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Abstract

Let k, v, t be integers such that k ≥ v ≥ t ≥ 2. A perfect hash family PHF(N ; k, v, t)
can be defined as an N × k array with entries from a set of v symbols such that every
N × t subarray contains at least one row having distinct symbols. Perfect hash families
have been studied by over 20 years and they find a wide range of applications in
computer sciences and in cryptography. In this paper we focus on explicit constructions
for perfect hash families using combinatorial methods. We present many recursive
constructions which result in a large number of improved parameters for perfect hash
families. The paper also includes extensive tables for parameters with t = 3, 4, 5, 6 of
newly constructed perfect hash families.

Keywords: Perfect hash family, combinatorial method, explicit construction.

1 Introduction

Let h be a function from a set A to a set B. We say that h separates a subset T ⊆ A
if h is injective when restricted to T . Let k, v, t be integers such that k ≥ v ≥ t ≥ 2.
Suppose |A| = k and |B| = v. A set H of functions from A to B with |H| = N is an
(N ; k, v, t)-perfect hash family if for all T ⊆ A with |T | = t, there exists at least one h ∈ H
such that h separates T . We use the notation PHF(N ; k, v, t) for an (N ; k, v, t)-perfect hash
family. A PHF(N ; k, v, t) can be depicted as N × k array in which the columns are labeled
by the elements of A, the rows by the functions hi ∈ H and the (i, j)− entry of the array
is the value hi(j). Thus, a PHF(N ; k, v, t) is equivalent to an N ×k array with entries from
a set of v symbols such that every N × t subarray contains at least one row having distinct
symbols.

Let PHFN(k, v, t) denote the smallest value N for which a PHF(N ; k, v, t) exists. We
call PHFN(k, v, t) the perfect hash family number.

Perfect hash families were first used by Mehlhorn [20] in compiler design for efficient
information storage and retrieval and they have been intensively studied by computer scien-
tists for over 20 years. Recently, perfect hash families have found increasingly applications
in cryptography, for instance, in threshold cryptography [4, 5], in broadcast encryption [13],
in multicast re-keying schemes [21], in secure frameproof codes, key distribution patterns,
group testing algorithms etc. [22], in parent property codes [25]. And more recently, they
have been used in constructions for covering arrays [9], [16], [17], [11]

For given parameters k, v, t it is not difficult to construct a perfect hash family, if
the number N of functions does not have to be small. However, regarding the efficieny in
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practical use of PHFs it is most desirable that N should be as small as possible. The problem
is therefore to minimize N . A perfect hash family with the smallest possible number of
functions, i.e. a PHF(N ; k, v, t) with N = PHFN(k, v, t), is called optimal. Necessary
conditions for the existence of a perfect hash family can be found in [19], [14], [15], [7],
where probabilistic methods are used to obtain sufficient conditions as well. In fact, for
fixed v and t the value of PHFN(k, v, t) is proved to be Θ(log k). However, the proof is not
constructive and finding explicit constructions of PHFs having such asymptotical values for
N appears to be a challenge.

Efforts have been put into searching for explicit constructions of perfect hash families.
Consequently, various methods and techniques have been found and developed for this
purpose, see for instance [1], [2], [8], [4], [6], [3], [17], [23], [24], [25].

In a recent paper [27] Walker II and Colbourn review the known explicit constructions
for PHFs and present many new explicit constructions. The paper also contains large tables
for PHFs for a wide range of parameters. Specially, the first comprehensive tables of known
parameters for PHFs created by Walker II at http://www.phftables.com are very useful
for comparing the strength of the known and new constructions. For a brief survey of
perfect hash families the reader is also referred to [10].

In this paper we focus on explicit constructions for PHFs using combinatorial methods
- mainly recursive in nature. Surprisingly, the results from our constructions improve a
great deal of known parameters for PHFs. Several of the constructions generalize those in
[27] as well.

2 Some Results about Explicit Constructions

In this section we briefly summarize some known results of PHF constructions. For further
information about known results for perfect hash families the reader is referred to [27].

Theorem 2.1 PHFN(k, v, 2) = ⌈logv k⌉.

A simple direct construction yields an optimal class of PHFs.

Theorem 2.2 (First-N Construction) [27] For s ≥ 1 and m ≥ 2, PHFN(ms+m,ms+
1, 2s + 1) = s + 1.

The first interesting recursive construction of “Roux-type” for PHFs is given by Walker
and Colbourn.

Theorem 2.3 [27] PHFN(kℓ, v, t) ≤ PHFN(k, v, t) + PHFN(k, ⌊v/ℓ⌋, t − 1) whenever ℓ(t−
1) ≤ v.

Theorem 2.4 [27] For t ≥ 3, PHFN(k+1, v, t) ≤ PHFN(k, v, t)+PHFN(k−1, v−2, t−2).

The next basic construction, called symbol increase, is very simple, however useful.

Theorem 2.5 PHFN(k + 1, v + 1, t) ≤ PHFN(k, v, t)
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3 The First Construction

Although the following recursive construction is simple, perfect hash families produced by
this construction improve many known results. Also it is worth noting that the Walker-
Colbourn first-N construction can be derived from this construction.

Let A1 be a PHF(N1; k1, v1, t1) and A2 be a PHF(N2; k2, v2, t2) with k1 > t1, k2 > t2 and
t1 ≤ t2. Let v = max{v1 +k2, v2 +k1}. We construct a PHF(N1 +N2; k1 +k2, v, t1 + t2 +1).

1. Assume v = max{v1 + k2, v2 + k1} = v1 + k2. Let V1 be the symbol set of A1 and
W2 a symbol set of size k2 such that V1 ∩ W2 = ∅. Define V := V1 ∪ W2. Let B2 denote
an N1 × k2 array, in which each row is a copy of set W2. Let V2 ⊆ V be the symbol set of
A2 and let W1 ⊆ V be a subset of size k1 such that V2 ∩ W1 = ∅. Let B1 be an N2 × k1

array, in which each row is a copy of set W1. Denote C1 the N1 × (k1 + k2) array formed
by horizontally juxtaposing A1 and B2. Denote C2 the N2 × (k1 + k2) array obtained by
horizontally juxtaposing B1 and A2. Define C to be an (N1+N2)×(k1+k2) array formed by
vertically juxtaposing C1 and C2. We prove that C is a PHF(N1 +N2; k1 +k2, v, t1 + t2 +1).

Let I1 resp. I2 be the set of k1 first columns resp. k2 last columns of C. Let T be any
set of t1 + t2 + 1 columns of C.

If |T ∩ I1| ≥ t1 + 1, then there is a row in C2 having distinct symbols in the columns of
T .

If |T ∩ I1| ≤ t1, then there is a row in C1 having distinct symbols in the columns of T .
Hence C is a perfect hash family.

2. The case v = max{v1 + k2, v2 + k1} = v2 + k1 can be proved similarly. In this case
denote V2 the symbol set of A2 and W1 a symbol set of size k1 such that V2 ∩ W1 = ∅.
Define V := V2 ∪ W1. Denote B1 an N2 × k1 array, in which each row is a copy of symbol
set W1. Let V1 ⊆ V be the symbol set of A1 and let W2 ⊆ V be a subset of size k2 such
that V1 ∩W2 = ∅. Now if C is formed from A1, A2, B1 and B2 as in the previous case, then
we can prove similarly that C is a PHF(N1 + N2; k1 + k2, v, t1 + t2 + 1).

Thus we have the following theorem.

Theorem 3.1 For 1 ≤ t1 ≤ t2, t1 < k1 and t2 < k2 we have

PHFN(k1 + k2, v, t1 + t2 + 1) ≤ PHFN(k1, v1, t1) + PHFN(k2, v2, t2),

where v = max{k1 + v2, k2 + v1}.

Remark 3.1 It should be noted that the construction in Theorem 3.1 may use PHFs with
t = 1. Naturally, the definition of PHFs can include the case t = 1. However, this case is
trivial, as a PHF(1; k, v, 1) can always be constructed.

When A1 and A2 have the same parameter PHF(N ; k, v, t), Theorem 3.1 provides the
following result.

Corollary 3.2 For k > t,

PHFN(2k, v + k, 2t + 1) ≤ 2PHFN(k, v, t).

Now we show that the first-N construction can be obtained from the construction in
Theorem 3.1.
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Corollary 3.3 For s ≥ 1 and m ≥ 2 there is a

PHF(s + 1; sm + m, sm + 1, 2s + 1).

Proof. Using Theorem 3.1 we construct a PHFN(s + 1; sm + m, sm + 1, 2s + 1) for every
s ≥ 1 and m ≥ 2. This can be done recursively as follows. Let A1 be a PHF(1;m, 1, 1).
Using Corollary 3.2 we obtain a perfect hash family A3 having parameter PHF(1 + 1;m +
m,m+1, 2+1). Applying Theorem 3.1 to the pair A1 and A3 produces a PHF(2+1; 2m+
m, 2m + 1, 2.2 + 1) A5. The pair A1 and A5 forms a PHF(3 + 1; 3m + m, 3m + 1, 2.3 + 1)
A7. Hence the corollary follows by continuing this process. 2

Here are some examples of PHFs obtained from Theorem 3.1. Using a PHF(2; 9, 3, 2)
and a PHF(4; 9, 3, 3) as ingredients yields a PHF(6; 18, 12, 6). Using a PHF(1; 11, 1, 1) and
a PHF(4; 19, 9, 4) produces PHF(5; 30, 20, 6).

4 The Second Construction

Let v be a prime power and t ≥ 3 an integer with v >
(

t
2

)

− 1. Let
A be a PHF(N1; k, v, t),
B = (bij) be a PHF(N2; k, v, t − 1) and
C = (cij) be a (

(

t
2

)

− 1)× v-array, obtained by taking any (
(

t
2

)

− 1) non-zero rows of the
multiplication table of the finite field Fv. The entries of arrays A and B will be considered
as elements of Fv.

We make use of the following two properties of the array C in our construction.

(P1) : Giving any two columns j1, j2, the set of N3 :=
(

t
2

)

− 1 differences {c1j1 −
c1j2 , c2j1 − c2j2 , . . . , cN3j1 − cN3j2} are pairwise distinct, where the differences are computed
modulo v.

(P2) : The entries in each row of C are pairwise distinct.

Let D be an (N1+(
(

t
2

)

−1).N2+1)×vk-array, which is formed by vertically juxtaposition
of three arrays D1, D2 and D3.

D1 is an N1 × vk array consisting of v copies of A placed side by side.
D2 is a (

(

t
2

)

− 1).N2 × vk array is the “Kronecker addition” of C and B, denoted
D2 = C ⊕ B. The array D2 is obtained by replacing each of its entry crs with a N2 × k
array crs + B := {crs + bij : i = 1, . . . ,N2; j = 1, . . . , k}

D3 is an 1× vk array obtained by placing side by side v distinct blocks of size k, where
each block contains one element of Fv repeated k times.

We prove that D is a PHF(N1 + (
(

t
2

)

− 1).N2 + 1; vk, v, t).
Partition the columns of D into v blocks of k columns each; denote these blocks

I1, I2, . . . , Iv (i.e. I1 is the first k columns, I2 the next k columns, and so on). Let T
be a set of t columns of D. There are 3 main cases.

(1) |T ∩ Ij| = t, i.e. T ⊆ Ij ;
(2) |T ∩ Ij| ≤ 1 for all j = 1, . . . , v;
(3) There is a block Ij such that 2 ≤ |T ∩ Ij| < t.
In case (1) the columns of T restricted to D1 arise from t distinct columns of A. Hence

T is separated in D1. In case (2) the columns of T are in t different blocks Ij ’s, therefore
T is separated in D3.
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The most involved case is case (3). This case implies that the columns of T are dis-
tributed in at least 2 and at most (t − 1) blocks Ij ’s. We show that T is separated by
D2.

To explain the proof that T is separated in case (3) for any t ≥ 3, we first look at an
example with t = 4. Here, without loss of generality, we need to consider the following
distributions of the columns of T .

(a) |T ∩ I1| = 3, |T ∩ I2| = 1;
(b) |T ∩ I1| = |T ∩ I2| = 2;
(c) |T ∩ I1| = 2, |T ∩ I2| = |T ∩ I3| = 1.
Now consider these 3 cases.
(a) |T ∩ I1| = 3, |T ∩ I2| = 1.
Let T1 = T ∩ I1 = {t1, t2, t3}, T2 = T ∩ I2 = {t4}. If t4 (mod k) 6= t1, t2, t3, then the

columns of T restricted to D1 arise from 4 distinct columns of A, hence T is separated in
D1. Assume that t4 (mod k) = t1. Now as B is a PHF(N2; k, v, 3) we have a row having
symbols a, b, c which separates T1 in B. Hence in D2 we have 4 rows having the following
symbols in columns t1, t2, t3, t4:

a + ci1 b + ci1 c + ci1 a + ci2

a + cj1 b + cj1 c + cj1 a + cj2

a + ch1 b + ch1 c + ch1 a + ch2

a + cℓ1 b + cℓ1 c + cℓ1 a + cℓ2

Property (P1) says that cx1 − cx2 6= cy1 − cy2 for x, y = i, j, h, ℓ with x 6= y. It follows
that there is a row r ∈ {i, j, h, ℓ} such that a + cr2 6= a + cr1, b + cr1, c + cr1. Moreover, as
a + cr1, b + cr1, c + cr1 are distinct, the symbols a + cr2, a + cr1, b + cr1, c + cr1 in row r
separate T in D2.

(b) |T ∩ I1| = |T ∩ I2| = 2.
Let T1 = T ∩ I1 = {t1, t2}, T2 = T ∩ I2 = {t3, t4}. If t3, t4 (mod k) 6= t1, t2, then T is

separated in D1. Assume that t3 (mod k) = t1 and t4 (mod k) 6= t2. Again there are 4
rows in D2 with the following symbols in columns t1, t2, t3, t4:

a + ci1 b + ci1 a + ci2 c + ci2

a + cj1 b + cj1 a + cj2 c + cj2

a + ch1 b + ch1 a + ch2 c + ch2

a + cℓ1 b + cℓ1 a + cℓ2 c + cℓ2

where a, b, c are distinct. At least one of these 4 rows must separate T . In fact, if the
first row does not separate T , then we may assume a + ci2 = b + ci1; it follows from (P1)
that a + cu2 6= b + cu1 , u = j, h, ℓ. Now if the second row and the third row both do not
separate T , then we may assume c+ cj2 = b+ cj1 and c+ ch2 = a+ ch1. Again (P1) implies
that c + cℓ2 6= b + cℓ1 and c + cℓ2 6= a + cℓ1, therefore a + cℓ1, b + cℓ1, a + cℓ2, c + cℓ2 are
pairwise distinct (note that a + cℓ2 6= c + cℓ2 as a 6= c). Thus the fourth row separates T .
The case t3 (mod k) = t1 and t4 (mod k) = t2 can be treated in a similar manner.

(c) |T ∩ I1| = 2, |T ∩ I2| = |T ∩ I3| = 1.
Let T1 = T ∩ I1 = {t1, t2}, T2 = T ∩ I2 = {t3} and T3 = T ∩ I3 = {t4}. There are 5

subcases that need to be considered:
(c1) t3 ≡ t4 (mod k) and t3, t4 (mod k) 6= t1, t2,
(c2) t3 ≡ t4 (mod k) and t3, t4 (mod k) = t1,
(c3) t3 6≡ t4 (mod k), t3 (mod k) = t1 and t4 (mod k) = t2
(c4) t3 6≡ t4 (mod k), t3 (mod k) = t1 and t4 (mod k) 6= t2
(c5) t3 6≡ t4 (mod k), t3 (mod k) 6= t1 and t4 (mod k) 6= t2.

5



As a demonstration we show that T is separated in case (c4). Now there are 5 rows in
D2 with the following symbols in columns t1, t2, t3, t4:

a + ci1 b + ci1 a + ci2 c + ci3

a + cj1 b + cj1 a + cj2 c + cj3

a + ch1 b + ch1 a + ch2 c + ch3

a + cℓ1 b + cℓ1 a + cℓ2 c + cℓ3

a + cm1 b + cm1 a + cm2 c + cm3

with (a, b, c) distinct. If the first 4 rows do not separate T , then w.l.o.g. we may assume
that

a + ci2 = b + ci1,
c + cj3 = a + cj1,
c + ch3 = b + ch1,
c + cℓ3 = a + cℓ2.
It follows from (P1) and (P2) that c + cm3 6= a + cm2, a + cm1, b + cm1 and that a +

cm2, a + cm1, b + cm1 are distinct. Hence the fifth row separates T . By a similar proof we
see that D2 separates T in cases (c1), (c2) and (c3) as well. Finally, D1 separates T in case
(c5).

From the example for t = 4, it is clear that if t is large, the number of different
distributions of the columns of T among the blocks Ij ’s become very large. However, to
deal with case (3) it is not necessary to deal with all the possible distributions of the
columns of T separately. The proof for case t = 4 above shows that we only need the
properties (P1), (P2) and the fact that B is a PHF(N2; k, v, t − 1) and C has

(

t
2

)

− 1 rows.

This can be seen as follows: The t columns of T = {t1, t2, . . . , tt} are distributed among
at most (t−1) the blocks Ij’s and there is a block, say I1, with 2 ≤ |T ∩I1| < t. W.l.o.g. we
may assume that the columns of T are distributed among blocks I1, I2, . . . , It−1. If these
columns (modulo k) are all distinct, then D1 separates T . Assume that this is not the
case. Then the set T ∗ := {t1 mod k, t2 mod k, . . . , tt mod k} has s distinct elements with
s ≤ t − 1. Thus the columns of T ∗ restricted to D2 arise s ≤ t − 1 distinct columns of B.
So, there is a row r in B having s distinct elements b1, b2, . . . , bs in the columns T ∗. As D2

is the Kronecker addition of C and B, the
(

t
2

)

− 1 rows in D2 corresponding to this row r

and columns of T form a (
(

t
2

)

−1)× t sub-array Q. Since 2 ≤ |T ∩ I1| < t, there are at least
two columns t1 and t2 in T ∩ I1 such that the entries in column t1 and t2 of each row of
Q are distinct. Using properties (P1) and (P2) for C we see that in the worst case at most
(

t−2
2

)

+ 2(t − 2) − 1 rows of Q cannot separate T . This is because there are at least two
columns ti and tj of T such that ti = tj mod k and each row u of Q has already distinct
entries bi + cuhi

, bi + cuhj
in columns ti and tj. Now, since

(

t−2
2

)

+ 2(t − 2) − 1 <
(

t
2

)

− 1,
there is at least one row of Q separating T .

Thus we have the following result.

Theorem 4.1 Let v be a prime power and let t ≥ 3 be an integer such that
(

t
2

)

− 1 < v.
Suppose that there exist a PHF(N1; k, v, t) and a PHF(N2; k, v, t − 1). Then there exists a
PHF(N1 + (

(

t
2

)

− 1)N2 + 1; vk, v, t).

Here are some examples of PHFs constructed from Theorem 4.1. Using a PHF(6; 22, 7, 4)
and a PHF(3; 22, 7, 3) we obtain a PHF(22; 154, 7, 4). A PHF(6; 27, 13, 5) and PHF(4; 27, 13, 4)
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together produce a PHF(43; 531, 13, 5). A PHF(79; 1058, 23, 6) is obtained from a PHF(8; 46, 23, 6)
and a PHF(5; 46, 23, 5).

5 The second extended construction

An observation shows that the second construction can be modified for the case when v is
not a prime power.

Let v be a composite number and w be a prime power such that w < v. Let t ≥ 3 an
integer such that

(

t
2

)

− 1 < w. Assume that the following exist
A, a PHF(N1; k, v, t),
B = (bij), a PHF(N2; k,w, t − 1) and
C = (cij), a (

(

t
2

)

− 1) × w-array, obtained by taking any (
(

t
2

)

− 1) non-zero rows of the
multiplication table of the finite field Fw. The elements of Fw are the symbol set for B and
we will consider Fw as a subset of the symbol set for A.

As for the second construction we define an array D be an (N1 +(
(

t
2

)

−1).N2 +1)×wk-
array, which is formed by vertically juxtaposition of three arrays D1, D2 and D3.

D1 is an N1 × wk array consisting of w copies of A placed side by side.
D2 is an (

(

t
2

)

−1).N2×wk array, which is the “Kronecker addition” of C and B, denoted
D2 = C ⊕ B. The array D2 is obtained by replacing each of its entry crs with a N2 × k
array crs + B := {crs + bij : i = 1, . . . ,N2; j = 1, . . . , k}

D3 is an 1×wk array obtained by placing side by side w distinct blocks of size k, where
each block contains one element of Fw repeated k times.

Now, with a similar argumentation as for the second construction we see that D is a
PHF(N1 + (

(

t
2

)

− 1).N2 + 1;wk, v, t).

Theorem 5.1 Let v be an integer and let w be a prime power with w ≤ v. Let t ≥ 3
be an integer such that

(

t
2

)

− 1 < w. Suppose that there exist a PHF(N1; k, v, t) and a

PHF(N2; k,w, t − 1). Then there exists a PHF(N1 + (
(

t
2

)

− 1)N2 + 1;wk, v, t).

Theorem 5.1 produces, for instance, a PHF(27; 1331, 12, 4) from a PHF(6; 121, 12, 4) and
a PHF(4; 121, 11, 3). Also a PHF(66; 1599, 14, 5) is constructed from a PHF(11; 123, 14, 5)
and a PHF(6; 123, 13, 4).

6 General Constructions

In this section we generalize the results of the last two constructions. We first begin with
a definition of a new combinatorial object.

Definition 6.1 A PPPHF(N ; k, v, s, r) is a N × k array if its any N × r subarray, B, has
a subset of s rows for which the properties P1 and P2 are satisfied.

Let C be the s × r subarray of B containing the subset of s rows.

(P1) : Giving any two columns j1, j2 of C, the set of s differences {c1j1 − c1j2 , c2j1 −
c2j2 , . . . , csj1 − csj2} are pairwise distinct, where the differences are computed modulo v.
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(P2) : The entries in each row of C are pairwise distinct.

Lemma 6.1 For any integer s and any prime power v, v > s, if a PHF(N ; k, v, r) exists
then a PPPHF(sN ; k, v, s, r) exists.

Proof. Let E be a PHF(N ; k, v, r) and D = (dij) be a s × v-array, obtained by taking
any s non-zero rows of the multiplication table of the finite field Fv. Note that D is a
PPPHF(s; k, v, s, v). Also note that r ≤ v(this is because a PHF(N ; k, v, r) exists). Denote
v columns of D by D1,D2, · · · ,Dv. The array A is obtained by replacing the symbols of E

with columns of D (i.e. symbol 0 is replaced with D1, symbol 1 with D2 and so on.) It is
left to show that A is a PPPHF(sN ; k, v, s, r).

Let B be any sN × r subarray of A. Since E is a PHF(N ; k, v, r), B has a s× r subarray
C the columns of which are r distinct columns of D. Hence A is a PPPHF(sN ; k, v, s, r) by
definition. 2

The following theorem is a generalization of Theorem 5.1.

Theorem 6.2 Let v be an integer and let w be a prime power with w ≤ v. Let t ≥ 3 be
an integer such that

(

t
2

)

−1 < w. Suppose that there exist PHF(N1; k, v, t), PHF(N2; l, v, t),

PHF(N3; k,w, t−1) and PPPHF(N4; l, w,
(

t
2

)

−1, t−1). Then there exists a PHF(N1 +N2 +
N3N4; lk, v, t).

Proof. Let A be a PHF(N1; k, v, t), B be a PHF(N2; l, v, t)
C = (cij) be a PHF(N3; k,w, t − 1) and
F = (fij) be a PPPHF(N4; l, w,

(

t
2

)

− 1, t − 1). The entries of arrays C and F will be
considered as elements of Fw. Let D be an (N1 + N2 + N3N4) × lk-array, which is formed
by vertically juxtaposition of three arrays D1, D2 and D3.

D1 is an N1 × lk array consisting of l copies of A placed side by side.
D2 is an N2 × lk array repeating first columns of B k times, and then second column

of B k times and so on.
D3 is a N3N4 × lk array, which is the “Kronecker addition” of F and C, denoted D3 =

F ⊕ C. The array D3 is obtained by replacing each entry frs of F with a N3 × k array
frs + C := {frs + cij : i = 1, . . . , N3; j = 1, . . . , k}

The proof that D is a PHF(N1 +N2 +N3N4; lk, v, t) is similar to the proof of the second
construction. 2

Next corollary is obtained from Lemma 6.1 and Theorem 6.2.

Corollary 6.3 Let v be an integer and let w be a prime power with w ≤ v. Let t ≥ 3 be
an integer such that

(

t
2

)

−1 < w. Suppose that there exist PHF(N1; k, v, t), PHF(N2; l, v, t),

PHF(N3; k,w, t − 1) and PHF(N4; l, w, t − 1). Then there exists a PHF(N1 + N2 + (
(

t
2

)

−
1)N3N4; lk, v, t).

Definition 6.2 A PHF((N1, N2); k, v, (t, s)) is a PHF(N1 + N2; k, v, t) such that N2 rows
of it form a PHF(N2; k, v, s) where s < t.

If a PHF(N1 + N2 + N3N4; k, v, 3) is obtained from the construction in the Theorem
6.2, then it can be shown that a PHF((N1 +N2,N3N4); k, v, (3, 2)) and a PHF((N3N4,N1 +
N2), k, v, (3, 2)) exist.
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Lemma 6.4 For any prime power v and any integer i, 0 ≤ i ≤ v
3 , there exists a PHF((2i, i+

1); vi+1, v, (3, 2)).

Proof. For any prime power v and any integer 0 ≤ i ≤ v
3 a PHF(3i + 1; vi+1, v, 3) can be

constructed using Bush’s construction for orthogonal arrays. Note that any set of i + 1
rows of this PHF is a PHF(i + 1; vi+1, v, 2). 2

When t = 4, for some parameter values the following theorem gives stronger results
than Theorem 5.1.

Theorem 6.5 Let v be an integer and let w be a prime power with 5 < w ≤ v. Suppose that
there exist PHF(N1; k, v, 4) and PHF((N2,N3); k,w, (3, 2)). Then there exists a PHF(N1 +
4N2 + 5N3 + 1, wk, v, 4).

Proof. Let A be a PHF(N1; k, v, 4),
B = (bij) be a PHF((N2, N3); k,w, (3, 2)) and
C = (cij) be a 4×w-array, obtained by taking any 4 non-zero rows of the multiplication

table of the finite field Fw. The elements of Fw are the symbol set for B and we will consider
Fw as a subset of the symbol set for A.

Let B′, a PHF(N3; k,w, 2) obtained from B by removing its N2 rows. And let C′ be
1 × w-array containing any non-zero rows of the multiplication table of the finite field Fw

not used in C.

We define an array D be an (N1 + 4N2 + 5N3 + 1) × wk-array, which is formed by
vertically juxtaposition of four arrays D1, D2, D3 and D4.

D1 is an N1 × wk array consisting of w copies of A placed side by side.
D2 is an 4(N2 + N3) × wk array consisting of the “Kronecker addition” of C and B,

denoted D2 = C ⊕ B. The array D2 is obtained by replacing each of entry crs of C with a
(N2 + N3) × k array crs + B := {crs + bij : i = 1, . . . , (N2 + N3); j = 1, . . . , k}.

D3 is an N3 × wk array, which is the “Kronecker addition” of C′ and B′.
D4 is an 1×wk array obtained by placing side by side w distinct blocks of size k, where

each block contains one element of Fw repeated k times.
With a similar argumentation as for the second construction we see that D is a PHF(N1+

4N2 + 5N3 + 1;wk, v, t).
In other words, considering all possible cases as it is done in the second construction

for t = 4, we notice that the only case for which it is required to have 5 rows in C is the
case where B does not need to be a 3-PHF. In this case, a part of B that is a 2-PHF can be
used. The remaining cases to be covered B have to be a 3-PHF and C needs to have only
4 rows not 5. 2

Theorem 6.6 For any prime power v and for any integer i, 0 ≤ i ≤ v
6 , there exists a

PHF(19i + 7; vi+2, v, 4)

Proof. There exists a PHF(6i + 1; vi+1, v, 4), (Reed-Solomon code or orthogonal array
of index 1), for any integer i, 0 ≤ i ≤ v

6 . From Lemma 6.4 there exists a PHF((2i, i +
1); vi+1, v, (3, 2)). Hence a PHF(19i + 7; vi+2, v, 4) can be obtained by applying Theorem
6.5 with w = v. 2

Theorem 6.6, for instance, provides a PHF(26; 73, 7, 4) and a PHF(26; 93, 9, 4).
Note also that using symbol increasing on PHF(26; 729, 9, 4) we get PHF(26; 730, 10, 4).
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7 Two Further Constructions

We study two further recursive constructions.
The first construction is a generalization of the construction given in Theorem 2.4 by

Walker and Colbourn, in which the number of columns k is increased by one. The next
theorem shows that it is possible to increase k by more than one column.

Theorem 7.1 For t ≥ 3, and for any integer 2 ≤ x ≤ v − t + 2, PHFN(k + x − 1, v, t) ≤
PHFN(k, v, t) + PHFN(k − 1, v − x, t − 2)

Proof. Let x be any fixed integer 2 ≤ x ≤ v− t+2. Suppose there exist a PHF(N1; k, v, t)
A and a PHF(N2; k − 1, v − x, t − 2) B. Let the symbol set of A be {m1,m2, · · · ,mv}
and and the symbol set of B be {m1,m2, · · · ,mv−x}. We produce a perfect hash family
PHF(N ′; k+x−1, v, t) C where N ′ = N1 +N2. C is formed by vertically juxtaposing arrays
C1 of size N1 × (k + x − 1) and C2 N2 × (k + x − 1).

In row r and column c of C1 place the entry in cell (r, c) of A if c ≤ k and the entry in
cell (r, k) of A if k < c ≤ k + x − 1.

In row r and column c of C2 place the entry in cell (r, c) of B if c ≤ k − 1. For
i = 0, . . . , x− 1 in the column k + i place the symbol mv−x+i+1. These are the symbols of
A that are not used in B.

We show that C is a perfect hash family. Consider t columns of C. If this set of columns
includes at most one of last x columns then when restricted to C1 they arise from t distinct
columns of A and hence at least one row has distinct symbols.

It remains to check the cases when, for a fixed j such that 0 ≤ j ≤ t − 3, the t − j − 2
columns are selected from the first k − 1 columns and j + 2 columns are selected from the
remaining columns. The t−j−2 columns when restricted to C2 arise from t−j−2 distinct
columns of B. Hence at least one row r has distinct symbols in these columns. In the row
r and the remaining j + 2 columns the entries are distinct symbols that are not used in B.
Hence the row r has distinct entries in the set of t columns. 2

Some examples of PHF(k, 5, 4) constructed from Theorem 7.1 are PHF(34; 66, 5, 4),
PHF(57; 173, 5, 4), and PHF(75, 363, 5, 4).

A large number of new parameters for PHFs obtained from Theorem 7.1 has been
included in the tables at http://www.phftables.com under the source: column increase
x.

Another approach to study perfect hash families is that for fixed N , v and t find the
largest k for which a PHF(N ; k, v, t) exists. The following simple recursive construction is
using a known perfect hash family to construct a perfect hash family with one less row.
As a result perfect hash families with improved parameters are obtained.

Theorem 7.2 (row decrease) Suppose there exists a PHF(N ; k, v, t). Then there exists

a PHF(N − 1; ⌈k(t−1)
v

⌉, v, t).

Proof. Let A be a PHF(N ; k, v, t). Suppose the symbol i, 0 ≤ i ≤ v − 1 appears xi times
in the jth row of A. So x0 + x1 + · · · + x(v−1) = k. Without loss of generality suppose
x0 ≥ x1 ≥ · · · ≥ x(v−1). Note that the symbols could be simply renamed otherwise.

Let k′ = x0+x1+· · ·+x(t−2). Let B be an N×k′ subarray of A obtained by deleting the
columns of A that have the symbols x(t−1), x(t), · · · , x(v−1) in row j. B is a PHF(N ; k′, v, t)
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as deleting a column from a perfect hash family we get a perfect hash family of the same
strength. Note that we may even get less symbols after this step. Now remove the row j
from B to get an (N − 1)× k′ array C. C is a PHF(N − 1; k′, v, t) as the row j deleted from
B contains at most t − 1 distinct symbols.

From x0 ≥ x1 ≥ · · · ≥ x(v−1) it follows that x0 + x1 + · · · + x(v−1) ≤ v
x0+x1+···+x(t−2)

t−1 .

So k′ ≥ k(t−1)
v

and hence a PHF(N − 1; ⌈k(t−1)
v

⌉, v, t) exists. 2

Here are some PHF parameters provided by using row decrease construction of Theorem
7.2: PHF(27; 2048, 4, 3), PHF(90; 1320, 5, 4), and PHF(65; 70, 11, 5).

Remark 7.1 Note that by using the construction given in the proof of Theorem 7.2 we
can construct perfect hash families having more columns than the bound ⌈k(t−1)

v
⌉ given in

the theorem. In fact, ⌈k(t−1)
v

⌉ is a lower bound on number of columns of a PHF obtained
by this construction method.

A large number of new PHF parameters obtained from Theorem 7.2 has been presented
at http://www.phftables.com under the source: row decrease.

8 Tables for newly constructed PHFs

In this section we present tables of parameters for PHFs with relatively small values of
v and with t = 3, 4, 5, 6 produced by the methods in this paper. To our knowledge the
newly constructed PHFs are the best known. For creating the tables we intensively use the
beneficial existence tables for PHFs of Walker II at http://www.phftables.com to obtain
most of the ingredients. The remaining part of ingredients is taken from our tables.

Ingredients New PHF

PHF(2; 22, 5, 2) & PHF(2; 22, 5, 2) PHF(4; 44, 27, 5)
PHF(2; 25, 5, 2) & PHF(2; 25, 5, 2) PHF(4; 50, 30, 5)

PHF(2; 9, 3, 2) & PHF(4; 9, 3, 3) PHF(6; 18, 12, 6)
PHF(2; 11, 4, 2) & PHF(4; 11, 4, 3) PHF(6; 22, 15, 6)
PHF(2; 15, 4, 2) & PHF(4; 15, 4, 3) PHF(6; 30, 19, 6)
PHF(2; 16, 4, 2) & PHF(3; 18, 6, 3) PHF(5; 34, 22, 6)
PHF(2; 20, 5, 2) & PHF(3; 22, 7, 3) PHF(5; 42, 27, 6)
PHF(1; 15, 1, 1) & PHF(4; 23, 9, 4) PHF(5; 38, 24, 6)
PHF(1; 8, 1, 1) & PHF(5; 13, 6, 4) PHF(6; 21, 14, 6)

PHF(1; 14, 1, 1) & PHF(4; 22, 9, 4) PHF(5; 36, 23, 6)
PHF(1; 12, 1, 1) & PHF(4; 20, 9, 4) PHF(5; 32, 21, 6)
PHF(1; 11, 1, 1) & PHF(4; 19, 9, 4) PHF(5; 30, 20, 6)
PHF(1; 10, 1, 1) & PHF(4; 18, 9, 4) PHF(5; 28, 19, 6)
PHF(1; 9, 1, 1) & PHF(4; 17, 9, 4) PHF(5; 26, 18, 6)

PHF(1; 16, 1, 1) & PHF(4; 25, 10, 4) PHF(5; 41, 26, 6)
PHF(1; 15, 1, 1) & PHF(4; 24, 10, 4) PHF(5; 39, 25, 6)
PHF(2; 21, 5, 2) & PHF(2; 21, 5, 2) PHF(4; 42, 26, 5)

PHF(1; 16, 1, 1) & PHF(4; 28, 13, 4) PHF(5; 44, 29, 6)
PHF(2; 23, 5, 2) & PHF(3; 26, 8, 3) PHF(5; 51, 31, 6)

11



Table 1: PHFs constructed from Theorem 3.1

Ingredients New PHF

PHF(4; 12, 7, 4) & PHF(2; 12, 7, 3) PHF(15; 84, 7, 4)
PHF(5; 18, 7, 4) & PHF(3; 18, 7, 3) PHF(21; 126, 7, 4)
PHF(6; 22, 7, 4) & PHF(3; 22, 7, 3) PHF(22; 154, 7, 4)

PHF(14; 70, 7, 4) & PHF(5; 70, 7, 3) PHF(40; 490, 7, 4)
PHF(13; 63, 7, 4) & PHF(5; 63, 7, 3) PHF(39; 441, 7, 4)
PHF(3; 12, 8, 4) & PHF(2; 12, 8, 3) PHF(14; 96, 8, 4)
PHF(4; 14, 8, 4) & PHF(2; 14, 8, 3) PHF(15; 112, 8, 4)
PHF(5; 21, 8, 4) & PHF(3; 21, 8, 3) PHF(21; 168, 8, 4)
PHF(6; 27, 8, 4) & PHF(3; 27, 8, 3) PHF(22; 216, 8, 4)
PHF(7; 32, 8, 4) & PHF(3; 32, 8, 3) PHF(23; 256, 8, 4)

PHF(10; 67, 8, 4) & PHF(5; 67, 8, 3) PHF(36; 536, 8, 4)
PHF(14; 88, 8, 4) & PHF(5; 88, 8, 3) PHF(40; 704, 8, 4)
PHF(3; 13, 9, 4) & PHF(2; 13, 9, 3) PHF(14; 117, 9, 4)
PHF(4; 16, 9, 4) & PHF(2; 16, 9, 3) PHF(15; 144, 9, 4)
PHF(4; 23, 9, 4) & PHF(3; 23, 9, 3) PHF(20; 207, 9, 4)
PHF(5; 27, 9, 4) & PHF(3; 27, 9, 3) PHF(21; 243, 9, 4)
PHF(6; 33, 9, 4) & PHF(3; 33, 9, 3) PHF(22; 297, 9, 4)
PHF(7; 36, 9, 4) & PHF(3; 36, 9, 3) PHF(23; 324, 9, 4)

PHF(6; 49, 11, 4) & PHF(3; 49, 11, 3) PHF(22; 539, 11, 4)
PHF(6; 121, 11, 4) & PHF(4; 121, 11, 3) PHF(27; 1331, 11, 4)

Ingredients New PHF

PHF(3; 15, 11, 5) & PHF(3; 15, 11, 4) PHF(31; 165, 11, 5)
PHF(4; 16, 11, 5) & PHF(3; 16, 11, 4) PHF(32; 176, 11, 5)
PHF(5; 17, 11, 5) & PHF(3; 17, 11, 4) PHF(33; 187, 11, 5)
PHF(6; 22, 11, 5) & PHF(4; 22, 11, 4) PHF(43; 242, 11, 5)
PHF(8; 26, 11, 5) & PHF(4; 26, 11, 4) PHF(45; 286, 11, 5)

PHF(11; 121, 11, 5) & PHF(6; 121, 11, 4) PHF(66; 1331, 11, 5)
PHF(3; 18, 13, 5) & PHF(3; 18, 13, 4) PHF(31; 234, 13, 5)
PHF(4; 20, 13, 5) & PHF(3; 20, 13, 4) PHF(32; 260, 13, 5)
PHF(6; 27, 13, 5) & PHF(4; 27, 13, 4) PHF(43; 531, 13, 5)
PHF(7; 28, 13, 5) & PHF(4; 28, 13, 4) PHF(44; 364, 13, 5)

PHF(11; 123, 13, 5) & PHF(6; 123, 13, 4) PHF(66; 1599, 13, 5)
PHF(11; 169, 13, 5) & PHF(7; 169, 13, 4) PHF(75; 2197, 13, 5)

PHF(3; 22, 16, 5) & PHF(3; 22, 16, 4) PHF(31; 352, 16, 5)
PHF(6; 35, 16, 5) & PHF(4; 35, 16, 4) PHF(43; 560, 16, 5)
PHF(7; 41, 16, 5) & PHF(4; 41, 16, 4) PHF(44; 656, 16, 5)
PHF(8; 50, 16, 5) & PHF(5; 50, 16, 4) PHF(54; 800, 16, 5)

PHF(11; 256, 16, 5) & PHF(7; 256, 16, 4) PHF(75; 4096, 16, 5)
PHF(7; 43, 17, 5) & PHF(4; 43, 17, 4) PHF(44; 731, 17, 5)
PHF(3; 27, 19, 5) & PHF(3; 27, 19, 4) PHF(31; 513, 19, 5)
PHF(8; 55, 19, 5) & PHF(4; 55, 19, 4) PHF(46; 1045, 19, 5)
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Ingredients New PHF

PHF(16; 256, 16, 6) & PHF(11; 256, 16, 5) PHF(171; 4096, 16, 6)
PHF(8; 33, 17, 6) & PHF(5; 33, 17, 5) PHF(79; 561, 17, 6)

PHF(16; 289, 17, 6) & PHF(11; 289, 17, 5) PHF(171; 4913, 17, 6)
PHF(8; 38, 19, 6) & PHF(5; 38, 19, 5) PHF(79; 722, 19, 6)

PHF(16; 361, 19, 6) & PHF(11; 361, 19, 5) PHF(171; 6859, 19, 6)
PHF(5; 33, 23, 6) & PHF(3; 33, 23, 5) PHF(48; 759, 23, 6)
PHF(6; 38, 23, 6) & PHF(4; 38, 23, 5) PHF(63; 874, 23, 6)
PHF(8; 46, 23, 6) & PHF(5; 46, 23, 5) PHF(79; 1058, 23, 6)
PHF(4; 35, 25, 6) & PHF(3; 35, 25, 5) PHF(47; 875, 23, 6)
PHF(5; 36, 25, 6) & PHF(3; 36, 25, 5) PHF(48; 900, 23, 6)
PHF(6; 49, 25, 6) & PHF(5; 49, 25, 5) PHF(77; 1225, 25, 6)
PHF(7; 50, 25, 6) & PHF(5; 50, 25, 5) PHF(78; 1250, 25, 6)
PHF(4; 37, 27, 6) & PHF(3; 37, 27, 5) PHF(47; 999, 27, 6)
PHF(5; 39, 27, 6) & PHF(3; 39, 27, 5) PHF(48; 1053, 27, 6)
PHF(6; 44, 27, 6) & PHF(4; 44, 27, 5) PHF(63; 1188, 27, 6)

PHF(11; 69, 27, 6) & PHF(5; 69, 27, 5) PHF(82; 1863, 27, 6)
PHF(4; 41, 29, 6) & PHF(3; 41, 29, 5) PHF(47; 1189, 29, 6)
PHF(5; 42, 29, 6) & PHF(3; 42, 29, 5) PHF(48; 1218, 29, 6)
PHF(6; 49, 29, 6) & PHF(4; 49, 29, 5) PHF(63; 1421, 29, 6)

PHF(11; 71, 29, 6) & PHF(5; 71, 29, 5) PHF(72; 2059, 29, 6)

Table 2: PHFs constructed using Theorem 4.1
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Ingredients New PHF

PHF(3; 16, 10, 4) & PHF(2; 16, 9, 3) PHF(14; 144, 10, 4)
PHF(5; 30, 10, 4) & PHF(3; 30, 9, 3) PHF(21; 270, 10, 4)
PHF(6; 36, 10, 4) & PHF(3; 36, 9, 3) PHF(22; 324, 10, 4)

PHF(3; 20, 12, 4) & PHF(2; 20, 11, 3) PHF(14; 220, 12, 4)
PHF(6; 49, 12, 4) & PHF(3; 49, 11, 3) PHF(22; 539, 12, 4)

PHF(6; 121, 12, 4) & PHF(4; 121, 11, 3) PHF(27; 1331, 12, 4)
PHF(3; 16, 12, 5) & PHF(3; 16, 11, 4) PHF(31; 176, 12, 5)
PHF(8; 31, 12, 5) & PHF(5; 31, 11, 4) PHF(54; 341, 12, 5)

PHF(11; 121, 12, 5) & PHF(6; 121, 11, 4) PHF(66; 1331, 12, 5)
PHF(3; 19, 14, 5) & PHF(3; 19, 13, 4) PHF(31; 209, 14, 5)
PHF(4; 21, 14, 5) & PHF(3; 21, 13, 4) PHF(32; 273, 14, 5)
PHF(8; 42, 14, 5) & PHF(5; 42, 13, 4) PHF(54; 546, 14, 5)

PHF(11; 123, 14, 5) & PHF(6; 123, 13, 4) PHF(66; 1599, 14, 5)
PHF(11; 169, 14, 5) & PHF(7; 169, 13, 4) PHF(75; 2197, 14, 5)

PHF(3; 21, 15, 5) & PHF(3; 21, 13, 4) PHF(31; 273, 15, 5)
PHF(8; 43, 15, 5) & PHF(5; 43, 13, 4) PHF(54; 559, 15, 5)

PHF(11; 123, 15, 5) & PHF(6; 123, 13, 4) PHF(66; 1599, 15, 5)
PHF(11; 169, 15, 5) & PHF(7; 169, 13, 4) PHF(75; 2197, 15, 5)

PHF(3; 28, 20, 5) & PHF(3; 28, 19, 4) PHF(31; 532, 20, 5)
PHF(4; 32, 20, 5) & PHF(3; 32, 19, 4) PHF(32; 608, 20, 5)
PHF(8; 55, 20, 5) & PHF(4; 55, 19, 4) PHF(45; 1045, 20, 5)
PHF(3; 30, 21, 5) & PHF(3; 30, 19, 4) PHF(31; 570, 21, 5)
PHF(4; 33, 21, 5) & PHF(3; 33, 19, 4) PHF(32; 627, 21, 5)
PHF(7; 55, 21, 5) & PHF(4; 55, 19, 4) PHF(44; 1045, 21, 5)

Ingredients New PHF

PHF(7; 34, 18, 6) & PHF(5; 34, 17, 5) PHF(78; 578, 18, 6)
PHF(9; 39, 18, 6) & PHF(6; 39, 17, 5) PHF(94; 663, 18, 6)

PHF(16; 289, 18, 6) & PHF(11; 289, 17, 5) PHF(171; 4913, 18, 6)
PHF(5; 30, 20, 6) & PHF(4; 30, 19, 5) PHF(62; 570, 20, 6)
PHF(6; 31, 20, 6) & PHF(4; 31, 19, 5) PHF(63; 589, 20, 6)

PHF(16; 361, 20, 6) & PHF(11; 361, 19, 5) PHF(171; 6859, 20, 6)
PHF(16; 361, 21, 6) & PHF(11; 361, 19, 5) PHF(171; 6859, 21, 6)
PHF(16; 361, 22, 6) & PHF(11; 361, 19, 5) PHF(171; 6859, 22, 6)

PHF(4; 33, 24, 6) & PHF(3; 33, 23, 5) PHF(47; 759, 24, 6)
PHF(6; 38, 24, 6) & PHF(4; 38, 23, 5) PHF(63; 874, 24, 6)
PHF(4; 36, 26, 6) & PHF(3; 36, 25, 5) PHF(47; 900, 26, 6)
PHF(5; 40, 26, 6) & PHF(4; 40, 25, 5) PHF(62; 1000, 26, 6)
PHF(6; 41, 26, 6) & PHF(4; 41, 25, 5) PHF(63; 1025, 26, 6)
PHF(4; 39, 28, 6) & PHF(3; 39, 27, 5) PHF(47; 1053, 28, 6)

PHF(10; 68, 28, 6) & PHF(5; 68, 27, 5) PHF(81; 1836, 28, 6)
PHF(11; 69, 28, 6) & PHF(5; 69, 27, 5) PHF(82; 1863, 28, 6)
PHF(4; 42, 30, 6) & PHF(3; 42, 29, 5) PHF(47; 1218, 30, 6)
PHF(4; 49, 30, 6) & PHF(4; 49, 29, 5) PHF(61; 1421, 30, 6)
PHF(9; 71, 30, 6) & PHF(5; 71, 29, 5) PHF(80; 2059, 30, 6)
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Table 3: PHFs constructed using Theorem 5.1

new PHF

PHF(26; 73 = 343, 7, 4)
PHF(26; 93 = 729, 9, 4)
PHF(26; 83 = 512, 8, 4)

PHF(26; 113 = 1331, 11, 4)
PHF(45; 134 = 28561, 13, 4)
PHF(45; 164 = 65536, 16, 4)

Table 4: PHFs constructed using Theorem 6.6

PHF(11; 10,4,4) PHF(54; 66,4,4) PHF(27; 51,5,4)
PHF(34; 66,5,4) PHF(57; 173,5,4) PHF(81; 365,5,4)

PHF(103; 2201,5,4) PHF(111; 2202,5,4) PHF(115; 2203,5,4)
PHF(156; 6861,5,4) PHF(165; 6862,5,4) PHF(169; 6863,5,4)
PHF(178; 6864,5,4) PHF(226; 130323,5,4) PHF(237; 130324,5,4)

PHF(243; 130325,5,4) PHF(254; 130326,5,4) PHF(260; 130327,5,4)
PHF(21; 12,5,5) PHF(382; 173,5,5) PHF(958; 731,5,5)
PHF(83; 62,6,5) PHF(111; 123,6,5) PHF(145; 171,6,5)

PHF(169; 173,6,5) PHF(235; 291,6,5) PHF(280; 363,6,5)
PHF(300; 364,6,5) PHF(307; 365,6,5) PHF(327; 366,6,5)
PHF(358; 531,6,5) PHF(39; 13,6,6) PHF(53; 14,6,6)
PHF(666; 66,6,6) PHF(714; 67,6,6) PHF(768; 68,6,6)

PHF(1616; 291,6,6) PHF(1972; 363,6,6) PHF(2278; 365,6,6)
PHF(2688; 531,6,6) PHF(284; 66,7,6) PHF(298; 67,7,6)

PHF(332; 68,7,6) PHF(352; 69,7,6) PHF(408; 71,7,6)
PHF(664; 291,7,6) PHF(8734; 262148,7,6) PHF(9000; 262149,7,6)

Table 5: Some PHFs constructed using Theorem 7.1
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PHF(26; 324,3,3) PHF(27; 486,3,3) PHF(39; 972,3,3)
PHF(48; 2731,3,3) PHF(55; 4573,3,3) PHF(59; 9762,3,3)

PHF(68; 29128,3,3) PHF(69; 43691,3,3) PHF(79; 86881,3,3)
PHF(87; 157464,3,3) PHF(88; 236196,3,3) PHF(89; 354294,3,3)

PHF(27; 2048,4,3) PHF(38; 16384,4,3) PHF(39; 32768,4,3)
PHF(50; 262144,4,3) PHF(51; 524288,4,3) PHF(27; 6250,5,3)
PHF(34; 20262,5,3) PHF(38; 62500,5,3) PHF(39; 156250,5,3)
PHF(27; 10924,6,3) PHF(38; 473286,6,3) PHF(19; 4184,7,3)
PHF(27; 33614,7,3) PHF(38; 707468,7,3) PHF(19; 7141,8,3)
PHF(25; 92824,8,3) PHF(6; 162,9,3) PHF(19; 14564,9,3)

PHF(25; 233017,9,3) PHF(19; 16705,10,3) PHF(25; 283972,10,3)
PHF(6; 242,11,3) PHF(9; 2662,11,3) PHF(25; 450200,11,3)
PHF(40; 36,4,4) PHF(41; 48,4,4) PHF(71; 91,4,4)

PHF(119; 217,4,4) PHF(167; 397,4,4) PHF(191; 696,4,4)
PHF(192; 927,4,4) PHF(193; 1236,4,4) PHF(194; 1648,4,4)

PHF(245; 2304,4,4) PHF(246; 3072,4,4) PHF(298; 5145,4,4)
PHF(363; 9126,4,4) PHF(431; 23196,4,4) PHF(432; 30927,4,4)

PHF(433; 41235,4,4) PHF(434; 54980,4,4) PHF(435; 73306,4,4)
PHF(436; 97741,4,4) PHF(530; 157411,4,4) PHF(531; 209881,4,4)

PHF(569; 292969,4,4) PHF(607; 398581,4,4) PHF(59; 174,5,4)
PHF(89; 792,5,4) PHF(90; 1320,5,4) PHF(129; 2948,5,4)

PHF(181; 7301,5,4) PHF(206; 28150,5,4) PHF(207; 46916,5,4)
PHF(208; 78193,5,4) PHF(265; 167906,5,4) PHF(64; 1099,6,4)
PHF(131; 32581,6,4) PHF(132; 65161,6,4) PHF(170; 139921,6,4)

PHF(40; 407,7,4) PHF(41; 948,7,4) PHF(88; 9261,7,4)
PHF(89; 21609,7,4) PHF(90; 50421,7,4) PHF(125; 151263,7,4)

PHF(130; 453789,7,4) PHF(131; 1058841,7,4) PHF(132; 2470629,7,4)
PHF(41; 1397,8,4) PHF(89; 36864,8,4) PHF(90; 98304,8,4)

PHF(75; 93281,9,4) PHF(75; 117188,10,4) PHF(5; 33,11,4)
PHF(35; 2567,11,4) PHF(173; 63,5,5) PHF(174; 78,5,5)

PHF(175; 97,5,5) PHF(285; 136,5,5) PHF(428; 205,5,5)
PHF(747; 424,5,5) PHF(1209; 1096,5,5) PHF(1359; 1693,5,5)

PHF(1421; 2553,5,5) PHF(1422; 3191,5,5) PHF(1423; 3988,5,5)
PHF(1424; 4985,5,5) PHF(1425; 6231,5,5) PHF(1426; 7788,5,5)
PHF(1427; 9734,5,5) PHF(1553; 12500,5,5) PHF(1721; 15747,5,5)

PHF(2309; 40523,5,5) PHF(2540; 55137,5,5) PHF(2819; 95332,5,5)
PHF(2905; 123955,5,5) PHF(2906; 154943,5,5) PHF(2907; 193678,5,5)
PHF(2908; 242097,5,5) PHF(2909; 302621,5,5) PHF(2910; 378276,5,5)
PHF(2911; 472844,5,5) PHF(2912; 591054,5,5) PHF(2913; 738817,5,5)

PHF(87; 81,6,5) PHF(626; 2404,6,5) PHF(627; 3606,6,5)
PHF(628; 5408,6,5) PHF(629; 8112,6,5) PHF(1007; 33769,6,5)

PHF(1267; 182424,6,5) PHF(1268; 273636,6,5) PHF(1269; 410454,6,5)
PHF(1270; 615681,6,5) PHF(65; 70,7,5) PHF(375; 2271,7,5)

PHF(376; 3974,7,5) PHF(377; 6953,7,5) PHF(772; 172320,7,5)
PHF(773; 301559,7,5) PHF(774; 527727,7,5) PHF(250; 3042,8,5)

PHF(251; 6084,8,5) PHF(525; 262144,8,5) PHF(526; 524288,8,5)
PHF(208; 3087,9,5) PHF(209; 6945,9,5) PHF(401; 207127,9,5)

PHF(402; 466034,9,5) PHF(167; 4868,10,5) PHF(308; 147764,10,5)
PHF(309; 369409,10,5) PHF(10; 44,11,5) PHF(120; 5324,11,5)
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Table 6: Some PHFs constructed using Theorem 7.2.

9 Conclusions

The construction of perfect hash families is a challenging problem. We have presented many
recursive constructions for perfect hash families using combinatorial methods. The new
constructions turn out very useful as they produce a great many new perfect hash families
for large t. A number of our constructions generalize some recent results. A remarkable
fact of combinatorial methods is that they often allow to construct good perfect hash
families not only for the case, where v is a prime power, but also for the non-prime power
case. We believe that combinatorial methods are powerful and they are worthy of further
investigations. The extensive tables included for newly constructed parameters once more
bear evidence of the strength of these methods.
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