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Abstract

The paper deals with ¢-designs that can be partitioned into s-designs, each
missing a point of the underlying set, called point-missing s-resolvable ¢-designs,
with emphasis on their applications in constructing ¢-designs. The problem
considered may be viewed as a generalization of overlarge sets which are defined
as a partition of all the (”Jkrl) k-sets chosen from a (v 4 1)-set X into (v + 1)
mutually disjoint s-(v, k, §) designs, each missing a different point of X. Among
others, it is shown that the existence of a point-missing (¢ — 1)-resolvable t-
(v, k, \) design leads to the existence of a t-(v, k+ 1, \') design. As a result, we
derive various infinite series of 4-designs with constant index using overlarge
sets of disjoint Steiner quadruple systems. These have parameters 4-(3",5,5),
4-(3" +2,5,5) and 4-(2" + 1,5,5), for n > 2, and were unknown until now. We
also include a recursive construction of point-missing s-resolvable ¢t-designs and
its application.
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1 Introduction

The paper is concerned with point-missing s-resolutions of ¢-designs and applications
thereof. In general, a partition of a t-(v, k, ) design (X, B) into mutually disjoint
s-(w, k,§) designs, w < v, s < t, is termed an s-resolution. If w = v, then (X, B) is
called s-resolvable; in particular, if (X, B) is the complete k-(v, k, 1) design, then an s-
resolution of (X, B) is called a large set of s-designs. If w = v—1, then (X, B) is called
point-missing s-resolvable. A point-missing s-resolution of the complete k-(v,k,1)
design is called an overlarge set of s-designs. Point-missing s-resolvability remains
still sparsely investigated; however, several computational and theoretical works on
the subject can be found in the literature [9, 13, 15, 16, 19, 20, 23|. Point-missing
s-resolvablity is complementarily related to what we call pencil-like s-resolvablity for



t-designs, and vice versa. As far as we know the first example of infinite series of non-
trivial point-missing s-resolvable ¢t-designs for ¢ > 4 can be found in a paper of Alltop
in 1972 [2], in which the author constructed a series of 4-(2"+1,2"~1 (2"~1-3)(2"2—
1)) designs for n > 4 as the union of 2" + 1 mutually disjoint 3-(2",2""1 272 — 1)
designs. We prove theorems for constructring new ¢-designs from point-missing and
pencil-like s-resolvable t-designs. By using these theorems for overlarge sets of disjoint
Steiner quadruple systems with v = 3" — 1 and v = 3™ 4+ 1 points constructed by
Teirlinck [23], including the already known case with v = 2", we derive various infinite
series of 4-(v+1, 5, 5) designs, which were unknown until now. It is worthy of note that
no large sets of Steiner quadruple systems are constructed to date; however, large sets
of Steiner 2-designs for k£ = 4 with v = 13,16 points are known to exist [10, 12, 14].
We also show a recursive construction of point-missing s-resolvable t-designs and its
application.

For the sake of clarity we include a few basic definitions. A t¢-design, denoted
by t-(v,k, \), is a pair (X, B), where X is a v-set of points and B is a collection of
k-subsets of X, called blocks, such that every t-subset of X is a subset of exactly A
blocks, and A is called the indez of the design. A t-design is called simple if no two
blocks are identical, otherwise, it is called non-simple. A t-(v,k,1) design is called
a Steiner t-design. For any point x € X, let B, = {B\ {z} : + € B € B}. Then
(X \{z},B,)isa (t — 1)-(v— 1,k — 1, \) design, called a derived design of (X, B).
It can be shown by simple counting that a t-(v, k, \) design is an s-(v, k, \s) design
for 0 < s < t, where \; = )\(::j) / (’z:j) Since A, is an integer, necessary conditions
for the parameters of a t-design are (l::ss) |)\(lt’:j) for 0 < s <t. The smallest positive
integer A for which these necessary conditions are satisfied is denoted by Ay (%, &, v)
or simply Apin. If B is the set of all k-subsets of X, then (X, B) is a t-(v, k, Amax)
design, called the complete design, where A\, = (Z:';) If we take 0 copies of the
complete design, we obtain a t-(v, k, 0 (Z:i)) design, which is refered to as a trivial
t-design; otherwise, it is called a non-trivial t-design.

2 Point-missing s-resolvable t-designs

A t-(v, k, \) design (X, B) is said to be s-resolvable, for 0 < s < ¢, if its block set B can
be partitioned into N > 2 classes By, ..., By such that each (X, B;) is an s-(v, k, 0)
design for ¢ = 1,..., N. Such a partition is called an s-resolution of (X, B) and each
B; is called an s-resolution class or simply a resolution class, see e.g. [25, 26].

If the complete k-(v,k,1) design can be partitioned into N disjoint t-(v, k, \)
designs, where N = (Z:;) /A, then we say that there exists a large set of t-designs
denoted by LS[N](t, k,v) or by LS\(t,k,v) to emphasize the value A.

In the most general form, the concept of point-missing s-resolvability of a t-(v, k, \)
design can be defined as follows.

Definition 2.1 Let (X,B) be a t-(v,k,\) design and let 1 < s <t —1. (X,B) is
called point-missing s-resolvable, if the block set B can be partitioned into mutually
disjoint s-(v — 1, k,0) designs, each missing a point of X .



However, Definition 2.1 is equivalent to a definition that describes point-missing
resolutions with more exact details. We now give an explanation.

Let X = {z1,...,2,} and let X; = X \ {;}, i = 1,...,v. Let m; denote the
number of s-(v — 1, k, §) designs (X;, B;) missing z; in the resolution. First we show
that any z; € X is a missing point of an s-design (X, B;). More precisely, let Y C X
be the subset of X such that there is no design (X;, B;) missing point z;, when z; € Y.
Assume that Y # (). Then the blocks of B can be written as follows.

B = U mpBy, where mpBy, := B, U---UDB,.
(A —
zpeX\Y my, times

Consider two given points x; € Y and z; € X \ Y. Since z; € Y, there is no s-design

(X;, B;) missing x;. Thus z; appears in each design (X}, By,), where x;, € X \ 'Y,
v—2

therefore x; appears in ExheX\Y myp01 times in the blocks of B, where 6; = (5%

Whereas the point z; € X \ Y appears in thex\{YU{%}} my01 times in the blocks of
B, which is a contradiction if Y # (). Further, we show that m; = --- = m,. W.lLo.g.,
assume by contradiction that m; # ms. Then the number of blocks containing z;
(resp. m3) is then ZzeX\{xl}mz5l = mady + Y. sm;01 (resp. zweX\{w} My =
mydy + > ;s midy). Since mody + Y. om0y = midy + Y ,_; m;d1, we have mady =
my01, or equivalently ms = my, contradicting the assumption. Thus we must have
My =+ = My.

The discussion above suggests an equivalent formulation of Definition 2.1 as fol-
lows.

Definition 2.2 Let (X,B) be a t-(v,k,\) design and let 1 < s < t be an integer.
(X, B) is said to be point-missing s-resolvable, if there is an integer m > 1 such that

the following hold.
1. B=B,, U---UB,, , where X = {x1,...,2,},

2. B,=B.U---UB™, each (X \{z},B2) is an s-(v—1,k, ) design, j =1,...,m,

and m is called the multiplicity of the point x.
Ifm =1, (X, B) is simply called point-missing s-resolvable. Moreover, if m > 1, then
(X \ {z},B,) is an s-(v — 1,k,md) design. Therefore, (X,B) again is a union of v
mutually disjoint s-(v — 1, k,md) design, each missing a different point of X. Hence,
in general, when we speak of point-missing s-resolvable t-designs we mean m = 1.

If the complete k-(v,k,1) design can be partitioned into v mutually disjoint s-
(v—1,k,9) designs (i.e. point-missing s-resolvable), then we have an overlarge set of
s-(v —1,k,0) designs.

Lemma 2.1 Let (X, B) be a point-missing s-resolvable t-(v, k, \) design and assume
that each point in the resolution has multiplicity m. Then

(2 me -,
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In particular, if the complete t-(v,t, 1) design is point-missing (t — 1)-resolvable, then
the designs in the resolution are Steiner (t — 1)-(v — 1,¢,1) designs.

Proof. By assumption, we have

5= J{BLu---UByY,

zeX

where (X \ {z},B) is an s-(v — 1,k, ) design. Let S = {z1,...,2,} C X. Then S
does not appear in any block of B;j, foryj=1,...,sand ¢ = 1,...,m. Further, S
appears in each B;j with j # 1,...,s, exactly § times. Thus S appears m(v — s)d
times in the blocks of B. On the other hand, the number of blocks in B containing S

is Ay = E}i_ig A. Therefore Ay = m(v — s)d and thus 6 =
Recall that the complement of an s-resolvable t-design is again s-resolvable. How-
ever, it is not true with a point-missing s-resolvable ¢t-design. Let X := {zq,...,2,}
and let X; := X \ {z;}, i =1,...,v. To simplify the typing we write: if Y C X, then
Y := X\ Y, whereas if Y C X;, then Y = X, \'Y. Let (X,D) be a point-missing
s-resolvable t-design with parameters t-(v,k, \) and let (X, D) be its complement
which has parameters t-(v,v — k, \), where A = /\(”;k)/(l;) Let D=D;U---UD,
be a partition of D into v point-missing s-resolution classes, where (X;, D;) is an
s-(v — 1,k,0) design, for i = 1,...,v. The complement of (X;, D;) (within X;) is
an s-(v — L,bv —1—k 5) design (XZ,D) with & = 5(”_2_1‘3)/(’;). So, we have D =
DyU---UD, = ({21}UD)U- - -U({w, }UD,), where {;}UD; = {{z;}UD | D € D;}.
Thus, D; = ({x;} U D; ;) is not an s-design, but rather a “pencil”. Hence, the decom-
p0s1t10n of (X, D) suggests the following definition.

as desired. O

m(v— s)’

Definition 2.3 Let X = {z1,...,2,} and denote X; := X \ {x;},i=1,...,v. Let
(X,B) be at-(v,k,\) design. If for some x; € X there exists an s-(v — 1 k 1,0)
design (X;,B;) for 1 < s < t, then we call {xl}UB — {{z;}UB|BeB}CB
an s-pencil of (X,B). If B = ({1} UB) U---U ({x,} UB,), where (X;,B;) is an
s-(v—1,k —1,6) design, then (X, B) is said to be pencil-like s-resolvable.

As observed above, the complement of a point-missing s-resolvable t-design is a pencil-
like s-resolvable t-design. Conversely, it is straightfoward to check that the com-
plement of a pencil-like s-resolvable ¢t-design is a point-missing s-resolvable t-design.
Hence the notion of point-missing s-resolvability and that of pencil-like s-resolvability
are complementary equivalent. We record this fact in the following lemma.

Lemma 2.2 A t-design is point-missing s-resolvable if and only if its complement is
pencil-like s-resolvable.

The next theorem shows a relation between certain classes of t-designs and point-
missing (¢ — 1)-resolvable ¢-designs, in terms of derived designs.



Theorem 2.3 Let (X,B) be a simple t-(v,k,\) design with |B N B'| < k — 2 for
any two distinct blocks B, B € B. Then there exists a simple point-missing (t — 1)-
resolvable t-(v, k — 1, (k — t)\) design (X, D). In particular, if (X,B) is a Steiner
t-(v,t + 1,1) design, then there exists an overlarge set of Steiner (t —1)-(v —1,¢,1)
designs.

Proof. For a given point x € X consider the derived design (X \ {z},B,) at =
with parameters (t — 1)-(v — 1,k — 1,\). Here B, = {B\ {z} | v € B, B € B}.
Define D = |J,.x B.- We claim that (X, D) is a t-(v,k — 1,(k — t)\) design. Let
T ={xy,...,z;} € X. Then there are X\ blocks of B, say, By, ..., B\ containing T.
Each B;,i=1,..., A, givesrise to aset D; = {D = B;\{z} |z € B;\T} C D having
(k —t) blocks D containing 7. Thus there are (k — t)\ blocks D € D containing
T in total, as desired. The simplicity of (X, D) is a consequence of the property:
|IBNB'| < k-2, B,B" € B, B# B’, which can be seen as follows. Let D, D" be two
blocks of D. If D, D" € B, for some x € X, then D # D', since (X \ {z},B,) is the
derived design at x. If D € B, and D' € B, with x # y, then again D # D’. This is
because if D = D', then the two blocks B = D U {z} and B’ = D" U {y} of B would
have |BNB’| = k— 1, a contradiction. In addition, if (X, B) is a Steiner ¢-(v,t+1,1)
design, then (X, D) becomes the complete t-(v,t,1) design. In other words, the set
of v distinct (t — 1)-(v — 1,¢, 1) derived designs of (X, B) forms an overlarge set. O

Remark 2.1 1. The proof of Theorem 2.3 shows that the constructed ¢-(v, k —
1, (k—t)\) design is not simple, if there are two blocks B, B’ € B with |BNB'| =
k—1.

2. It should be stressed that the set of v distinct derived designs of a Steiner ¢-
(v, k,1) design with £ > ¢ + 1 in Theorem 2.3 will not form an overlarge set of
(t —1)-(v — 1,k —1,1) designs, but rather a point-missing (¢ — 1)-resolution of
at-(v,k—1,(k—t)) design.

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4 Assume that there exists a Steiner t-(v, k, 1) design. Then there exists
a point-missing (t — 1)-resolvable t-(v,k — 1,k —t) design.

The case k = t+1 of Corollary 2.4 is known as examples of overlarge sets of Steiner
designs, see [23]. Thus, if there exists a Steiner t-(v,t + 1, 1) design, then there exists
a point-missing (¢t — 1)-resolvable t-(v,t,1) design, i.e. an overlarge set of Steiner
(t—1)-(v—1,¢,1) designs. Note that the converse of this statement is not true, i.e. if
there exists an overlarge set of Steiner (t —1)-(v —1,¢,1) designs, it is not necessarily
true that a Steiner ¢-(v, ¢+ 1,1) design exists. For example, Ostergard and Pottonen
[17] have shown that a Steiner 4-(17,5,1) design does not exist. Nevertheless, there
exists an overlarge set of Steiner 3-(16, 4, 1) designs, see [23]. And crucially, Teirlinck
[23] has shown that there are overlarge sets of Steiner 3-(v, 4, 1) designs for v = 3" —1,
n > 2and v =3"+1, n > 1, despite the fact that only a finite number of Steiner
4-(v,5, 1) designs are hitherto known.



The general case k£ > t 4 2 is interesting, since Theorem 2.3 provides a point-
missing (¢t — 1)-resolvable t-(v,k — 1,k — t) design, which is not a complete design.
Examples about this case can be seen, for instance, from Steiner 5-(24,8,1) and 5-
(28,7,1) designs. Here we obtain point-missing 4-resolvable 5-(24, 7, 3) and 5-(28, 6, 2)
designs, where designs in the resolution are Steiner 4-(23,7,1) and 4-(27,6, 1) designs,
respectively. Similarly, there are point-missing 3-resolvable 4-(23, 6, 3) and 4-(27, 5, 2)
designs having Steiner 3-(22,6,1) and 3-(26,5,1) designs in the resolution, respec-
tively.

As a further application of Theorem 2.3, we consider the infinite series of 4-
(¢ + 1,6,10) designs with ¢ = 2", n > 5 and ged(n,6) = 1, [8], having the property
that any two blocks of the designs intersect in at most 4 points. Thus we have the
following result.

Corollary 2.5 Let ¢ = 2", n > 5 and ged(n,6) = 1. Then there exists a point-
missing 3-resolvable 4-(q+1,5,20) design having a 3-(q, 5, 10) design in the resolution.

Corollary 2.5 shows an interesting example of 4-designs that are 3-resolvable, and
point-missing 3-resolvable as well.

3 Constructions of t-designs from point-missing (¢—
1)-resolvable t-designs

Recall that Lemma 2.2 shows a natural connection between point-missing and pencil-
like s-resolvability via the complement action. However, we observe that point-missing
(t — 1)-resolvable t-designs may be used to construct pencil-like (¢ — 1)-resolvable ¢-
designs which are not related to the complementary connection, as shown in the
following theorem.

Theorem 3.1 Let (X, B) be a point-missing (t — 1)-resolvable t-(v, k, \) design with
(t — 1)-(v — 1,k,0) designs in the resolution. Then there is a pencil-like (t — 1)-
resolvable t-(v, k 4+ 1,t0 + \) design (X, B*). If | BN B'| < k — 2 for any two distinct
blocks B, B' € B, then (X, B*) is simple. Further, if there are two blocks B, B' € B
with |BN B'| =k — 1, then the simplicity of (X, B*) depends on the structure of the
resolution.

Proof. Let X ={1,...,v}. Fori € X denote (X \ {i},B;) the (t — 1)-(v — 1,k,0)
design in the point-missing (¢ — 1)-resolution. Define Bf = {i} UB; = {{i} UB | B €
B}, fori=1,...,v, and B* = J,c x B;. We claim that (X, B*) is a pencil-like (¢ — 1)-
resolvable t-(v, k + 1,5 + ) design. Let T' = {iy,...,i;} C X. Consider a resolution
class B; with j € T'. Since (X \{j},B;) isa (t —1)-(v —1,k, ) design, it follows that
{i1,...,i:} \ {j} is contained in 0 blocks of B;. Therefore {j} U {i1,...,i} \ {j} =
{i1,...,4} is contained in § blocks of B;. Thus Bj, ..., B} together have t§ blocks
containing 7. Further, the (v — t) resolution classes B; with j ¢ T have A blocks
containing T'. Therefore the (v —t) classes Bj with j ¢ T together have A blocks

containing 7. It follows that (X, B*) is a t-(v,k + 1,6 + A) design. Assume that
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|BN B'| <k — 2 for any two distinct blocks B, B' € B. Let B*, B* € B* be the
two corresponding blocks of B and B’. If B*, B € B}, then B* = {i} U B and
B* = {i} UB’, so B* # B’*, since B # B’. The other case is that B* € B} and
B™ € B} for i # j, thus B* = {i} UB, B” = {j} U B', where B € B; and B’ € B';.
Since |BN B'| < k — 2, we have B* # B"™. Thus (X, B*) is simple. O

The next theorem may be viewed as the reverse of Theorem 3.1.

Theorem 3.2 Let (X,B) be a pencil-like (t — 1)-resolvable t-(v,k,\) design with
(t—1)-(v—1,k—1,9) designs in the resolution. Then there is a point-missing (t—1)-
resolvable t-(v, k — 1, \ — t6) design (X,B*). If |BNB'| < k—2 for any two distinct
blocks B, B" € B, then (X, B*) is simple. Further, if there are two blocks B, B' € B
with |B N B'| =k — 1, then the simplicity of (X, B*) depends on the structure of the
pencil-like (t — 1)-resolution.

Proof. Let X ={1,...,v}. Fori € X denote (X \{i},B;) the (t—1)-(v—1,k—1,0)
design in the pencil-like (t — 1)-resolution of (X, B). We have B = ({1} UB;)U---U
({v} UB,) Define B* = B, U ---UB,. We claim that (X, B*) is a t-(v,k — 1, A — t0)
design, which is point-missing (¢ — 1)-resolvable. Let T'= {iy,...,4,} C X. Then T
is contained in A blocks of (X, B), which are distributed in v classes of the pencil-
like (¢ — 1)-resolution. Note that T is contained in ¢ blocks of ({i;} U B;,), for
i; € T, so T is contained in ¢ blocks of ({i1} U B;,) U---U ({i} UB,;,) (ie., T
is not contained in any block of B, U--- U B;,). The remaining (v — t) classes
{{1yuB U U} UB)I\A{({i} UB;,)U---U{i} UB;,)} of (X, B) will have
A—t0 blocks containing 7. Moreover, if T is contained in a block {j}UB € ({j}UB;),
je{l,...,u} \ T, then T is contained in B € B;. Hence, B; U --- U B, will have
A — td blocks containing 7" and (X, B*) is point-missing (¢ — 1)-resolvable. Assume
that |B N B'| < k — 2 for any two distinct blocks B, B’ € B. Obviously, the two
corresponding blocks B*, B € B* are distinct. Thus (X, B*) is simple. O

The simplicity of (X, B*) in Theorem 3.1 in the case that there are two blocks
B, B' € B with |BN B’| = k — 1 remains a main open question. In fact, examples for
simple as well as non-simple (X, 5*) do exist in this case. We illustrate the situation
with two explicit examples. First, consider the unique Steiner 3-(8, 4, 1) design (X, B).
By applying Lemma 2.2 we have

By = 123 345 256 136 467 157 237
By = 024 235 456 036 057 267 347
By = 014 135 346 056 167 037 457
Bs = 125 246 045 016 567 027 147
By = 012 236 035 156 067 137 257
Bs = 123 034 146 026 367 017 247
Bs = 234 145 025 013 357 047 127
Br = 356 046 015 126 023 134 245



Thus the block set D = |J, .y B. is the union of derived designs of (X, B) at all points
of X ={0,1,2,3,4,5,6,7}. Here By, ..., B; form an overlarge set of Steiner 2-(7,3,1)
designs. It is easy to check that the resulting 3-(8,4,4) design (X, B*) is not simple,
more precisely each block is repeated 4 times. The second example is chosen from the
set of 11 non-isomorphic of overlarge sets for 2-(7,3,1) designs [18]. The following
representation is taken from[15].

B, = 123 145 167 247 256 346 357
By = 026 035 047 234 257 367 456
B, = 015 037 046 136 147 345 567
B; = 014 025 067 127 156 246 457
B, = 016 023 057 125 137 267 356
B, = 017 024 036 126 134 237 467
By = 013 027 045 124 157 235 347
B, = 012 034 056 135 146 236 245

It is straightforward to check that (X, B”*) forms a simple 3-(8,4,4) design.

The examples indicate an involved problem of deciding the simplicity of (X, B*),
when (X, B) has two blocks B and B’ with |[BNB’| = k—1. The most interesting case
for this situation, as mentioned in Theorem 2.3, is overlarge sets of disjoint Steiner
(t —1)-(v,t,1) designs, i.e. the complete t-(v + 1,¢,1) design is point-missing (t — 1)-
resolvable having Steiner (t — 1)-(v,t,1) designs in the resolution classes. Teirlinck
23] has shown that overlarge sets for Steiner 3-(3"—1,4, 1) and 3-(3"+1,4, 1) designs
for n > 2 exist, including the known overlarge sets of Steiner 3-(2",4, 1) designs. By
using these results we obtain the following infinite series of 4-designs with constant
index as a corollary of Theorem 3.1.

Corollary 3.3 There exist infinite series of pencil-like 3-resolvable 4-designs with the
following parameters:

1. 4-(2" +1,5,5) forn > 2,
2. 4-(3",5,5) forn > 2,
3. 4-(3" 4+ 2,5,5) forn > 2.

Remark 3.1 It should be remarked that for all the designs in Corollary 3.3 we have
Amin = 1 or 5. More precisely,

forv=2"+1, andn=3 (mod 4),
Amin = 5 { for v = 3", and n =2 (mod 4),
forv=3"+2, andn=3 (mod4).

Note that Alltop [1] has constructed infinite series of simple 4-(2" +1, 5, 5) designs

for n odd and n > 5; thus the first series extends the point number to all possible
values of n.



It is very likely that many non-isomorphic series of 4-designs with parameters given
in Corollary 3.3 will exist, which are simple as well as non-simple, due to the fact
that the number of non-isomorphic overlarge sets of 3-(v,4,1) will strongly increase
as v is getting large. In particular, it is important to decide whether the 4-designs
in Corollary 3.3 are simple or not. As an observation we take a close look at the
first design in each of the 4-(3",5,5) and 4-(3" + 2,5,5) series. These are 4-(9,5,5)
and 4-(11,5,5) designs, corresponding to n = 2. Note that each 4-(9,5,5) design is
simple, since its complement is the complete 4-(9,4, 1) design (otherwise, we would
have a non-simple 4-(9,4, 1) design, which is impossible). In fact, this can also be
verified directly by checking the two non-isomorphic overlarge sets of 3-(8, 4, 1) designs
given in [9], yielding 4-(9,5,5) designs. Note also that 4-(9,5,5) is the parameters
of the second design in the 4-(2" + 1,5,5) series. The case of 4-(11,5,5) designs is
quite different. We have inspected the complete list of 21 non-isomorphic overlage
sets of 3-(10,4, 1) designs as shown in [20] and found that they all yield non-simple
4-(11,5,5) designs.

For the ease of the reader, we include a table of known infinite series of ¢-designs with
constant index for ¢ > 4.

Table 1: Known infinite series of ¢-designs with constant index for ¢ > 4

No. t-(v,k,\) Conditions (Non-)Simplicity References

1 4-(2" 4+ 1,5,5) n > 5 odd simple 1]

2 4-(4" +1,5,2) n>2 non-simple 3]

3 4-(2" +1,5,5) n>4 ? Cor.3.3

4 4(3%,5,5) n>3 ? Cor.3.3

5 4-(3" 4+ 2,5,5) n>3 ? Cor.3.3

6 4-(2" + 1,5, ) A € {20,25}, ged(n,6) =1 simple Cor.2.5, [8]

7 4-(60u + 4,5, 60) ged(u, 60) =1 or 2 simple [22]

8 4-(2™ + 1,6, 10) n > 5 odd simple 5]

9 4-(2" + 1,6, ) A € {60, 70,90, 100, 150,160}, simple [4]
ged(n,6) =1

10 4-(2"+1,8,35) ged(n,6) =1 simple 4]

11 4-(2"+1,9, ) A€ {84,63,147}, ged(n,6) =1 simple 6, 4]

12 5-(2" + 2,6, 15) n>3 non-simple [11]

13 5-(2m, ) n>3 non-simple [7]

14 7-(2", 8 45) n>6 non-simple (7]

15 t-(v,t+1,(t+ 1)) v =t (mod (t+ 1)12F1) simple
v>t+1 [21]

Theorem 3.4 There exists a pencil-like 3-resolvable 4-(2" + 1,7, (2" — 5)) design

forn >5 and ged(n,6) = 1.



Proof. Each 4-(2" 4 1,6, 10) design (X, B) with n > 5 and ged(n,6) = 1 in [8] has
the property that |BN B’| < 4 for any two distinct blocks B, B’ € B. Its complement

isa4-(2"+1,2"—5,2(*" ")) design (X, B) having block intersections at most (2" —3).

By Theorem 2.3 there is a point-missing 3-resolvable 4-(2" 41, 2" —6, (2" —9)3 (2714_ 5))
design (X, D). Again, the complement of (X, D) is pencil-like 3-resolvable 4-(2" +
1,7, 2(2" — 5)) design, as desired. O

By applying Theorem 3.2 to the point-missing 3-resolvable 4-(2"+ 1,271 (271 —
3)(2"72 — 1)) design (X, B) of Alltop [2], we obtain an interesting result. Namely,
we prove that there is a point-missing 3-resolvable design (X, B*) with the same
parameters as (X, B) and disjoint from (X, B) (recall that any two distinct blocks
B,B’ € Bhave |[BNB'| <2" ! —2). Let B=B,U---UB, be a partition of B into
point-missing 3-resolution classes, i.e. each (X, B;) is a 3-(2",2"~1 22 — 1) design
with X; = X \ {i}. Consider (X, B) as the complement of (X,B). So, (X, B) has
parameters 4-(2" + 1,271 + 1, (2771 4+ 1)(2"2 — 1)) and is pencil-like 3-resolvable.
Here, B = ({1} UB)) U---U ({v} UB,), where B; is the complement of B; in X,
and (X, B;) is a 3-(2",2"~1,2"2 — 1) design, for j = 1,...,v. The proof of Theorem
3.2 shows that (X,B*) with B* = B, U--- U B,, is point-missing 3-resolvable with
(X, B;) as the design in the resolution. Clearly, (X, B) and (X, B*) are disjoint and
they have the same parameters. Further, the 4-design (X, B U 5’*) can be extended
to a 5-design. Thus we have the following theorem.

Theorem 3.5 Let n > 4. Then

1. there exists a simple point-missing 3-resovable 4-(2"+1,2"~1 2(2n~1 —-3)(2n2 —
1)) design,

2. there exists a simple 5-(2" + 2,271 +1,2(2""1 — 3)(2"2 — 1)) design.

4 A construction of point-missing s-resolvable t-
designs

In this section we show that the recursive construction of ¢-designs in [24] can be
extended to a construction of point-missing s-resolvable ¢t-designs. More precisely, we
prove the following theorem.

Theorem 4.1 Assume that there exists a point-missing s-resolvable t-(v, k, \) design
having s-(v —1,k,8) designs in its resolution. If vAg(Ao — A1) < (}), then there exists
a point-missing s-resolvable t-(v + 1, k, (v + 1 — t)A) design having s-(v, k, (v — s)J)
designs in its resolution.

Proof. Assume that (Y,D) is a point-missing s-resolvable ¢-(v, k, A) design. Let

X ={1,...,v+1} and denote X; = X \ {j} for j =1,...,v+ 1. Let (X;,BY9) be a
copy of (Y, D) defined on X;. If vAg(Ag — A1) < (Z), then by Theorem A in [24] there
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are (v + 1) mutually disjoint BY, ..., BV and they form a t-(v+ 1, k, (v +1 —t)\)
design (X, B), where

We prove that (X, B) is point-missing s-resolvable. Denote the partition of (X, BW)
into point-missing s-resolution classes by

v
A

BY =cPu...uc? ucd u--ucll,

with (XZ-J,Cz-(j)) as an s-(v — 1,k,d) design, where X;; = X; \ {i} and ¢ € X;. For
each point 7 € X define

v
A

c;=cVucPu---uci M ucity...uctty,

We claim that (X;,C;) is an s-(v, k, (v—s)d) design. Let S = {j1,...,Js} € X,. Then
S will not appear in the blocks of CJ(.]I),CJ(-]Q), . ,C](»]S). Hence S appears in (v — s)
block sets Cj(i), for @ # ji1,...,Js. In other words, S is contained in the blocks of C;

exactly (v — s)d times, which proves the claim. Further, since
B=CU---UCyy1,

(X, B) is point-missing s-resolvable with Cy,...,C,1; as resolution classes. Note that
the value of § can be computed in terms of ¢, v, k, A by using Lemma 2.1. O

As an application of Theorem 4.1 consider the infinite series of 4-designs (X, D)
constructed by Alltop in [2]. (X, D) has parameters 4-(2" + 1,271 (271 —3)(2" 2 —
1)), n > 4, and is point-missing 3-resolvable with 3-(2",2"1 2"=2 — 1) designs in its
resolution. For n > 5 the condition vAg(Ag — A1) < (}) is satisfied, therefore Theorem
4.1 gives the following corollary.

Corollary 4.2 For n > 5, there exists an infinite series of simple point-missing 3-
resolvable 4-(2" + 2,271 (2" — 2)(2"~1 — 3)(2"72 — 1)) designs. The parameters of
the 3-designs in the resolution are 3-(2" + 1,2"71 (2" — 2)(2"2 — 1)).

5 Conclusion

The paper deals with point-missing s-resolvable t-designs with emphasis on their use
in constructing ¢-designs. Among others, we show the existence of infinite series
of 4-(v,5,5) designs with v = 2" + 1, 3", 3" + 2 for n > 2. It remains an open
question about the simplicity of the designs in these series. We also present a recursive
construction of point-missing s-resolvable t-designs including an application.
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