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Abstract

The paper deals with t-designs that can be partitioned into s-designs, each
missing a point of the underlying set, called point-missing s-resolvable t-designs,
with emphasis on their applications in constructing t-designs. The problem
considered may be viewed as a generalization of overlarge sets which are defined
as a partition of all the

(
v+1
k

)
k-sets chosen from a (v + 1)-set X into (v + 1)

mutually disjoint s-(v, k, δ) designs, each missing a different point of X. Among
others, it is shown that the existence of a point-missing (t − 1)-resolvable t-
(v, k, λ) design leads to the existence of a t-(v, k+ 1, λ′) design. As a result, we
derive various infinite series of 4-designs with constant index using overlarge
sets of disjoint Steiner quadruple systems. These have parameters 4-(3n, 5, 5),
4-(3n + 2, 5, 5) and 4-(2n + 1, 5, 5), for n ≥ 2, and were unknown until now. We
also include a recursive construction of point-missing s-resolvable t-designs and
its application.
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1 Introduction

The paper is concerned with point-missing s-resolutions of t-designs and applications
thereof. In general, a partition of a t-(v, k, λ) design (X,B) into mutually disjoint
s-(w, k, δ) designs, w ≤ v, s < t, is termed an s-resolution. If w = v, then (X,B) is
called s-resolvable; in particular, if (X,B) is the complete k-(v, k, 1) design, then an s-
resolution of (X,B) is called a large set of s-designs. If w = v−1, then (X,B) is called
point-missing s-resolvable. A point-missing s-resolution of the complete k-(v, k, 1)
design is called an overlarge set of s-designs. Point-missing s-resolvability remains
still sparsely investigated; however, several computational and theoretical works on
the subject can be found in the literature [9, 13, 15, 16, 19, 20, 23]. Point-missing
s-resolvablity is complementarily related to what we call pencil-like s-resolvablity for
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t-designs, and vice versa. As far as we know the first example of infinite series of non-
trivial point-missing s-resolvable t-designs for t ≥ 4 can be found in a paper of Alltop
in 1972 [2], in which the author constructed a series of 4-(2n+1, 2n−1, (2n−1−3)(2n−2−
1)) designs for n ≥ 4 as the union of 2n + 1 mutually disjoint 3-(2n, 2n−1, 2n−2 − 1)
designs. We prove theorems for constructring new t-designs from point-missing and
pencil-like s-resolvable t-designs. By using these theorems for overlarge sets of disjoint
Steiner quadruple systems with v = 3n − 1 and v = 3n + 1 points constructed by
Teirlinck [23], including the already known case with v = 2n, we derive various infinite
series of 4-(v+1, 5, 5) designs, which were unknown until now. It is worthy of note that
no large sets of Steiner quadruple systems are constructed to date; however, large sets
of Steiner 2-designs for k = 4 with v = 13, 16 points are known to exist [10, 12, 14].
We also show a recursive construction of point-missing s-resolvable t-designs and its
application.

For the sake of clarity we include a few basic definitions. A t-design, denoted
by t-(v, k, λ), is a pair (X,B), where X is a v-set of points and B is a collection of
k-subsets of X, called blocks, such that every t-subset of X is a subset of exactly λ
blocks, and λ is called the index of the design. A t-design is called simple if no two
blocks are identical, otherwise, it is called non-simple. A t-(v, k, 1) design is called
a Steiner t-design. For any point x ∈ X, let Bx = {B \ {x} : x ∈ B ∈ B}. Then
(X \ {x},Bx) is a (t − 1)-(v − 1, k − 1, λ) design, called a derived design of (X,B).
It can be shown by simple counting that a t-(v, k, λ) design is an s-(v, k, λs) design
for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. Since λs is an integer, necessary conditions

for the parameters of a t-design are
(
k−s
t−s

)
|λ
(
v−s
t−s

)
for 0 ≤ s ≤ t. The smallest positive

integer λ for which these necessary conditions are satisfied is denoted by λmin(t, k, v)
or simply λmin. If B is the set of all k-subsets of X, then (X,B) is a t-(v, k, λmax)
design, called the complete design, where λmax =

(
v−t
k−t

)
. If we take δ copies of the

complete design, we obtain a t-(v, k, δ
(
v−t
k−t

)
) design, which is refered to as a trivial

t-design; otherwise, it is called a non-trivial t-design.

2 Point-missing s-resolvable t-designs

A t-(v, k, λ) design (X,B) is said to be s-resolvable, for 0 < s < t, if its block set B can
be partitioned into N ≥ 2 classes B1, . . . ,BN such that each (X,Bi) is an s-(v, k, δ)
design for i = 1, . . . , N . Such a partition is called an s-resolution of (X,B) and each
Bi is called an s-resolution class or simply a resolution class, see e.g. [25, 26].

If the complete k-(v, k, 1) design can be partitioned into N disjoint t-(v, k, λ)
designs, where N =

(
v−t
k−t

)
/λ, then we say that there exists a large set of t-designs

denoted by LS[N ](t, k, v) or by LSλ(t, k, v) to emphasize the value λ.
In the most general form, the concept of point-missing s-resolvability of a t-(v, k, λ)

design can be defined as follows.

Definition 2.1 Let (X,B) be a t-(v, k, λ) design and let 1 ≤ s ≤ t − 1. (X,B) is
called point-missing s-resolvable, if the block set B can be partitioned into mutually
disjoint s-(v − 1, k, δ) designs, each missing a point of X.
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However, Definition 2.1 is equivalent to a definition that describes point-missing
resolutions with more exact details. We now give an explanation.

Let X = {x1, . . . , xv} and let Xi = X \ {xi}, i = 1, . . . , v. Let mi denote the
number of s-(v − 1, k, δ) designs (Xi,Bi) missing xi in the resolution. First we show
that any xi ∈ X is a missing point of an s-design (Xi,Bi). More precisely, let Y ⊆ X
be the subset of X such that there is no design (Xi,Bi) missing point xi, when xi ∈ Y .
Assume that Y 6= ∅. Then the blocks of B can be written as follows.

B =
⋃

xh∈X\Y

mhBh, where mhBh := Bh ∪ · · · ∪ Bh︸ ︷︷ ︸
mh times

.

Consider two given points xi ∈ Y and xj ∈ X \ Y . Since xi ∈ Y , there is no s-design
(Xi,Bi) missing xi. Thus xi appears in each design (Xh,Bh), where xh ∈ X \ Y ,

therefore xi appears in
∑

xh∈X\Y mhδ1 times in the blocks of B, where δ1 = δ
(v−2
s−1)

(k−1
s−1)

.

Whereas the point xj ∈ X \ Y appears in
∑

xh∈X\{Y ∪{xj}}mhδ1 times in the blocks of

B, which is a contradiction if Y 6= ∅. Further, we show that m1 = · · · = mv. W.l.o.g.,
assume by contradiction that m1 6= m2. Then the number of blocks containing x1
(resp. x2) is then

∑
x∈X\{x1}mxδ1 = m2δ1 +

∑v
i=3miδ1 (resp.

∑
x∈X\{x2}mxδ1 =

m1δ1 +
∑v

i=3miδ1). Since m2δ1 +
∑v

i=3miδ1 = m1δ1 +
∑v

i=3miδ1, we have m2δ1 =
m1δ1, or equivalently m2 = m1, contradicting the assumption. Thus we must have
m1 = · · · = mv.

The discussion above suggests an equivalent formulation of Definition 2.1 as fol-
lows.

Definition 2.2 Let (X,B) be a t-(v, k, λ) design and let 1 ≤ s < t be an integer.
(X,B) is said to be point-missing s-resolvable, if there is an integer m ≥ 1 such that
the following hold.

1. B = Bx1 ∪ · · · ∪ Bxv , where X = {x1, . . . , xv},

2. Bx = B1
x∪ · · ·∪Bmx , each (X \{x},Bjx) is an s-(v−1, k, δ) design, j = 1, . . . ,m,

and m is called the multiplicity of the point x.

If m = 1, (X,B) is simply called point-missing s-resolvable. Moreover, if m > 1, then
(X \ {x},Bx) is an s-(v − 1, k,mδ) design. Therefore, (X,B) again is a union of v
mutually disjoint s-(v− 1, k,mδ) design, each missing a different point of X. Hence,
in general, when we speak of point-missing s-resolvable t-designs we mean m = 1.

If the complete k-(v, k, 1) design can be partitioned into v mutually disjoint s-
(v− 1, k, δ) designs (i.e. point-missing s-resolvable), then we have an overlarge set of
s-(v − 1, k, δ) designs.

Lemma 2.1 Let (X,B) be a point-missing s-resolvable t-(v, k, λ) design and assume
that each point in the resolution has multiplicity m. Then

δ = λ

(
v − s
t− s

)
/

(
k − s
t− s

)
m(v − s).
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In particular, if the complete t-(v, t, 1) design is point-missing (t− 1)-resolvable, then
the designs in the resolution are Steiner (t− 1)-(v − 1, t, 1) designs.

Proof. By assumption, we have

B =
⋃
x∈X

{B1
x ∪ · · · ∪ Bmx },

where (X \ {x},Bix) is an s-(v − 1, k, δ) design. Let S = {x1, . . . , xs} ⊆ X. Then S
does not appear in any block of Bixj , for j = 1, . . . , s and i = 1, . . . ,m. Further, S

appears in each Bixj with j 6= 1, . . . , s, exactly δ times. Thus S appears m(v − s)δ
times in the blocks of B. On the other hand, the number of blocks in B containing S

is λs =
(v−s
t−s)

(k−s
t−s)

λ. Therefore λs = m(v − s)δ and thus δ = λs
m(v−s) , as desired. 2

Recall that the complement of an s-resolvable t-design is again s-resolvable. How-
ever, it is not true with a point-missing s-resolvable t-design. Let X := {x1, . . . , xv}
and let Xi := X \ {xi}, i = 1, . . . , v. To simplify the typing we write: if Y ⊆ X, then

Y := X \ Y , whereas if Y ⊆ Xi, then Ỹ := Xi \ Y . Let (X,D) be a point-missing
s-resolvable t-design with parameters t-(v, k, λ) and let (X,D) be its complement
which has parameters t-(v, v − k, λ), where λ = λ

(
v−k
t

)
/
(
k
t

)
. Let D = D1 ∪ · · · ∪ Dv

be a partition of D into v point-missing s-resolution classes, where (Xi,Di) is an
s-(v − 1, k, δ) design, for i = 1, . . . , v. The complement of (Xi,Di) (within Xi) is

an s-(v − 1, v − 1 − k, δ̃) design (Xi, D̃i) with δ̃ = δ
(
v−1−k

s

)
/
(
k
s

)
. So, we have D =

D1∪· · ·∪Dv = ({x1}∪D̃1)∪· · ·∪({xv}∪D̃v), where {xi}∪D̃i = {{xi}∪D̃ | D̃ ∈ D̃i}.
Thus, Di = ({xi} ∪ D̃i) is not an s-design, but rather a “pencil”. Hence, the decom-
position of (X,D) suggests the following definition.

Definition 2.3 Let X = {x1, . . . , xv} and denote Xi := X \ {xi}, i = 1, . . . , v. Let
(X,B) be a t-(v, k, λ) design. If for some xi ∈ X there exists an s-(v − 1, k − 1, δ)

design (Xi,Bi) for 1 ≤ s < t, then we call {xi} ∪ Bi = {{xi} ∪ B̃ | B̃ ∈ B̃i} ⊆ B̃
an s-pencil of (X,B). If B = ({x1} ∪ B1) ∪ · · · ∪ ({xv} ∪ Bv), where (Xi,Bi) is an
s-(v − 1, k − 1, δ) design, then (X,B) is said to be pencil-like s-resolvable.

As observed above, the complement of a point-missing s-resolvable t-design is a pencil-
like s-resolvable t-design. Conversely, it is straightfoward to check that the com-
plement of a pencil-like s-resolvable t-design is a point-missing s-resolvable t-design.
Hence the notion of point-missing s-resolvability and that of pencil-like s-resolvability
are complementary equivalent. We record this fact in the following lemma.

Lemma 2.2 A t-design is point-missing s-resolvable if and only if its complement is
pencil-like s-resolvable.

The next theorem shows a relation between certain classes of t-designs and point-
missing (t− 1)-resolvable t-designs, in terms of derived designs.
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Theorem 2.3 Let (X,B) be a simple t-(v, k, λ) design with |B ∩ B′| ≤ k − 2 for
any two distinct blocks B,B′ ∈ B. Then there exists a simple point-missing (t − 1)-
resolvable t-(v, k − 1, (k − t)λ) design (X,D). In particular, if (X,B) is a Steiner
t-(v, t + 1, 1) design, then there exists an overlarge set of Steiner (t − 1)-(v − 1, t, 1)
designs.

Proof. For a given point x ∈ X consider the derived design (X \ {x},Bx) at x
with parameters (t − 1)-(v − 1, k − 1, λ). Here Bx = {B \ {x} | x ∈ B, B ∈ B}.
Define D =

⋃
x∈X Bx. We claim that (X,D) is a t-(v, k − 1, (k − t)λ) design. Let

T = {x1, . . . , xt} ⊆ X. Then there are λ blocks of B, say, B1, . . . , Bλ containing T .
Each Bi, i = 1, . . . , λ, gives rise to a set Di = {D = Bi\{x} | x ∈ Bi\T} ⊆ D having
(k − t) blocks D containing T . Thus there are (k − t)λ blocks D ∈ D containing
T in total, as desired. The simplicity of (X,D) is a consequence of the property:
|B ∩B′| ≤ k − 2, B,B′ ∈ B, B 6= B′, which can be seen as follows. Let D,D′ be two
blocks of D. If D,D′ ∈ Bx for some x ∈ X, then D 6= D′, since (X \ {x},Bx) is the
derived design at x. If D ∈ Bx and D′ ∈ By with x 6= y, then again D 6= D′. This is
because if D = D′, then the two blocks B = D ∪ {x} and B′ = D′ ∪ {y} of B would
have |B ∩B′| = k− 1, a contradiction. In addition, if (X,B) is a Steiner t-(v, t+ 1, 1)
design, then (X,D) becomes the complete t-(v, t, 1) design. In other words, the set
of v distinct (t− 1)-(v − 1, t, 1) derived designs of (X,B) forms an overlarge set. 2

Remark 2.1 1. The proof of Theorem 2.3 shows that the constructed t-(v, k −
1, (k−t)λ) design is not simple, if there are two blocks B,B′ ∈ B with |B∩B′| =
k − 1.

2. It should be stressed that the set of v distinct derived designs of a Steiner t-
(v, k, 1) design with k > t + 1 in Theorem 2.3 will not form an overlarge set of
(t− 1)-(v − 1, k − 1, 1) designs, but rather a point-missing (t− 1)-resolution of
a t-(v, k − 1, (k − t)) design.

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4 Assume that there exists a Steiner t-(v, k, 1) design. Then there exists
a point-missing (t− 1)-resolvable t-(v, k − 1, k − t) design.

The case k = t+1 of Corollary 2.4 is known as examples of overlarge sets of Steiner
designs, see [23]. Thus, if there exists a Steiner t-(v, t+ 1, 1) design, then there exists
a point-missing (t − 1)-resolvable t-(v, t, 1) design, i.e. an overlarge set of Steiner
(t−1)-(v−1, t, 1) designs. Note that the converse of this statement is not true, i.e. if
there exists an overlarge set of Steiner (t− 1)-(v− 1, t, 1) designs, it is not necessarily
true that a Steiner t-(v, t+ 1, 1) design exists. For example, Österg̊ard and Pottonen
[17] have shown that a Steiner 4-(17, 5, 1) design does not exist. Nevertheless, there
exists an overlarge set of Steiner 3-(16, 4, 1) designs, see [23]. And crucially, Teirlinck
[23] has shown that there are overlarge sets of Steiner 3-(v, 4, 1) designs for v = 3n−1,
n ≥ 2 and v = 3n + 1, n ≥ 1, despite the fact that only a finite number of Steiner
4-(v, 5, 1) designs are hitherto known.
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The general case k ≥ t + 2 is interesting, since Theorem 2.3 provides a point-
missing (t − 1)-resolvable t-(v, k − 1, k − t) design, which is not a complete design.
Examples about this case can be seen, for instance, from Steiner 5-(24, 8, 1) and 5-
(28, 7, 1) designs. Here we obtain point-missing 4-resolvable 5-(24, 7, 3) and 5-(28, 6, 2)
designs, where designs in the resolution are Steiner 4-(23, 7, 1) and 4-(27, 6, 1) designs,
respectively. Similarly, there are point-missing 3-resolvable 4-(23, 6, 3) and 4-(27, 5, 2)
designs having Steiner 3-(22, 6, 1) and 3-(26, 5, 1) designs in the resolution, respec-
tively.

As a further application of Theorem 2.3, we consider the infinite series of 4-
(q + 1, 6, 10) designs with q = 2n, n ≥ 5 and gcd(n, 6) = 1, [8], having the property
that any two blocks of the designs intersect in at most 4 points. Thus we have the
following result.

Corollary 2.5 Let q = 2n, n ≥ 5 and gcd(n, 6) = 1. Then there exists a point-
missing 3-resolvable 4-(q+1, 5, 20) design having a 3-(q, 5, 10) design in the resolution.

Corollary 2.5 shows an interesting example of 4-designs that are 3-resolvable, and
point-missing 3-resolvable as well.

3 Constructions of t-designs from point-missing (t−
1)-resolvable t-designs

Recall that Lemma 2.2 shows a natural connection between point-missing and pencil-
like s-resolvability via the complement action. However, we observe that point-missing
(t − 1)-resolvable t-designs may be used to construct pencil-like (t − 1)-resolvable t-
designs which are not related to the complementary connection, as shown in the
following theorem.

Theorem 3.1 Let (X,B) be a point-missing (t− 1)-resolvable t-(v, k, λ) design with
(t − 1)-(v − 1, k, δ) designs in the resolution. Then there is a pencil-like (t − 1)-
resolvable t-(v, k + 1, tδ + λ) design (X,B∗). If |B ∩B′| ≤ k − 2 for any two distinct
blocks B,B′ ∈ B, then (X,B∗) is simple. Further, if there are two blocks B,B′ ∈ B
with |B ∩ B′| = k − 1, then the simplicity of (X,B∗) depends on the structure of the
resolution.

Proof. Let X = {1, . . . , v}. For i ∈ X denote (X \ {i},Bi) the (t − 1)-(v − 1, k, δ)
design in the point-missing (t− 1)-resolution. Define B∗i = {i} ∪ Bi = {{i} ∪B | B ∈
Bi}, for i = 1, . . . , v, and B∗ =

⋃
i∈X B∗i . We claim that (X,B∗) is a pencil-like (t−1)-

resolvable t-(v, k + 1, tδ + λ) design. Let T = {i1, . . . , it} ⊆ X. Consider a resolution
class Bj with j ∈ T . Since (X \ {j},Bj) is a (t− 1)-(v− 1, k, δ) design, it follows that
{i1, . . . , it} \ {j} is contained in δ blocks of Bj. Therefore {j} ∪ {i1, . . . , it} \ {j} =
{i1, . . . , it} is contained in δ blocks of B∗j . Thus B∗i1 , . . . ,B

∗
it together have tδ blocks

containing T . Further, the (v − t) resolution classes Bj with j 6∈ T have λ blocks
containing T . Therefore the (v − t) classes B∗j with j 6∈ T together have λ blocks
containing T . It follows that (X,B∗) is a t-(v, k + 1, tδ + λ) design. Assume that
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|B ∩ B′| ≤ k − 2 for any two distinct blocks B,B′ ∈ B. Let B∗, B′∗ ∈ B∗ be the
two corresponding blocks of B and B′. If B∗, B′∗ ∈ B∗i , then B∗ = {i} ∪ B and
B′∗ = {i} ∪ B′, so B∗ 6= B′∗, since B 6= B′. The other case is that B∗ ∈ B∗i and
B′∗ ∈ B∗j for i 6= j, thus B∗ = {i} ∪ B, B′∗ = {j} ∪ B′, where B ∈ Bi and B′ ∈ B′j.
Since |B ∩B′| ≤ k − 2, we have B∗ 6= B′∗. Thus (X,B∗) is simple. 2

The next theorem may be viewed as the reverse of Theorem 3.1.

Theorem 3.2 Let (X,B) be a pencil-like (t − 1)-resolvable t-(v, k, λ) design with
(t−1)-(v−1, k−1, δ) designs in the resolution. Then there is a point-missing (t−1)-
resolvable t-(v, k − 1, λ− tδ) design (X,B∗). If |B ∩B′| ≤ k − 2 for any two distinct
blocks B,B′ ∈ B, then (X,B∗) is simple. Further, if there are two blocks B,B′ ∈ B
with |B ∩ B′| = k − 1, then the simplicity of (X,B∗) depends on the structure of the
pencil-like (t− 1)-resolution.

Proof. Let X = {1, . . . , v}. For i ∈ X denote (X \{i},Bi) the (t−1)-(v−1, k−1, δ)
design in the pencil-like (t− 1)-resolution of (X,B). We have B = ({1} ∪ B1) ∪ · · · ∪
({v} ∪ Bv) Define B∗ = B1 ∪ · · · ∪ Bv. We claim that (X,B∗) is a t-(v, k − 1, λ− tδ)
design, which is point-missing (t − 1)-resolvable. Let T = {i1, . . . , it} ⊆ X. Then T
is contained in λ blocks of (X,B), which are distributed in v classes of the pencil-
like (t − 1)-resolution. Note that T is contained in δ blocks of ({ij} ∪ Bij), for
ij ∈ T , so T is contained in tδ blocks of ({i1} ∪ Bi1) ∪ · · · ∪ ({it} ∪ Bit) (i.e., T
is not contained in any block of Bi1 ∪ · · · ∪ Bit). The remaining (v − t) classes
{({1} ∪ B1) ∪ · · · ∪ ({v} ∪ Bv)} \ {({i1} ∪ Bi1) ∪ · · · ∪ ({it} ∪ Bit)} of (X,B) will have
λ−tδ blocks containing T . Moreover, if T is contained in a block {j}∪B ∈ ({j}∪Bj),
j ∈ {1, . . . , v} \ T , then T is contained in B ∈ Bj. Hence, B1 ∪ · · · ∪ Bv will have
λ − tδ blocks containing T and (X,B∗) is point-missing (t − 1)-resolvable. Assume
that |B ∩ B′| ≤ k − 2 for any two distinct blocks B,B′ ∈ B. Obviously, the two
corresponding blocks B∗, B′∗ ∈ B∗ are distinct. Thus (X,B∗) is simple. 2

The simplicity of (X,B∗) in Theorem 3.1 in the case that there are two blocks
B,B′ ∈ B with |B ∩B′| = k− 1 remains a main open question. In fact, examples for
simple as well as non-simple (X,B∗) do exist in this case. We illustrate the situation
with two explicit examples. First, consider the unique Steiner 3-(8, 4, 1) design (X,B).
By applying Lemma 2.2 we have

B0 = 123 345 256 136 467 157 237

B1 = 024 235 456 036 057 267 347

B2 = 014 135 346 056 167 037 457

B3 = 125 246 045 016 567 027 147

B4 = 012 236 035 156 067 137 257

B5 = 123 034 146 026 367 017 247

B6 = 234 145 025 013 357 047 127

B7 = 356 046 015 126 023 134 245
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Thus the block set D =
⋃
x∈X Bx is the union of derived designs of (X,B) at all points

of X = {0, 1, 2, 3, 4, 5, 6, 7}. Here B0, . . . ,B7 form an overlarge set of Steiner 2-(7, 3, 1)
designs. It is easy to check that the resulting 3-(8, 4, 4) design (X,B∗) is not simple,
more precisely each block is repeated 4 times. The second example is chosen from the
set of 11 non-isomorphic of overlarge sets for 2-(7, 3, 1) designs [18]. The following
representation is taken from[15].

B′0 = 123 145 167 247 256 346 357

B′1 = 026 035 047 234 257 367 456

B′2 = 015 037 046 136 147 345 567

B′3 = 014 025 067 127 156 246 457

B′4 = 016 023 057 125 137 267 356

B′5 = 017 024 036 126 134 237 467

B′6 = 013 027 045 124 157 235 347

B′7 = 012 034 056 135 146 236 245

It is straightforward to check that (X,B′∗) forms a simple 3-(8, 4, 4) design.

The examples indicate an involved problem of deciding the simplicity of (X,B∗),
when (X,B) has two blocks B and B′ with |B∩B′| = k−1. The most interesting case
for this situation, as mentioned in Theorem 2.3, is overlarge sets of disjoint Steiner
(t− 1)-(v, t, 1) designs, i.e. the complete t-(v+ 1, t, 1) design is point-missing (t− 1)-
resolvable having Steiner (t − 1)-(v, t, 1) designs in the resolution classes. Teirlinck
[23] has shown that overlarge sets for Steiner 3-(3n−1, 4, 1) and 3-(3n+1, 4, 1) designs
for n ≥ 2 exist, including the known overlarge sets of Steiner 3-(2n, 4, 1) designs. By
using these results we obtain the following infinite series of 4-designs with constant
index as a corollary of Theorem 3.1.

Corollary 3.3 There exist infinite series of pencil-like 3-resolvable 4-designs with the
following parameters:

1. 4-(2n + 1, 5, 5) for n ≥ 2,

2. 4-(3n, 5, 5) for n ≥ 2,

3. 4-(3n + 2, 5, 5) for n ≥ 2.

Remark 3.1 It should be remarked that for all the designs in Corollary 3.3 we have
λmin = 1 or 5. More precisely,

λmin = 5


for v = 2n + 1, and n ≡ 3 (mod 4),

for v = 3n, and n ≡ 2 (mod 4),

for v = 3n + 2, and n ≡ 3 (mod 4).

Note that Alltop [1] has constructed infinite series of simple 4-(2n+1, 5, 5) designs
for n odd and n ≥ 5; thus the first series extends the point number to all possible
values of n.
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It is very likely that many non-isomorphic series of 4-designs with parameters given
in Corollary 3.3 will exist, which are simple as well as non-simple, due to the fact
that the number of non-isomorphic overlarge sets of 3-(v, 4, 1) will strongly increase
as v is getting large. In particular, it is important to decide whether the 4-designs
in Corollary 3.3 are simple or not. As an observation we take a close look at the
first design in each of the 4-(3n, 5, 5) and 4-(3n + 2, 5, 5) series. These are 4-(9, 5, 5)
and 4-(11, 5, 5) designs, corresponding to n = 2. Note that each 4-(9, 5, 5) design is
simple, since its complement is the complete 4-(9, 4, 1) design (otherwise, we would
have a non-simple 4-(9, 4, 1) design, which is impossible). In fact, this can also be
verified directly by checking the two non-isomorphic overlarge sets of 3-(8, 4, 1) designs
given in [9], yielding 4-(9, 5, 5) designs. Note also that 4-(9, 5, 5) is the parameters
of the second design in the 4-(2n + 1, 5, 5) series. The case of 4-(11, 5, 5) designs is
quite different. We have inspected the complete list of 21 non-isomorphic overlage
sets of 3-(10, 4, 1) designs as shown in [20] and found that they all yield non-simple
4-(11, 5, 5) designs.

For the ease of the reader, we include a table of known infinite series of t-designs with
constant index for t ≥ 4.

Table 1: Known infinite series of t-designs with constant index for t ≥ 4

No. t-(v, k, λ) Conditions (Non-)Simplicity References

1 4-(2n + 1, 5, 5) n ≥ 5 odd simple [1]
2 4-(4n + 1, 5, 2) n ≥ 2 non-simple [3]
3 4-(2n + 1, 5, 5) n ≥ 4 ? Cor.3.3
4 4-(3n, 5, 5) n ≥ 3 ? Cor.3.3
5 4-(3n + 2, 5, 5) n ≥ 3 ? Cor.3.3
6 4-(2n + 1, 5, λ) λ ∈ {20, 25}, gcd(n, 6) = 1 simple Cor.2.5, [8]
7 4-(60u+ 4, 5, 60) gcd(u, 60) = 1 or 2 simple [22]
8 4-(2n + 1, 6, 10) n ≥ 5 odd simple [5]
9 4-(2n + 1, 6, λ) λ ∈ {60, 70, 90, 100, 150, 160}, simple [4]

gcd(n, 6) = 1
10 4-(2n + 1, 8, 35) gcd(n, 6) = 1 simple [4]
11 4-(2n + 1, 9, λ) λ ∈ {84, 63, 147}, gcd(n, 6) = 1 simple [6, 4]
12 5-(2n + 2, 6, 15) n ≥ 3 non-simple [11]
13 5-(2n, 6, 3) n ≥ 3 non-simple [7]
14 7-(2n, 8, 45) n ≥ 6 non-simple [7]
15 t-(v, t+ 1, (t+ 1)!2t+1) v ≡ t (mod (t+ 1)!2t+1) simple

v ≥ t+ 1 [21]

Theorem 3.4 There exists a pencil-like 3-resolvable 4-(2n + 1, 7, 70
3

(2n − 5)) design
for n ≥ 5 and gcd(n, 6) = 1.
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Proof. Each 4-(2n + 1, 6, 10) design (X,B) with n ≥ 5 and gcd(n, 6) = 1 in [8] has
the property that |B ∩B′| ≤ 4 for any two distinct blocks B,B′ ∈ B. Its complement
is a 4-(2n+1, 2n−5, 2

3

(
2n−5
4

)
) design (X, B̄) having block intersections at most (2n−3).

By Theorem 2.3 there is a point-missing 3-resolvable 4-(2n+1, 2n−6, (2n−9)2
3

(
2n−5
4

)
)

design (X, D̄). Again, the complement of (X, D̄) is pencil-like 3-resolvable 4-(2n +
1, 7, 70

3
(2n − 5)) design, as desired. 2

By applying Theorem 3.2 to the point-missing 3-resolvable 4-(2n+1, 2n−1, (2n−1−
3)(2n−2 − 1)) design (X,B) of Alltop [2], we obtain an interesting result. Namely,
we prove that there is a point-missing 3-resolvable design (X,B∗) with the same
parameters as (X,B) and disjoint from (X,B) (recall that any two distinct blocks
B,B′ ∈ B have |B ∩ B′| ≤ 2n−1 − 2). Let B = B1 ∪ · · · ∪ Bv be a partition of B into
point-missing 3-resolution classes, i.e. each (Xi,Bi) is a 3-(2n, 2n−1, 2n−2 − 1) design
with Xi = X \ {i}. Consider (X, B̄) as the complement of (X,B). So, (X, B̄) has
parameters 4-(2n + 1, 2n−1 + 1, (2n−1 + 1)(2n−2 − 1)) and is pencil-like 3-resolvable.
Here, B̄ = ({1} ∪ B̃1) ∪ · · · ∪ ({v} ∪ B̃v), where B̃j is the complement of Bj in Xj,
and (Xj, B̃j) is a 3-(2n, 2n−1, 2n−2− 1) design, for j = 1, . . . , v. The proof of Theorem
3.2 shows that (X, B̃∗) with B̃∗ = B̃1 ∪ · · · ∪ B̃v, is point-missing 3-resolvable with
(Xj, B̃j) as the design in the resolution. Clearly, (X,B) and (X, B̃∗) are disjoint and
they have the same parameters. Further, the 4-design (X,B ∪ B̃∗) can be extended
to a 5-design. Thus we have the following theorem.

Theorem 3.5 Let n ≥ 4. Then

1. there exists a simple point-missing 3-resovable 4-(2n+1, 2n−1, 2(2n−1−3)(2n−2−
1)) design,

2. there exists a simple 5-(2n + 2, 2n−1 + 1, 2(2n−1 − 3)(2n−2 − 1)) design.

4 A construction of point-missing s-resolvable t-

designs

In this section we show that the recursive construction of t-designs in [24] can be
extended to a construction of point-missing s-resolvable t-designs. More precisely, we
prove the following theorem.

Theorem 4.1 Assume that there exists a point-missing s-resolvable t-(v, k, λ) design
having s-(v− 1, k, δ) designs in its resolution. If vλ0(λ0−λ1) <

(
v
k

)
, then there exists

a point-missing s-resolvable t-(v + 1, k, (v + 1 − t)λ) design having s-(v, k, (v − s)δ)
designs in its resolution.

Proof. Assume that (Y,D) is a point-missing s-resolvable t-(v, k, λ) design. Let
X = {1, . . . , v + 1} and denote Xj = X \ {j} for j = 1, . . . , v + 1. Let (Xj,B(j)) be a
copy of (Y,D) defined on Xj. If vλ0(λ0− λ1) <

(
v
k

)
, then by Theorem A in [24] there
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are (v+ 1) mutually disjoint B(1), . . . ,B(v+1) and they form a t-(v+ 1, k, (v+ 1− t)λ)
design (X,B), where

B =
v+1⋃
j=1

B(j).

We prove that (X,B) is point-missing s-resolvable. Denote the partition of (Xj,B(j))
into point-missing s-resolution classes by

B(j) =

v︷ ︸︸ ︷
C(j)1 ∪ · · · ∪ C

(j)
j−1 ∪ C

(j)
j+1 ∪ · · · ∪ C

(j)
v+1,

with (Xi,j, C(j)i ) as an s-(v − 1, k, δ) design, where Xi,j = Xj \ {i} and i ∈ Xj. For
each point j ∈ X define

Cj =

v︷ ︸︸ ︷
C(1)j ∪ C

(2)
j ∪ · · · ∪ C

(j−1)
j ∪ C(j+1)

j ∪ · · · ∪ C(v+1)
j .

We claim that (Xj, Cj) is an s-(v, k, (v−s)δ) design. Let S = {j1, . . . , js} ⊆ Xj. Then

S will not appear in the blocks of C(j1)j , C(j2)j , . . . , C(js)j . Hence S appears in (v − s)

block sets C(i)j , for i 6= j1, . . . , js. In other words, S is contained in the blocks of Cj
exactly (v − s)δ times, which proves the claim. Further, since

B = C1 ∪ · · · ∪ Cv+1,

(X,B) is point-missing s-resolvable with C1, . . . , Cv+1 as resolution classes. Note that
the value of δ can be computed in terms of t, v, k, λ by using Lemma 2.1. 2

As an application of Theorem 4.1 consider the infinite series of 4-designs (X,D)
constructed by Alltop in [2]. (X,D) has parameters 4-(2n + 1, 2n−1, (2n−1− 3)(2n−2−
1)), n ≥ 4, and is point-missing 3-resolvable with 3-(2n, 2n−1, 2n−2 − 1) designs in its
resolution. For n ≥ 5 the condition vλ0(λ0−λ1) <

(
v
k

)
is satisfied, therefore Theorem

4.1 gives the following corollary.

Corollary 4.2 For n ≥ 5, there exists an infinite series of simple point-missing 3-
resolvable 4-(2n + 2, 2n−1, (2n − 2)(2n−1 − 3)(2n−2 − 1)) designs. The parameters of
the 3-designs in the resolution are 3-(2n + 1, 2n−1, (2n − 2)(2n−2 − 1)).

5 Conclusion

The paper deals with point-missing s-resolvable t-designs with emphasis on their use
in constructing t-designs. Among others, we show the existence of infinite series
of 4-(v, 5, 5) designs with v = 2n + 1, 3n, 3n + 2 for n ≥ 2. It remains an open
question about the simplicity of the designs in these series. We also present a recursive
construction of point-missing s-resolvable t-designs including an application.
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