.1), and generates
a new set Jv.
(The other possibility could be to extend the size of set Jv, i.e. |Jv| > kv.)

(C.4) We construct the n`×1 matrix Zv,p with values πv,p(j
(i)
v) using (C.2) and (C.3).

(C.5) In this step we construct a binary (2m+1)×n` matrix Ev such that rank(Yv.Ev) =

n`. This is done in the following way: Let Q = {1, . . . , 2m + 1} be the index
set of columns of Yv. Find a subset Qv ⊆ Q with |Qv| = n`, such that the
columns with indices in Qv are all linearly independent. Consider the identity
(2m + 1)× (2m + 1) matrix I(2m+1). Remove all columns with indices in Q \ Qv

from I(2m+1) to form a (2m + 1)× n` matrix Ev.

(C.6) Using Ev from step (C.5) we determine the p-th column Mv,p of the matrix Mv.

(C.7) This step computes the p-th bit πv,p(jv) of πv(jv) for all remaining jv ∈ F2kv .

(C.8) This step verifies whether the bit πv,p(jv) guessed in step (C.2) or computed in
step (C.7) for all jv ∈ F2kv is correct, and whether the value v satisfies v = `ξ.
Running this step in an appropriately sufficient number of times allows us to
check these requirements.

(D) In this step we use v = `ξ determined in the previous loop to construct a transposition
ξ`. We update α and γ, permuting their blocks with ξ` and continue the main loop
with the new value `← (` − 1).

(E) From the p-th bit πv,p(jv) for all p = 1, . . . ,kv we construct πv(jv). By collecting all
πv(jv), jv ∈ F2kv , we are able to recover the permutation πv.

Proposition 6.5 Let α,γ be the covers of type (r1, . . . , rs) used as the public key in NFT-
MST3. Let k` := dlog2r`e. The workload required to recover permutations [π1, . . . ,πs, ξ]

using Algorithm 6.4 is bounded by O(

s∑
`=1

` k` 2k`−1).

Proof. In step (C.2) of Algorithm 6.4 we have to guess vector w of kv bits to set the p-th
bit πv,p(jv) of πv(jv) for all jv ∈ Jv. The complexity of the algorithm includes the times
required to run through all bits p ∈ {1, . . . ,kv} with an average of `/2 times until step (C.8)
successfully terminates by finding v := `ξ, and also those for the steps in the main loop
for ` ∈ {1, . . . , s}. Summing up these together yields the workload as shown in the bound
stated. �

Note that for any jm ∈ {1, . . . , rm}

(
t(0).a + t(`−1).a

)
=

`−1∑
m=1

(
a(m,jm).a + h(m,jm).a

)
=

`−1∑
m=1

(
a(m,1).a + h(m,1).a

)
(
t(`).a + t(s).a

)θ
=

s∑
m=`+1

(
a(m,jm).a + h(m,jm).a

)θ
=

s∑
m=`+1

(
a(m,1).a + h(m,1).a

)θ
We use Proposition 6.3 to design the following algorithm.

27

Algorithm 6.6 (Matrix-permutation Attack on NFT-MST3: Matrix recovery)

Input: Public key [α,γ], permutations [π1, . . . ,πs, ξ].
Output: Matrices [L1, . . . ,Ls].

Set As ← (0, . . . , 0), an m-bit zero vector.

For `← s downto 1 do

(A) Set v← `ξ.

(B) Select random plaintexts x(i) 7→ (j
(i)
1 , . . . , j(i)s), and construct vectors

y(i) :=
(

ᾰ`,ξ(x)
(i)
.a || ᾰ(x)

(i)
.b + γ̆(x)

(i)
.b + A

(i)
` || 1

)
, as in Proposition 6.3. Define nv

to be the maximum number of linearly independent vectors y(i), where nv = n ′
v +1+∑`

m=1 kmξ . Here n ′
v is the maximum number of linearly independent columns of the

matrix formed by vectors
(

ᾰ`,ξ(x)
(i)
.a

)
. Repeat this step for an appropriate number

of choices of x(i) and form a matrix Yv with nv rows being the linearly independent
vectors y(i).

(C) Let x(i) 7→ (j
(i)
1 , . . . , j(i)s), for (i) = 1, . . . ,nv, be the plaintext used to construct row

(i) of the nv × (2m + 1) binary matrix Yv in the previous step. Form the nv × kv

matrix Zv with value πv(jv) as entry in row (i).

(D) Construct a (2m + 1)× nv binary encoding matrix Ev, such that
rank(Yv.Ev) = nv

(E) Compute matrix Lv = Ev . (Yv.Ev)−1. Zv

If ` = 1 then return [L1, . . . ,Ls].

(F) Set

A`−1 ← A` + a(v,jv).b + h(v,jv).b + aθ
(v,jv).a

`−1∑
m=1

(
a(mξ,1).a + h(mξ,1).a

)
+

a(v,jv).a

s∑
m=`+1

(
a(mξ,1).a + h(mξ,1).a

)θ
done

By making use of the information computed by Algorithms 6.4 and 6.6 we now present
an algorithm for the decryption of a given ciphertext y = (y1,y2).

Algorithm 6.7 (Matrix-permutation Attack on NFT-MST3: Factorization)

Input: [π1, . . . ,πs, ξ,L1, . . . ,Ls] for the public key [α, γ], ciphertext y = (y1,y2).
Output: Plaintext x 7→ (j1, . . . , js), such that y1 = ᾰ(x), y2 = γ̆(x).

Set As ← (0, . . . , 0).

For `← s downto 1 do

28

(1) Set v← `ξ.

(2) Construct a vector
w =

(
y1.a ‖ y1.b ⊕ y2.b ⊕A` ‖ 1

)
(3) Compute πv(jv) = w · Lv

(4) Recover jv using πv(jv) and permutation πv.
If ` = 1 then return (j1, . . . , js).

(5) Set y1.a ← y1.a ⊕ a(v,jv).a

A`−1 ← A` + a(v,jv).b + h(v,jv).b + aθ
(v,jv).a

`−1∑
m=1

(
a(mξ,1).a + h(mξ,1).a

)
+

a(v,jv).a

s∑
m=`+1

(
a(mξ,1).a + h(mξ,1).a

)θ
done

As presented above, the Matrix-permutation attack on NFT-MST3 makes use of Al-
gorithm 6.4 to recover permutations [π1, . . . ,πs, ξ] and then Algorithm 6.6 to construct
matrices [L1, . . . ,Ls]. The knowledge of [L1, . . . ,Ls] and [π1, . . . ,πs, ξ] allows the adversary
to decrypt any ciphertext by using Algorithm 6.7. The usage of non-fused transversal signa-
tures permits the construction of such matrix Li for any block i = {1, . . . , s} and to compute
the image πi(ji) of ji under permutation πi as shown in Proposition 6.3. This fact is used
in step (3) of Algorithm 6.7. As πi is a bijection, the preimage ji can be recovered if πi(ji)

is known, as shown in step (4) of the same algorithm.

Remark 6.8 The determination of permutations [π1, . . . ,πs, ξ] and the construction of
matrices [L1, . . . ,Ls] could be designed in a single algorithm. However, such an algorithm
would become very involved. Therefore, for the sake of clarity regarding the description of the
Matrix-permutation attack we have presented two separated algorithms, namely Algorithm
6.4 and Algorithm 6.6.

As the workload required for Algorithm 6.6 is negligible, the complexity of the Matrix-
permutation attack is reduced to the complexity of the determination of permutations
[π1, . . . ,πs, ξ] by Algorithm 6.4. Thus we have the following proposition.

Proposition 6.9 By using the same notation as in Proposition 6.5, the workload required
to recover the cleartext for a given ciphertext by using the Matrix-permutation attack on
NFT-MST3 scheme is roughly of the same amount as required to recover permutations
[π1, . . . ,πs, ξ], and is bounded by O(

∑s
`=1 ` k` 2k`−1).

The complexity as given in Proposition 6.9 shows in particular that for relatively small
values ki, which are usually used in a real version of the MST3 scheme, say ki 6 15, the
non-fused transversal logarithmic signatures cannot be used for a secure realization of MST3.

29

6.3 The Matrix-permutation attack on FT-MST3

In this section we attempt to determine the complexity of the Matrix-permutation attack
on FT-MST3.

As shown in the previous section, the Matrix-permutation attack exploits fully the way of
how to factorize with respect to a non-fused transversal logarithmic signature β (Algorithm
5.10), even though the adversary does not know β. Thus, the knowledge provided by a
factorization with respect to β by Algorithm 5.10 will be the crucial information for the
estimation of the complexity of recovering the cleartext when the Matrix-permutation attack
is applied.

To simplify the description of the Matrix-permutation attack on FT-MST3 we confine
ourselves to use step (1) and step (3) of Algorithm 5.4 only to create logarithmic signature
β.

Let {K1,K2, . . . ,Kv} be a partition on the set {1, . . . ,m} with |Ki| = ki and ti = 2ki as
described in Algorithm 5.4. Let ε∗ := (e∗i,j) be a signature of type (t1, . . . , tv) created after
step (1) of the Algorithm 5.4.

W.l.o.g. we consider β := (bi,j) to be a logarithmic signature created by fusion of blocks
(`, ` + 2) and (` + 1, ` + 3) of ε∗. (Note that no consecutive blocks are fused.) Then
β = [B1, . . . ,Bs] is of type (r1, . . . , rs), where r` = t` · t`+2 and r`+1 = t`+1 · t`+3. We now
consider one fused block, say B`+1, of β.

Let u
[n]
i,ji

(resp. e
[n]
i,ji

) be a vector of length kn, consisting of the bits of bi,ji
on the positions

corresponding to Kn.

Let x 7→ (j1, . . . , jv), also let x ′ 7→ (j ′1, . . . , j
′
s), where j ′` = j`‖j`+1 and j ′`+1 = j`+2‖j`+3 .

Then

e∗1, j1
= (. . . ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . .)

...
e∗`−1, j`−1

= (. . . ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . .)

e∗`, j`
= (. . . ‖ e

[`]
`, j`

‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . .)

e∗`+1, j`+2
= (. . . ‖ u

[`]
`+1, j`+2

‖ e
[`+1]
`+1, j`+2

‖ 0̄ ‖ 0̄ ‖ . . .)

e∗`+2, j`+1
= (. . . ‖ u

[`]
`+2, j`+1

‖ u
[`+1]
`+2, j`+1

‖ e
[`+2]
`+2, j`+1

‖ 0̄ ‖ . . .)

e∗`+3, j`+3
= (. . . ‖ u

[`]
`+3, j`+3︸ ︷︷ ︸

K`

‖ u
[`+1]
`+3, j`+3︸ ︷︷ ︸

K`+1

‖ u
[`+2]
`+3, j`+3︸ ︷︷ ︸

K`+2

‖ e
[`+3]
`+3, j`+3︸ ︷︷ ︸

K`+3

‖ . . .)

Then

β̆(x ′) = b1,j ′1
⊕ . . .⊕ b`,j ′`

⊕ b`+1,j ′`+1
⊕ . . .⊕ bs,j ′s

30

where

b`,j ′`
= (. . . ‖ e

[`]
`, j`
⊕

u
[`]
`+2, j`+1

‖ u
[`+1]
`+2, j`+1

‖ e
[`+2]
`+2, j`+1

‖ 0̄ ‖ . . .)

b`+1, j ′`+1
= (. . . ‖ u

[`]
`+1, j`+2

⊕
u

[`]
`+3, j`+3

‖ e
[`+1]
`+1, j`+2

⊕
u

[`+1]
`+3, j`+3

‖ u
[`+2]
`+3, j`+3

‖ e
[`+3]
`+3, j`+3

‖ . . .)

and therefore

`+1∑
i=1

bi,j ′i
= (. . . ‖

K`︷ ︸︸ ︷
e
[`]
`, j`
⊕

u
[`]
`+2, j`+1

⊕
u

[`]
`+1, j`+2

⊕
u

[`]
`+3, j`+3

‖

K`+1︷ ︸︸ ︷
u

[`+1]
`+2, j`+1

⊕
e
[`+1]
`+1, j`+2

⊕
u

[`+1]
`+3, j`+3

‖

K`+2︷ ︸︸ ︷
e
[`+2]
`+2, j`+1

⊕
u

[`+2]
`+3, j`+3

‖

K`+3︷ ︸︸ ︷
e
[`+3]
`+3, j`+3

‖ . . .)

Assume we use the factorization scheme as given by Algorithm 5.10. As the bits of u
[m]
i,ji

,

are randomly chosen, only the bits of e
[m]
i,ji

can be used for factoring with respect to β.

Therefore, to factorize
∑`+1

i=1 bi,j ′i
, i.e. to recover the index j ′`+1 for block B`+1, we may

only use bits of e
[`+3]
`+3, j`+3

, i.e. the bits on positions K`+3. However, as B`+1 has length

r`+1 = 2k`+1+k`+3 , there are 2k`+1 elements of B`+1 having the same value e
[`+3]
`+3, j`+3

on
positions K`+3. In other words, only k`+3 bits from index j ′`+1 can be determined.

Having obtained this information, we now return to the Matrix-permutation attack when
a fused signature β is used in an FT-MST3. Similar to Proposition 6.3 we may show that
there exists a matrix L`+1 such that(

ᾰ(x).a + A`+1 ᾰ(x).b + γ̆(x).b + B`+1 1
)
L`+1 = e

[`+3]
`+3, j`+3

Using such a matrix we can recover only k`+3 from (k`+1 + k`+3) bits of j ′`+1 for B`+1.

This shows that the Matrix-permutation attack applied to FT-MST3 can recover only a
portion of bits of the index in each fused block of β. Thus we have the following proposition.

Proposition 6.10 Let B` be a block of a fused transversal logarithmic signature β used in
FT-MST3. Let B` = ((Di1 .Di2) . . .Diu`

) as defined Algorithm 5.4, where i1 < i2 < · · · <
iu`

. Let ki = dlog2Die. By using the Matrix-permutation attack on FT-MST3 one can
determine kiu`

from
∑u`

j=1 kij
bits for the index in block B`.

The complexity of factoring a ciphertext by using the Matrix-permutation attack on FT-
MST3 is thus given as the product of the complexities for factoring with respect to each block
B`, ` = 1, . . . , s. Moreover, as the factorization has to be proceeded implicitly according to
the permutation ξ of Algorithm 5.4, it turns out that the last attacked block can be carried
out by a table search, and therefore has a negligible complexity. To summarize we record
the complexity of the Matrix-permutation attack on FT-MST3 in the following proposition.

31

Proposition 6.11 Let m be an input length of an FT-MST3 scheme with a fused transver-
sal logarithmic signature β created by Algorithm 5.4. Let P = {P1, . . . ,Ps} be a partition used
in step (3) of this algorithm where P` = {i`,1, . . . , i`,u`

} for ` = 1, . . . , s. Let k` = dlog2D`e,
where D` is defined by the same algorithm. Then the workload still needed after the Matrix-
permutation attack to recover the plaintext for a given ciphertext is of O(2c) where

c = (m −

s∑
`=2

ki`,u`
−

u1∑
j=1

ki1,j)

Remark 6.12 We can envisage a further method of using the Matrix-permutation attack
on the FT-MST3 scheme. Suppose that the adversary attempts to keep fusing the blocks of α

and γ to eventually obtain a new α̃ and γ̃, in which the corresponding logarithmic signature
β̃ (inside γ̃) has a block B̃i which forms a subspace of dimension mi in Z. Note that the
adversary actually does not know B̃i and therefore cannot verify whether B̃i is a subspace
or not. Assuming that B̃i is a subspace (s)he may attempt to apply the Matrix-permutation
attack to α̃ and γ̃ to compute the index in B̃i for the plaintext from a given ciphertext. It is
fairly easy to prevent this type of attack by selecting a partition P in step (3) of Algorithm
5.4 in a way that such a block B̃i necessarily has a large dimension mi. This makes the
Matrix-permutation attack impossible because of its complexity, as given in Proposition 6.9.

7 Implementation aspects of MST3

In this section we consider practical implementation issues of FT-MST3 with the underlying
Suzuki 2-groups. The Algorithm 5.4 as decribed in Section 5 will be used for generating
logarithmic signatures β. As observed, if the information at each step of Algorithm 5.4
is kept track, in particular, the knowledge of partition P = {P1, . . . ,Ps} used in step (3),
we have a highly efficient factorization method with respect to β as shown in Algorithm
5.8. By taking the discussion of Subsection 6.1 into account we may, if necessary, select the
elements of α.a in a subspace Z1 such that ρ = |Z|/|Z1| is sufficiently large.

7.1 Computing with the Suzuki 2-groups

Let q = 2m, where m > 3 is not a power of 2 and let θ be a non trivial odd-order
automorphism of Fq. Let G = A(m, θ) be the Suzuki 2-group of order q2 described in
Section 2. Recall that the multiplication of two elements in G is given by the rule:

S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2). (7.19)

We could store the group elements S(a,b) as pairs (a,b), but this would require that
we compute some aθ each time we compute a product of group elements. In turn, each
computation aθ requires at most 2dlog2me multiplications in Fq. It is therefore more time
efficient to store the group elements as triples (a,b,aθ). Thus, the product S(a1,b1) ·
S(a2,b2) is identified with the triple

(a1 + a2 , b1 + b2 + a1a
θ
2 , aθ

1 + aθ
2)

and computation of the product requires just a single multiplication and four additions in
Fq.

32

7.2 Public key size and cipher expansion

Let α =
(
(a(ij).a,a(ij).b)

)
and γ =

(
(h(ij).a,h(ij).b)

)
. For a given i we have h(ij).a =

a(ij).a + t(i−1).a + t(i).a for all j = 1, . . . , ri. This means that for each i, if a(ij).a’s and
the sum t(i−1).a + t(i).a are known, h(ij).a’s can be derived. Therefore, for the public key
we need to store [α, (h(ij).b)] (i.e. the ”b.part” of γ) and the s values t(i−1).a + t(i).a, for
i = 1, . . . , s.

However, for a practical implementation of MST3 we describe a more efficient method
dealing with the key storage. The idea is that we generate the key by using a publicly
known Algorithm A, which generates random cover α satisfying conditions in Section 3.
Essentially, the Algorithm A utilizes a pseudo-random number generator R. To simplify
the description we assume that a logarithmic signature β has been generated by Algorithm
5.4 separately.

Algorithm 7.1 (Reduced key storage)

External: Algorithm A, a pseudo-random number generator R

Input: [β, f, t0, . . . , ts], a seed S for R

Output: [α, γ]

(a) Using A, R and S to generate α =
(
(a(ij).a,a(ij).b)

)
(b) Create γ =

(
(h(ij).a,h(ij).b)

)
from α as decribed in Section 3.

From Algorithm 7.1 it is clear that for the public key one has to publish (h(ij).b) together
with t(i−1).a + t(i).a for i = 1, . . . , s, and S only. To obtain the complete public key, i.e.
[α,γ], one first generates α from step (a) using R and seed S, then computes (h(ij).a) from
a(ij).a and t(i−1).a + t(i).a. This approach will reduce the key size of the system roughly
to only one third of [α, (h(ij).b)] (i.e. one fourth of the public-key [α,γ]). In fact, this key
size appears to be the minimum key storage that can be realized for MST3.

The cipher expansion of MST3 is of a factor three. For, suppose (y1,y2) is a ciphertext
pair with y1 = (y(1).a,y(1).b) and y2 = (y(2).a,y(2).b), then, it suffices to send y1 and
y(2).b as the ciphertext. This is because y(2).a can be obtained from the equation y(2).a =

y(1).a + t(0).a + t(s).a by using the private key t0 and ts.

7.3 Examples for generation of β

We need to introduce some notation. We say a logarithmic signature (cover) β is of type
(vu1

1 .vu2
2vut

t) if β has the first u1 blocks of size v1, the next u2 blocks of size v2, etc.

Let ε = [E1,E2, . . . ,Es] be a transversal logarithmic signature created by Algorithm 5.4
by steps (1) and (2). Then, there exists a chain of subgroups 1G = G0 < G1 < · · · < Gs = G,
such that each block Ei consists of a complete set of coset representatives of Gi−1 in Gi.

We also write [ru1 × ru2 × · · · × ru`
] to denote the fusion of ` blocks Eu1 ,Eu2 , . . . ,Eu`

,
where |Eui

| = rui
and u1 < u2 < · · · < u`. Specially, [ru] denotes a non-fused block

Eu with |Eu| = ru. We say a block Bi of β is of fusion type [ru1 × ru2 × · · · × ru`
] if

33

Bi = Eu1 ⊗ Eu2 ⊗ · · · ⊗ Eu`
. We write

Fe1
1 .Fe2

2 . . . Fe`
`

to denote the fusion type of β for which the first e1 blocks are of fusion type F1, the next e2

blocks of fusion type F2, etc. For example, the notation [256]2.[32×4]5.[32×8×4]10 denotes
a set-up for β with the first two non-fused blocks of length 256, the next five created by
the fusion of two blocks of size 32 and 4, and the remaining ten blocks obtained by fusing
three blocks of size 32, 8 and 4 respectively.

Let β be a fused logarithmic signature of fusion type, say, [v1]
e1 . . . [vi−1]

ei−1 .[vi ×
ui]

ei . . . [vj−1×uj−1]
ej−1 .[vj×uj×wj]

ej . . . [v`×u`×w`]
e` , generated by Algorithm 5.4. If

β is used for a set-up of FT-MST3, the workload of the Matrix-permutation attack required
to recover the plaintext is roughly bounded by O(vei

i . . . vej−1

j−1 .(vj.uj)
ej . . . (v`.u`)

e`) (see
Proposition 6.11).

Example 1

Here we show an example of the set-up for FT-MST3 as given in the Table 2 below. Let
m = 224 and s = 32. The following steps are required to successfully set-up the scheme.

Set-up:

(1) Using Algorithm 5.4 generate a logarithmic signature β for Z starting from ε of type
(1282.3230.430), i.e. v = 62. Particularly, for step (3) of the algorithm take a partition
P = {P1, . . . ,P32} with P1 = {1},P2 = {2}, and Pi = {i, v − i + 3} for i = 3, . . . , 30, and
P31 = {31, 33}, P32 = {32, 34}. After finishing Algorithm 5.4 the logarithmic signature
β is of type (12832), and of fusion type [128]2.[32× 4]30.

(2) Using β and Algorithm 7.1 create public key [α,γ].

Example 2

Let m = 255 and s = 26.

Set-up:
(1) Using Algorithm 5.4 generate β for Z starting from ε of type (256.3225.824.425), i.e.

v = 75. For the step (3) of this algorithm take a partition P = {P1, . . . ,P32} with
P1 = {1},P2 = {2, 75}, and Pi = {i, i + 24, i + 48} for i = 3, . . . , 26. Therefore β is of
type (256.128.102424), and of fusion type [256].[32× 4].[32× 8× 4]24.

(2) Using β and Algorithm 7.1 create public key [α,γ].

7.4 Performance of the system

In this section we show the data of the performance of MST3 acquired from a concrete
implementation of the scheme.

The Table 1 shows the number of operations required for one encryption or decryption
of the FT-MTS3. Namely, the addition (ADD), the multiplication (MULT), the exponen-
tiation with θ (EXP(θ)), the generation of m-bit random R (PRNG), and the factorization
of ε̆(R) ∈ Z with respect to a transversal logarithmic signature ε using the Algorithm 5.9
(FACTOR).

34

Table 1: Number of basic operations for one encryption/decryption of FT-MST3.

F2m ADD F2m MULT F2m EXP(θ) F2mPRNG FACTOR

encryption 7s − 7 2s − 2 - 1 -
decryption m + 4s + 8 s + 3 2 - 1

We note that an intrinsic property of MST3 is that there is a trade-off between the key
storage and the speed of the scheme. For example, if F2320 is the underlying field for the
Suzuki 2-group G, then the corresponding FT-MST3 has an input of 320 bit length; if α and
γ have type (4.6453), the public key size is of 135 kBytes, whereas if α and γ have the type
(25640), we have a public key of 402 kBytes. This implementation shows that for the first
case we have an encryption/decryption speed of 287/471 kB/s, whereas for the second case
377/581 kB/s.

The Table 2 presents data related to the public key size, type and fusion type for β,
the speed of the encryption and decryption together with the workload (W) of the Matrix-
permutation attack required to recover the plaintext. The performance tests were imple-
mented by using the library NTL1 and measured on a 64-bit machine of 1.8 GHz.

8 Conclusions

We have presented a revised version of the MST3 public-key cryptosystem on the basis
of the Suzuki 2-groups. An elaborate investigation of recovering the private key by us-
ing heuristic and algebraic arguments has produced strong lower bounds for the workload
required. We have developed a powerful chosen plaintext attack on the scheme, called
Matrix-permutation attack, which shows specially that the class of non-fused transversal
logarithmic signatures for the center of the underlying groups are unfit for use in the real-
ization of MST3. The class of fused transversal logarithmic signatures, however, withstands
the Matrix-permutation attack. We have determined the complexity of this attack on the
scheme using fused transversal logarithmic signatures. This result enables us to choose the
right parameters for the scheme, which we have discussed in the last section. Data of key
storage and of speed performance of a concrete implementation of the scheme have been
included. A further challenging problem regarding the realization of the scheme is the ques-
tion of how to use the class of non-transversal logarithmic signatures or random covers for
β. We will deal with this problem in a future work.

1NTL C++ Library, written by Victor Shoup, http://www.shoup.net/ntl

35

Table 2: Various data for parameters, performance and security of FT-MST3.

m s type of β
pk fusion type of β W

E D

[kB] [kB/s] [kB/s]

160 26 (2562 · 6424) 43 [256].[16× 4× 4].[16× 4]24 2102 607 859
160 23 (64 · 12822) 57 [64].[128].[32× 4]21 2105 604 852
160 20 (25620) 100 [256].[16× 4× 4]19 2114 671 895
160 18 (2562 · 51216) 170 [256].[16× 4× 4].[32× 4× 4]16 2118 689 904
160 16 (102416) 320 [1024].[32× 8× 4]15 2120 758 941

192 32 (6432) 49 [64]3.[16× 4]29 2116 571 854
192 28 (8 · 12827) 82 [8].[128]2.[32× 4]25 2125 529 783
192 24 (25624) 145 [256].[16× 4× 4]23 2138 609 851
192 22 (8 · 51221) 253 [8].[512].[32× 4× 4]20 2140 679 914
192 20 (4 · 102419) 457 [4].[1024].[32× 8× 4]18 2144 720 924

224 38 (4 · 6437) 66 [4].[64]4.[16× 4]33 2132 511 772
224 32 (12832) 113 [128]2.[32× 4]30 2150 565 827
224 28 (25628) 197 [256].[16× 4× 4]27 2162 595 845
224 25 (256 · 51224) 344 [256].[32× 4× 4]24 2168 637 875
224 23 (256 · 64 · 102421) 597 [256].[16× 4].[32× 8× 4]21 2172 678 894

255 43 (8 · 6442) 85 [8].[64]4.[16× 4]38 2152 532 808
255 37 (8 · 12836) 145 [8].[128]2.[32× 4]34 2170 576 852
255 32 (25631 · 128) 252 [256].[16× 4× 4]30.[32× 4] 2185 602 865
255 29 (8 · 51228) 447 [8].[512].[32× 4× 4]27 2189 637 887
255 26 (256 · 128 · 102424) 778 [256].[32× 4].[32× 8× 4]24 2197 708 932

288 48 (6448) 110 [64]5.[16× 4]43 2172 306 502
288 41 (256 · 12840) 190 [256].[128].[32× 4]39 2195 325 523
288 36 (25636) 325 [256]2.[16× 4× 4]34 2204 381 593
288 32 (51232) 577 [512].[32× 4× 4]31 2217 407 595
288 29 (5122 · 102427) 1009 [512].[32× 4× 4].[32× 8× 4]27 2223 457 668

320 54 (4 · 6453) 135 [4].[64]5.[16× 4]48 2192 287 471
320 46 (8 · 512 · 12844) 242 [8].[512].[32× 4]44 2220 305 490
320 40 (25640) 402 [256]2.[16× 4× 4]38 2228 377 581
320 36 (32 · 51235) 703 [32].[512].[32× 4× 4]34 2238 403 604
320 32 (102432) 1281 [1024].[32× 8× 4]31 2248 450 650

352 59 (16 · 6458) 163 [16].[64]6.[16× 4]52 2208 246 408
352 51 (4 · 12850) 277 [4].[128]3.[32× 4]47 2235 292 475
352 44 (25644) 486 [256]2.[16× 4× 4]42 2252 304 481
352 40 (2 · 51239) 860 [2].[512].[32× 4× 4]38 2266 352 537
352 36 (8 · 512 · 102434) 1431 [8].[512].[32× 8× 4]34 2272 378 566

384 64 (6464) 195 [64]6.[16× 4]58 2232 252 421
384 55 (64 · 12854) 330 [64].[128]3.[32× 4]51 2255 287 466
384 48 (25648) 578 [256]2.[16× 4× 4]46 2276 303 485
384 43 (64 · 51242) 1013 [64].[512].[32× 4× 4]41 2287 352 535
384 39 (16 · 102438) 1827 [16].[1024].[32× 8× 4]37 2296 364 554

36

References

[1] Y. Berkovich, Z. Janko Groups of Prime Power Order, Volume 2 Walter de
Gruyter, Berlin, New York 2008.

[2] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory, 31(1985), 469–472.

[3] G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), 79-96.

[4] n B. Huppert Endliche Gruppen I Springer-Verlag Berlin Heidelberg New York 1967.

[5] B. Huppert and N. Blackburn, Finite Groups II Springer-Verlag Berlin Heidelberg
New York 1982.

[6] W. Lempken, S.S. Magliveras, Tran van Trung, W. Wei, A public key cryp-
tosystem based on non-abelian finite groups, J. Cryptology 22 (2009), 62–74.

[7] S. S. Magliveras, A cryptosystem from logarithmic signatures of finite groups,
In Proceedings of the 29’th Midwest Symposium on Circuits and Systems, Elsevier
Publishing Company, (1986), 972–975.

[8] S. S. Magliveras and N. D. Memon, The Algebraic Properties of Cryptosystem
PGM, J. of Cryptology, 5 (1992), 167-183.

[9] S. S. Magliveras, D. R. Stinson and Tran van Trung, New approaches to
designing public key cryptosystems using one-way functions and trapdoors in finite
groups, J. Cryptology, 15 (2002), 285–297.

[10] S. S. Magliveras, P. Svaba, Tran van Trung and P. Zajac, On the security
of a realization of cryptosystem MST3, Tatra Mt. Math. Publ. 41 (2008), 1-13.

[11] P. Nguyen, Editor, New Trends in Cryptology, European project “STORK – Strategic
Roadmap for Crypto” – IST-2002-38273. http://www.di.ens.fr/ pnguyen/pub.html#Ng03

[12] Peter Shor, Polynomial time algorithms for prime factorization and discrete loga-
rithms on quantum computers. SIAM Journal on Computing, 26(5) (1997), 1484-1509.

[13] P. Svaba and Tran van Trung On generation of random covers for finite groups
Tatra Mt. Math. Publ. 37 (2007), 105–112.

37

