Point-missing s-resolvable t-designs: Infinite series of 4-designs with constant index

Tran van Trung
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Thea-Leymann-Straße 9, 45127 Essen, Germany

Abstract

The paper deals with t-designs that can be partitioned into s-designs, each missing a point of the underlying set, called point-missing s-resolvable t-designs, with emphasis on their applications in constructing t-designs. The problem considered may be viewed as a generalization of overlarge sets which are defined as a partition of all the $\binom{v+1}{k} k$-sets chosen from a $(v+1)$-set X into $(v+1)$ mutually disjoint s - (v, k, δ) designs, each missing a different point of X. Among others, it is shown that the existence of a point-missing $(t-1)$-resolvable t (v, k, λ) design leads to the existence of a $t-\left(v, k+1, \lambda^{\prime}\right)$ design. As a result, we derive various infinite series of 4 -designs with constant index using overlarge sets of disjoint Steiner quadruple systems. These have parameters $4-\left(3^{n}, 5,5\right)$, $4-\left(3^{n}+2,5,5\right)$ and $4-\left(2^{n}+1,5,5\right)$, for $n \geq 2$, and were unknown until now. We also include a recursive construction of point-missing s-resolvable t-designs and its application.

Mathematics Subject Classification: 05B05
Keywords: point-missing s-resolvable t-design, overlarge set of s-designs.

1 Introduction

The paper is concerned with point-missing s-resolutions of t-designs and applications thereof. In general, a partition of a $t-(v, k, \lambda)$ design (X, \mathcal{B}) into mutually disjoint s - (w, k, δ) designs, $w \leq v, s<t$, is termed an s-resolution. If $w=v$, then (X, \mathcal{B}) is called s-resolvable; in particular, if (X, \mathcal{B}) is the complete k - $(v, k, 1)$ design, then an s resolution of (X, \mathcal{B}) is called a large set of s-designs. If $w=v-1$, then (X, \mathcal{B}) is called point-missing s-resolvable. A point-missing s-resolution of the complete k - $(v, k, 1)$ design is called an overlarge set of s-designs. Point-missing s-resolvability remains still sparsely investigated; however, several computational and theoretical works on the subject can be found in the literature $[9,13,15,16,19,20,23]$. Point-missing s-resolvablity is complementarily related to what we call pencil-like s-resolvablity for
t-designs, and vice versa. As far as we know the first example of infinite series of nontrivial point-missing s-resolvable t-designs for $t \geq 4$ can be found in a paper of Alltop in 1972 [2], in which the author constructed a series of $4-\left(2^{n}+1,2^{n-1},\left(2^{n-1}-3\right)\left(2^{n-2}-\right.\right.$ $1)$) designs for $n \geq 4$ as the union of $2^{n}+1$ mutually disjoint $3-\left(2^{n}, 2^{n-1}, 2^{n-2}-1\right)$ designs. We prove theorems for constructring new t-designs from point-missing and pencil-like s-resolvable t-designs. By using these theorems for overlarge sets of disjoint Steiner quadruple systems with $v=3^{n}-1$ and $v=3^{n}+1$ points constructed by Teirlinck [23], including the already known case with $v=2^{n}$, we derive various infinite series of $4-(v+1,5,5)$ designs, which were unknown until now. It is worthy of note that no large sets of Steiner quadruple systems are constructed to date; however, large sets of Steiner 2-designs for $k=4$ with $v=13,16$ points are known to exist [10, 12, 14]. We also show a recursive construction of point-missing s-resolvable t-designs and its application.

For the sake of clarity we include a few basic definitions. A t-design, denoted by $t-(v, k, \lambda)$, is a pair (X, \mathcal{B}), where X is a v-set of points and \mathcal{B} is a collection of k-subsets of X, called blocks, such that every t-subset of X is a subset of exactly λ blocks, and λ is called the index of the design. A t-design is called simple if no two blocks are identical, otherwise, it is called non-simple. A t - $(v, k, 1)$ design is called a Steiner t-design. For any point $x \in X$, let $\mathcal{B}_{x}=\{B \backslash\{x\}: x \in B \in \mathcal{B}\}$. Then $\left(X \backslash\{x\}, \mathcal{B}_{x}\right)$ is a $(t-1)-(v-1, k-1, \lambda)$ design, called a derived design of (X, \mathcal{B}). It can be shown by simple counting that a $t-(v, k, \lambda)$ design is an $s-\left(v, k, \lambda_{s}\right)$ design for $0 \leq s \leq t$, where $\lambda_{s}=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}$. Since λ_{s} is an integer, necessary conditions for the parameters of a t-design are $\binom{k-s}{t-s} \left\lvert\, \lambda\binom{v-s}{t-s}\right.$ for $0 \leq s \leq t$. The smallest positive integer λ for which these necessary conditions are satisfied is denoted by $\lambda_{\min }(t, k, v)$ or simply $\lambda_{\text {min }}$. If \mathcal{B} is the set of all k-subsets of X, then (X, \mathcal{B}) is a $t-\left(v, k, \lambda_{\max }\right)$ design, called the complete design, where $\lambda_{\max }=\binom{v-t}{k-t}$. If we take δ copies of the complete design, we obtain a $t-\left(v, k, \delta\binom{v-t}{k-t}\right)$ design, which is refered to as a trivial t-design; otherwise, it is called a non-trivial t-design.

2 Point-missing s-resolvable t-designs

A $t-(v, k, \lambda)$ design (X, \mathcal{B}) is said to be s-resolvable, for $0<s<t$, if its block set \mathcal{B} can be partitioned into $N \geq 2$ classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{N}$ such that each $\left(X, \mathcal{B}_{i}\right)$ is an $s-(v, k, \delta)$ design for $i=1, \ldots, N$. Such a partition is called an s-resolution of (X, \mathcal{B}) and each \mathcal{B}_{i} is called an s-resolution class or simply a resolution class, see e.g. [25, 26].

If the complete $k-(v, k, 1)$ design can be partitioned into N disjoint $t-(v, k, \lambda)$ designs, where $N=\binom{v-t}{k-t} / \lambda$, then we say that there exists a large set of t-designs denoted by $L S[N](t, k, v)$ or by $L S_{\lambda}(t, k, v)$ to emphasize the value λ.

In the most general form, the concept of point-missing s-resolvability of a t - (v, k, λ) design can be defined as follows.

Definition 2.1 Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design and let $1 \leq s \leq t-1$. (X, \mathcal{B}) is called point-missing s-resolvable, if the block set \mathcal{B} can be partitioned into mutually disjoint $s-(v-1, k, \delta)$ designs, each missing a point of X.

However, Definition 2.1 is equivalent to a definition that describes point-missing resolutions with more exact details. We now give an explanation.

Let $X=\left\{x_{1}, \ldots, x_{v}\right\}$ and let $X_{i}=X \backslash\left\{x_{i}\right\}, i=1, \ldots, v$. Let m_{i} denote the number of $s-(v-1, k, \delta)$ designs $\left(X_{i}, \mathcal{B}_{i}\right)$ missing x_{i} in the resolution. First we show that any $x_{i} \in X$ is a missing point of an s-design $\left(X_{i}, \mathcal{B}_{i}\right)$. More precisely, let $Y \subseteq X$ be the subset of X such that there is no design $\left(X_{i}, \mathcal{B}_{i}\right)$ missing point x_{i}, when $x_{i} \in Y$. Assume that $Y \neq \emptyset$. Then the blocks of \mathcal{B} can be written as follows.

$$
\mathcal{B}=\bigcup_{x_{h} \in X \backslash Y} m_{h} \mathcal{B}_{h}, \text { where } m_{h} \mathcal{B}_{h}:=\underbrace{\mathcal{B}_{h} \cup \cdots \cup \mathcal{B}_{h}}_{m_{h} \text { times }} .
$$

Consider two given points $x_{i} \in Y$ and $x_{j} \in X \backslash Y$. Since $x_{i} \in Y$, there is no s-design $\left(X_{i}, \mathcal{B}_{i}\right)$ missing x_{i}. Thus x_{i} appears in each design $\left(X_{h}, \mathcal{B}_{h}\right)$, where $x_{h} \in X \backslash Y$, therefore x_{i} appears in $\sum_{x_{h} \in X \backslash Y} m_{h} \delta_{1}$ times in the blocks of \mathcal{B}, where $\delta_{1}=\delta \frac{\binom{v-2}{s-1}}{\binom{k-1}{s-1}}$. Whereas the point $x_{j} \in X \backslash Y$ appears in $\sum_{x_{h} \in X \backslash\left\{Y \cup\left\{x_{j}\right\}\right\}} m_{h} \delta_{1}$ times in the blocks of \mathcal{B}, which is a contradiction if $Y \neq \emptyset$. Further, we show that $m_{1}=\cdots=m_{v}$. W.l.o.g., assume by contradiction that $m_{1} \neq m_{2}$. Then the number of blocks containing x_{1} (resp. x_{2}) is then $\sum_{x \in X \backslash\left\{x_{1}\right\}} m_{x} \delta_{1}=m_{2} \delta_{1}+\sum_{i=3}^{v} m_{i} \delta_{1}$ (resp. $\sum_{x \in X \backslash\left\{x_{2}\right\}} m_{x} \delta_{1}=$ $m_{1} \delta_{1}+\sum_{i=3}^{v} m_{i} \delta_{1}$). Since $m_{2} \delta_{1}+\sum_{i=3}^{v} m_{i} \delta_{1}=m_{1} \delta_{1}+\sum_{i=3}^{v} m_{i} \delta_{1}$, we have $m_{2} \delta_{1}=$ $m_{1} \delta_{1}$, or equivalently $m_{2}=m_{1}$, contradicting the assumption. Thus we must have $m_{1}=\cdots=m_{v}$.

The discussion above suggests an equivalent formulation of Definition 2.1 as follows.

Definition 2.2 Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design and let $1 \leq s<t$ be an integer. (X, \mathcal{B}) is said to be point-missing s-resolvable, if there is an integer $m \geq 1$ such that the following hold.

1. $\mathcal{B}=\mathcal{B}_{x_{1}} \cup \cdots \cup \mathcal{B}_{x_{v}}$, where $X=\left\{x_{1}, \ldots, x_{v}\right\}$,
2. $\mathcal{B}_{x}=\mathcal{B}_{x}^{1} \cup \cdots \cup \mathcal{B}_{x}^{m}$, each $\left(X \backslash\{x\}, \mathcal{B}_{x}^{j}\right)$ is an $s-(v-1, k, \delta)$ design, $j=1, \ldots, m$, and m is called the multiplicity of the point x.

If $m=1,(X, \mathcal{B})$ is simply called point-missing s-resolvable. Moreover, if $m>1$, then $\left(X \backslash\{x\}, \mathcal{B}_{x}\right)$ is an $s-(v-1, k, m \delta)$ design. Therefore, (X, \mathcal{B}) again is a union of v mutually disjoint $s-(v-1, k, m \delta)$ design, each missing a different point of X. Hence, in general, when we speak of point-missing s-resolvable t-designs we mean $m=1$.

If the complete k - $(v, k, 1)$ design can be partitioned into v mutually disjoint s -$(v-1, k, \delta)$ designs (i.e. point-missing s-resolvable), then we have an overlarge set of $s-(v-1, k, \delta)$ designs.

Lemma 2.1 Let (X, \mathcal{B}) be a point-missing s-resolvable $t-(v, k, \lambda)$ design and assume that each point in the resolution has multiplicity m. Then

$$
\delta=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s} m(v-s) .
$$

In particular, if the complete $t-(v, t, 1)$ design is point-missing $(t-1)$-resolvable, then the designs in the resolution are Steiner $(t-1)-(v-1, t, 1)$ designs.

Proof. By assumption, we have

$$
\mathcal{B}=\bigcup_{x \in X}\left\{\mathcal{B}_{x}^{1} \cup \cdots \cup \mathcal{B}_{x}^{m}\right\}
$$

where $\left(X \backslash\{x\}, \mathcal{B}_{x}^{i}\right)$ is an s - $(v-1, k, \delta)$ design. Let $S=\left\{x_{1}, \ldots, x_{s}\right\} \subseteq X$. Then S does not appear in any block of $\mathcal{B}_{x_{j}}^{i}$, for $j=1, \ldots, s$ and $i=1, \ldots, m$. Further, S appears in each $\mathcal{B}_{x_{j}}^{i}$ with $j \neq 1, \ldots, s$, exactly δ times. Thus S appears $m(v-s) \delta$ times in the blocks of \mathcal{B}. On the other hand, the number of blocks in \mathcal{B} containing S is $\lambda_{s}=\frac{\left(\begin{array}{c}v-s \\ t-s \\ k-s \\ t-s\end{array}\right)}{\left(\begin{array}{c}t\end{array}\right.}$. Therefore $\lambda_{s}=m(v-s) \delta$ and thus $\delta=\frac{\lambda_{s}}{m(v-s)}$, as desired.

Recall that the complement of an s-resolvable t-design is again s-resolvable. However, it is not true with a point-missing s-resolvable t-design. Let $X:=\left\{x_{1}, \ldots, x_{v}\right\}$ and let $X_{i}:=X \backslash\left\{x_{i}\right\}, i=1, \ldots, v$. To simplify the typing we write: if $Y \subseteq X$, then $\bar{Y}:=X \backslash Y$, whereas if $Y \subseteq X_{i}$, then $\widetilde{Y}:=X_{i} \backslash Y$. Let (X, \mathcal{D}) be a point-missing s-resolvable t-design with parameters t - (v, k, λ) and let $(X, \overline{\mathcal{D}})$ be its complement which has parameters $t-(v, v-k, \bar{\lambda})$, where $\bar{\lambda}=\lambda\binom{v-k}{t} /\binom{k}{t}$. Let $\mathcal{D}=\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{v}$ be a partition of \mathcal{D} into v point-missing s-resolution classes, where $\left(X_{i}, \mathcal{D}_{i}\right)$ is an s - $(v-1, k, \delta)$ design, for $i=1, \ldots, v$. The complement of $\left(X_{i}, \mathcal{D}_{i}\right)$ (within $\left.X_{i}\right)$ is an $s-(v-1, v-1-k, \widetilde{\delta})$ design $\left(X_{i}, \widetilde{\mathcal{D}}_{i}\right)$ with $\widetilde{\delta}=\delta\binom{v-1-k}{s} /\binom{k}{s}$. So, we have $\overline{\mathcal{D}}=$ $\overline{\mathcal{D}}_{1} \cup \cdots \cup \overline{\mathcal{D}}_{v}=\left(\left\{x_{1}\right\} \cup \widetilde{\mathcal{D}}_{1}\right) \cup \cdots \cup\left(\left\{x_{v}\right\} \cup \widetilde{\mathcal{D}}_{v}\right)$, where $\left\{x_{i}\right\} \cup \widetilde{\mathcal{D}}_{i}=\left\{\left\{x_{i}\right\} \cup \widetilde{D} \mid \widetilde{D} \in \widetilde{\mathcal{D}}_{i}\right\}$. Thus, $\overline{\mathcal{D}}_{i}=\left(\left\{x_{i}\right\} \cup \widetilde{\mathcal{D}}_{i}\right)$ is not an s-design, but rather a "pencil". Hence, the decomposition of $(X, \overline{\mathcal{D}})$ suggests the following definition.

Definition 2.3 Let $X=\left\{x_{1}, \ldots, x_{v}\right\}$ and denote $X_{i}:=X \backslash\left\{x_{i}\right\}, i=1, \ldots, v$. Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design. If for some $x_{i} \in X$ there exists an $s-(v-1, k-1, \delta)$ design $\left(X_{i}, \mathcal{B}_{i}\right)$ for $1 \leq s<t$, then we call $\left\{x_{i}\right\} \cup \mathcal{B}_{i}=\left\{\left\{x_{i}\right\} \cup \widetilde{B} \mid \widetilde{B} \in \widetilde{\mathcal{B}}_{i}\right\} \subseteq \widetilde{\mathcal{B}}$ an s-pencil of (X, \mathcal{B}). If $\mathcal{B}=\left(\left\{x_{1}\right\} \cup \mathcal{B}_{1}\right) \cup \cdots \cup\left(\left\{x_{v}\right\} \cup \mathcal{B}_{v}\right)$, where $\left(X_{i}, \mathcal{B}_{i}\right)$ is an $s-(v-1, k-1, \delta)$ design, then (X, \mathcal{B}) is said to be pencil-like s-resolvable.

As observed above, the complement of a point-missing s-resolvable t-design is a pencillike s-resolvable t-design. Conversely, it is straightfoward to check that the complement of a pencil-like s-resolvable t-design is a point-missing s-resolvable t-design. Hence the notion of point-missing s-resolvability and that of pencil-like s-resolvability are complementary equivalent. We record this fact in the following lemma.

Lemma 2.2 At-design is point-missing s-resolvable if and only if its complement is pencil-like s-resolvable.

The next theorem shows a relation between certain classes of t-designs and pointmissing $(t-1)$-resolvable t-designs, in terms of derived designs.

Theorem 2.3 Let (X, \mathcal{B}) be a simple $t-(v, k, \lambda)$ design with $\left|B \cap B^{\prime}\right| \leq k-2$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$. Then there exists a simple point-missing $(t-1)$ resolvable $t-(v, k-1,(k-t) \lambda)$ design (X, \mathcal{D}). In particular, if (X, \mathcal{B}) is a Steiner $t-(v, t+1,1)$ design, then there exists an overlarge set of Steiner $(t-1)-(v-1, t, 1)$ designs.

Proof. For a given point $x \in X$ consider the derived design $\left(X \backslash\{x\}, \mathcal{B}_{x}\right)$ at x with parameters $(t-1)-(v-1, k-1, \lambda)$. Here $\mathcal{B}_{x}=\{B \backslash\{x\} \mid x \in B, B \in \mathcal{B}\}$. Define $\mathcal{D}=\bigcup_{x \in X} \mathcal{B}_{x}$. We claim that (X, \mathcal{D}) is a $t-(v, k-1,(k-t) \lambda)$ design. Let $T=\left\{x_{1}, \ldots, x_{t}\right\} \subseteq X$. Then there are λ blocks of \mathcal{B}, say, $B_{1}, \ldots, B_{\lambda}$ containing T. Each $B_{i}, i=1, \ldots, \lambda$, gives rise to a set $\mathbb{D}_{i}=\left\{D=B_{i} \backslash\{x\} \mid x \in B_{i} \backslash T\right\} \subseteq \mathcal{D}$ having $(k-t)$ blocks D containing T. Thus there are $(k-t) \lambda$ blocks $D \in \mathcal{D}$ containing T in total, as desired. The simplicity of (X, \mathcal{D}) is a consequence of the property: $\left|B \cap B^{\prime}\right| \leq k-2, B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}$, which can be seen as follows. Let D, D^{\prime} be two blocks of \mathcal{D}. If $D, D^{\prime} \in \mathcal{B}_{x}$ for some $x \in X$, then $D \neq D^{\prime}$, since $\left(X \backslash\{x\}, \mathcal{B}_{x}\right)$ is the derived design at x. If $D \in \mathcal{B}_{x}$ and $D^{\prime} \in \mathcal{B}_{y}$ with $x \neq y$, then again $D \neq D^{\prime}$. This is because if $D=D^{\prime}$, then the two blocks $B=D \cup\{x\}$ and $B^{\prime}=D^{\prime} \cup\{y\}$ of \mathcal{B} would have $\left|B \cap B^{\prime}\right|=k-1$, a contradiction. In addition, if (X, \mathcal{B}) is a Steiner $t-(v, t+1,1)$ design, then (X, \mathcal{D}) becomes the complete $t-(v, t, 1)$ design. In other words, the set of v distinct $(t-1)-(v-1, t, 1)$ derived designs of (X, \mathcal{B}) forms an overlarge set.

Remark 2.1 1. The proof of Theorem 2.3 shows that the constructed $t-(v, k-$ $1,(k-t) \lambda)$ design is not simple, if there are two blocks $B, B^{\prime} \in \mathcal{B}$ with $\left|B \cap B^{\prime}\right|=$ $k-1$.
2. It should be stressed that the set of v distinct derived designs of a Steiner t $(v, k, 1)$ design with $k>t+1$ in Theorem 2.3 will not form an overlarge set of $(t-1)-(v-1, k-1,1)$ designs, but rather a point-missing $(t-1)$-resolution of a $t-(v, k-1,(k-t))$ design.

The following corollary is an immediate consequence of Theorem 2.3.
Corollary 2.4 Assume that there exists a Steiner $t-(v, k, 1)$ design. Then there exists a point-missing $(t-1)$-resolvable $t-(v, k-1, k-t)$ design.

The case $k=t+1$ of Corollary 2.4 is known as examples of overlarge sets of Steiner designs, see [23]. Thus, if there exists a Steiner $t-(v, t+1,1)$ design, then there exists a point-missing $(t-1)$-resolvable $t-(v, t, 1)$ design, i.e. an overlarge set of Steiner $(t-1)-(v-1, t, 1)$ designs. Note that the converse of this statement is not true, i.e. if there exists an overlarge set of Steiner $(t-1)-(v-1, t, 1)$ designs, it is not necessarily true that a Steiner $t-(v, t+1,1)$ design exists. For example, Östergård and Pottonen [17] have shown that a Steiner $4-(17,5,1)$ design does not exist. Nevertheless, there exists an overlarge set of Steiner $3-(16,4,1)$ designs, see [23]. And crucially, Teirlinck [23] has shown that there are overlarge sets of Steiner 3- $(v, 4,1)$ designs for $v=3^{n}-1$, $n \geq 2$ and $v=3^{n}+1, n \geq 1$, despite the fact that only a finite number of Steiner 4 - $(v, 5,1)$ designs are hitherto known.

The general case $k \geq t+2$ is interesting, since Theorem 2.3 provides a pointmissing $(t-1)$-resolvable $t-(v, k-1, k-t)$ design, which is not a complete design. Examples about this case can be seen, for instance, from Steiner 5-(24, 8, 1) and 5$(28,7,1)$ designs. Here we obtain point-missing 4-resolvable 5-(24, 7, 3) and 5-(28, 6, 2) designs, where designs in the resolution are Steiner 4- $(23,7,1)$ and $4-(27,6,1)$ designs, respectively. Similarly, there are point-missing 3-resolvable 4-(23, 6,3$)$ and 4-(27, 5, 2) designs having Steiner $3-(22,6,1)$ and $3-(26,5,1)$ designs in the resolution, respectively.

As a further application of Theorem 2.3, we consider the infinite series of 4$(q+1,6,10)$ designs with $q=2^{n}, n \geq 5$ and $\operatorname{gcd}(n, 6)=1$, [8], having the property that any two blocks of the designs intersect in at most 4 points. Thus we have the following result.

Corollary 2.5 Let $q=2^{n}, n \geq 5$ and $\operatorname{gcd}(n, 6)=1$. Then there exists a pointmissing 3-resolvable 4- $(q+1,5,20)$ design having a $3-(q, 5,10)$ design in the resolution.

Corollary 2.5 shows an interesting example of 4 -designs that are 3 -resolvable, and point-missing 3-resolvable as well.

3 Constructions of t-designs from point-missing ($t-$ 1)-resolvable t-designs

Recall that Lemma 2.2 shows a natural connection between point-missing and pencillike s-resolvability via the complement action. However, we observe that point-missing $(t-1)$-resolvable t-designs may be used to construct pencil-like $(t-1)$-resolvable t designs which are not related to the complementary connection, as shown in the following theorem.

Theorem 3.1 Let (X, \mathcal{B}) be a point-missing $(t-1)$-resolvable $t-(v, k, \lambda)$ design with $(t-1)-(v-1, k, \delta)$ designs in the resolution. Then there is a pencil-like $(t-1)$ resolvable $t-(v, k+1, t \delta+\lambda)$ design $\left(X, \mathcal{B}^{*}\right)$. If $\left|B \cap B^{\prime}\right| \leq k-2$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$, then $\left(X, \mathcal{B}^{*}\right)$ is simple. Further, if there are two blocks $B, B^{\prime} \in \mathcal{B}$ with $\left|B \cap B^{\prime}\right|=k-1$, then the simplicity of $\left(X, \mathcal{B}^{*}\right)$ depends on the structure of the resolution.

Proof. Let $X=\{1, \ldots, v\}$. For $i \in X$ denote $\left(X \backslash\{i\}, \mathcal{B}_{i}\right)$ the $(t-1)-(v-1, k, \delta)$ design in the point-missing $(t-1)$-resolution. Define $\mathcal{B}_{i}^{*}=\{i\} \cup \mathcal{B}_{i}=\{\{i\} \cup B \mid B \in$ $\left.\mathcal{B}_{i}\right\}$, for $i=1, \ldots, v$, and $\mathcal{B}^{*}=\bigcup_{i \in X} \mathcal{B}_{i}^{*}$. We claim that $\left(X, \mathcal{B}^{*}\right)$ is a pencil-like $(t-1)$ resolvable $t-(v, k+1, t \delta+\lambda)$ design. Let $T=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq X$. Consider a resolution class \mathcal{B}_{j} with $j \in T$. Since $\left(X \backslash\{j\}, \mathcal{B}_{j}\right)$ is a $(t-1)-(v-1, k, \delta)$ design, it follows that $\left\{i_{1}, \ldots, i_{t}\right\} \backslash\{j\}$ is contained in δ blocks of \mathcal{B}_{j}. Therefore $\{j\} \cup\left\{i_{1}, \ldots, i_{t}\right\} \backslash\{j\}=$ $\left\{i_{1}, \ldots, i_{t}\right\}$ is contained in δ blocks of \mathcal{B}_{j}^{*}. Thus $\mathcal{B}_{i_{1}}^{*}, \ldots, \mathcal{B}_{i_{t}}^{*}$ together have $t \delta$ blocks containing T. Further, the $(v-t)$ resolution classes \mathcal{B}_{j} with $j \notin T$ have λ blocks containing T. Therefore the $(v-t)$ classes \mathcal{B}_{j}^{*} with $j \notin T$ together have λ blocks containing T. It follows that $\left(X, \mathcal{B}^{*}\right)$ is a $t-(v, k+1, t \delta+\lambda)$ design. Assume that
$\left|B \cap B^{\prime}\right| \leq k-2$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$. Let $B^{*}, B^{*} \in \mathcal{B}^{*}$ be the two corresponding blocks of B and B^{\prime}. If $B^{*}, B^{\prime *} \in \mathcal{B}_{i}^{*}$, then $B^{*}=\{i\} \cup B$ and $B^{* *}=\{i\} \cup B^{\prime}$, so $B^{*} \neq B^{\prime *}$, since $B \neq B^{\prime}$. The other case is that $B^{*} \in \mathcal{B}_{i}^{*}$ and $B^{\prime *} \in \mathcal{B}_{j}^{*}$ for $i \neq j$, thus $B^{*}=\{i\} \cup B, B^{* *}=\{j\} \cup B^{\prime}$, where $B \in \mathcal{B}_{i}$ and $B^{\prime} \in \mathcal{B}^{\prime}{ }_{j}$. Since $\left|B \cap B^{\prime}\right| \leq k-2$, we have $B^{*} \neq B^{* *}$. Thus $\left(X, \mathcal{B}^{*}\right)$ is simple.

The next theorem may be viewed as the reverse of Theorem 3.1.
Theorem 3.2 Let (X, \mathcal{B}) be a pencil-like $(t-1)$-resolvable $t-(v, k, \lambda)$ design with $(t-1)-(v-1, k-1, \delta)$ designs in the resolution. Then there is a point-missing $(t-1)$ resolvable $t-(v, k-1, \lambda-t \delta)$ design $\left(X, \mathcal{B}^{*}\right)$. If $\left|B \cap B^{\prime}\right| \leq k-2$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$, then $\left(X, \mathcal{B}^{*}\right)$ is simple. Further, if there are two blocks $B, B^{\prime} \in \mathcal{B}$ with $\left|B \cap B^{\prime}\right|=k-1$, then the simplicity of $\left(X, \mathcal{B}^{*}\right)$ depends on the structure of the pencil-like $(t-1)$-resolution.

Proof. Let $X=\{1, \ldots, v\}$. For $i \in X$ denote $\left(X \backslash\{i\}, \mathcal{B}_{i}\right)$ the $(t-1)-(v-1, k-1, \delta)$ design in the pencil-like $(t-1)$-resolution of (X, \mathcal{B}). We have $\mathcal{B}=\left(\{1\} \cup \mathcal{B}_{1}\right) \cup \cdots \cup$ $\left(\{v\} \cup \mathcal{B}_{v}\right)$ Define $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{v}$. We claim that $\left(X, \mathcal{B}^{*}\right)$ is a $t-(v, k-1, \lambda-t \delta)$ design, which is point-missing $(t-1)$-resolvable. Let $T=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq X$. Then T is contained in λ blocks of (X, \mathcal{B}), which are distributed in v classes of the pencillike $(t-1)$-resolution. Note that T is contained in δ blocks of $\left(\left\{i_{j}\right\} \cup \mathcal{B}_{i_{j}}\right)$, for $i_{j} \in T$, so T is contained in $t \delta$ blocks of $\left(\left\{i_{1}\right\} \cup \mathcal{B}_{i_{1}}\right) \cup \cdots \cup\left(\left\{i_{t}\right\} \cup \mathcal{B}_{i_{t}}\right)$ (i.e., T is not contained in any block of $\left.\mathcal{B}_{i_{1}} \cup \cdots \cup \mathcal{B}_{i_{t}}\right)$. The remaining $(v-t)$ classes $\left\{\left(\{1\} \cup \mathcal{B}_{1}\right) \cup \cdots \cup\left(\{v\} \cup \mathcal{B}_{v}\right)\right\} \backslash\left\{\left(\left\{i_{1}\right\} \cup \mathcal{B}_{i_{1}}\right) \cup \cdots \cup\left(\left\{i_{t}\right\} \cup \mathcal{B}_{i_{t}}\right)\right\}$ of (X, \mathcal{B}) will have $\lambda-t \delta$ blocks containing T. Moreover, if T is contained in a block $\{j\} \cup B \in\left(\{j\} \cup \mathcal{B}_{j}\right)$, $j \in\{1, \ldots, v\} \backslash T$, then T is contained in $B \in \mathcal{B}_{j}$. Hence, $\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{v}$ will have $\lambda-t \delta$ blocks containing T and $\left(X, \mathcal{B}^{*}\right)$ is point-missing $(t-1)$-resolvable. Assume that $\left|B \cap B^{\prime}\right| \leq k-2$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$. Obviously, the two corresponding blocks $B^{*}, B^{* *} \in \mathcal{B}^{*}$ are distinct. Thus (X, \mathcal{B}^{*}) is simple.

The simplicity of $\left(X, \mathcal{B}^{*}\right)$ in Theorem 3.1 in the case that there are two blocks $B, B^{\prime} \in \mathcal{B}$ with $\left|B \cap B^{\prime}\right|=k-1$ remains a main open question. In fact, examples for simple as well as non-simple $\left(X, \mathcal{B}^{*}\right)$ do exist in this case. We illustrate the situation with two explicit examples. First, consider the unique Steiner $3-(8,4,1)$ design (X, \mathcal{B}). By applying Lemma 2.2 we have

$$
\begin{aligned}
& \mathcal{B}_{0}=123345256136467157237 \\
& \mathcal{B}_{1}=024235456036057267347 \\
& \mathcal{B}_{2}=014135346056167037457 \\
& \mathcal{B}_{3}=125 \quad 246045016567027147 \\
& \mathcal{B}_{4}=\begin{array}{llllllll}
012 & 236 & 035 & 156 & 067 & 137 & 257
\end{array} \\
& \mathcal{B}_{5}=123034146026367017247 \\
& \mathcal{B}_{6}=234145025013357047127 \\
& \mathcal{B}_{7}=356046015126023134 \quad 245
\end{aligned}
$$

Thus the block set $\mathcal{D}=\bigcup_{x \in X} \mathcal{B}_{x}$ is the union of derived designs of (X, \mathcal{B}) at all points of $X=\{0,1,2,3,4,5,6,7\}$. Here $\mathcal{B}_{0}, \ldots, \mathcal{B}_{7}$ form an overlarge set of Steiner 2- $(7,3,1)$ designs. It is easy to check that the resulting $3-(8,4,4)$ design $\left(X, \mathcal{B}^{*}\right)$ is not simple, more precisely each block is repeated 4 times. The second example is chosen from the set of 11 non-isomorphic of overlarge sets for $2-(7,3,1)$ designs $[18]$. The following representation is taken from[15].

$$
\begin{aligned}
& \mathcal{B}_{0}^{\prime}=123 \\
& \mathcal{B}_{1}^{\prime}= \\
& \hline 026 \\
& \hline
\end{aligned} 035
$$

It is straightforward to check that $\left(X, \mathcal{B}^{* *}\right)$ forms a simple $3-(8,4,4)$ design.
The examples indicate an involved problem of deciding the simplicity of (X, \mathcal{B}^{*}), when (X, \mathcal{B}) has two blocks B and B^{\prime} with $\left|B \cap B^{\prime}\right|=k-1$. The most interesting case for this situation, as mentioned in Theorem 2.3, is overlarge sets of disjoint Steiner $(t-1)-(v, t, 1)$ designs, i.e. the complete $t-(v+1, t, 1)$ design is point-missing $(t-1)$ resolvable having Steiner $(t-1)-(v, t, 1)$ designs in the resolution classes. Teirlinck [23] has shown that overlarge sets for Steiner 3- $\left(3^{n}-1,4,1\right)$ and $3-\left(3^{n}+1,4,1\right)$ designs for $n \geq 2$ exist, including the known overlarge sets of Steiner 3-($\left.2^{n}, 4,1\right)$ designs. By using these results we obtain the following infinite series of 4-designs with constant index as a corollary of Theorem 3.1.

Corollary 3.3 There exist infinite series of pencil-like 3-resolvable 4-designs with the following parameters:

1. $4-\left(2^{n}+1,5,5\right)$ for $n \geq 2$,
2. 4- $\left(3^{n}, 5,5\right)$ for $n \geq 2$,
3. $4-\left(3^{n}+2,5,5\right)$ for $n \geq 2$.

Remark 3.1 It should be remarked that for all the designs in Corollary 3.3 we have $\lambda_{\text {min }}=1$ or 5 . More precisely,

$$
\lambda_{\min }=5\left\{\begin{array}{lll}
\text { for } v=2^{n}+1, & \text { and } n \equiv 3 & (\bmod 4) \\
\text { for } v=3^{n}, & \text { and } n \equiv 2 & (\bmod 4) \\
\text { for } v=3^{n}+2, & \text { and } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Note that Alltop [1] has constructed infinite series of simple 4- $\left(2^{n}+1,5,5\right)$ designs for n odd and $n \geq 5$; thus the first series extends the point number to all possible values of n.

It is very likely that many non-isomorphic series of 4-designs with parameters given in Corollary 3.3 will exist, which are simple as well as non-simple, due to the fact that the number of non-isomorphic overlarge sets of $3-(v, 4,1)$ will strongly increase as v is getting large. In particular, it is important to decide whether the 4-designs in Corollary 3.3 are simple or not. As an observation we take a close look at the first design in each of the $4-\left(3^{n}, 5,5\right)$ and $4-\left(3^{n}+2,5,5\right)$ series. These are $4-(9,5,5)$ and $4-(11,5,5)$ designs, corresponding to $n=2$. Note that each $4-(9,5,5)$ design is simple, since its complement is the complete $4-(9,4,1)$ design (otherwise, we would have a non-simple 4 - $(9,4,1)$ design, which is impossible). In fact, this can also be verified directly by checking the two non-isomorphic overlarge sets of 3-($8,4,1$) designs given in [9], yielding $4-(9,5,5)$ designs. Note also that $4-(9,5,5)$ is the parameters of the second design in the $4-\left(2^{n}+1,5,5\right)$ series. The case of $4-(11,5,5)$ designs is quite different. We have inspected the complete list of 21 non-isomorphic overlage sets of $3-(10,4,1)$ designs as shown in [20] and found that they all yield non-simple $4-(11,5,5)$ designs.

For the ease of the reader, we include a table of known infinite series of t-designs with constant index for $t \geq 4$.

Table 1: Known infinite series of t-designs with constant index for $t \geq 4$

No.	$t-(v, k, \lambda)$	Conditions	(Non-)Simplicity	References
1	$4-\left(2^{n}+1,5,5\right)$	$n \geq 5$ odd	simple	$[1]$
2	$4-\left(4^{n}+1,5,2\right)$	$n \geq 2$	non-simple	$[3]$
3	$4-\left(2^{n}+1,5,5\right)$	$n \geq 4$	$?$	Cor.3.3
4	$4-\left(3^{n}, 5,5\right)$	$n \geq 3$	$?$	Cor.3.3
5	$4-\left(3^{n}+2,5,5\right)$	$n \geq 3$	$?$	Cor.3.3
6	$4-\left(2^{n}+1,5, \lambda\right)$	$\lambda \in\{20,25\}, \operatorname{gcd}(n, 6)=1$	simple	Cor.2.5, $[8]$
7	$4-(60 u+4,5,60)$	$\operatorname{gcd}(u, 60)=1$ or 2	simple	$[22]$
8	$4-\left(2^{n}+1,6,10\right)$	$n \geq 5$ odd	simple	$[5]$
9	$4-\left(2^{n}+1,6, \lambda\right)$	$\lambda \in\{60,70,90,100,150,160\}$,	simple	$[4]$
		$\operatorname{gcd}(n, 6)=1$		
10	$4-\left(2^{n}+1,8,35\right)$	$\operatorname{gcd}(n, 6)=1$	simple	$[4]$
11	$4-\left(2^{n}+1,9, \lambda\right)$	$\lambda \in\{84,63,147\}, \operatorname{gcd}(n, 6)=1$	simple	$[6,4]$
12	$5-\left(2^{n}+2,6,15\right)$	$n \geq 3$	non-simple	$[11]$
13	$5-\left(2^{n}, 6,3\right)$	$n \geq 3$	non-simple	$[7]$
14	$7-\left(2^{n}, 8,45\right)$	$n \geq 6$	non-simple	$[7]$
15	$t-\left(v, t+1,(t+1)!^{2 t+1}\right)$	$v \equiv t\left(\bmod (t+1)!^{2 t+1}\right)$	simple	
		$v \geq t+1$		$[21]$

Theorem 3.4 There exists a pencil-like 3-resolvable 4- $\left(2^{n}+1,7, \frac{70}{3}\left(2^{n}-5\right)\right)$ design for $n \geq 5$ and $\operatorname{gcd}(n, 6)=1$.

Proof. Each 4- $\left(2^{n}+1,6,10\right)$ design (X, \mathcal{B}) with $n \geq 5$ and $\operatorname{gcd}(n, 6)=1$ in [8] has the property that $\left|B \cap B^{\prime}\right| \leq 4$ for any two distinct blocks $B, B^{\prime} \in \mathcal{B}$. Its complement is a $4-\left(2^{n}+1,2^{n}-5, \frac{2}{3}\binom{2^{n}-5}{4}\right)$ design $(X, \overline{\mathcal{B}})$ having block intersections at most $\left(2^{n}-3\right)$. By Theorem 2.3 there is a point-missing 3 -resolvable $4-\left(2^{n}+1,2^{n}-6,\left(2^{n}-9\right) \frac{2}{3}\binom{2^{n}-5}{4}\right)$ design $(X, \overline{\mathcal{D}})$. Again, the complement of $(X, \overline{\mathcal{D}})$ is pencil-like 3-resolvable $4-\left(2^{n}+\right.$ $\left.1,7, \frac{70}{3}\left(2^{n}-5\right)\right)$ design, as desired.

By applying Theorem 3.2 to the point-missing 3-resolvable $4-\left(2^{n}+1,2^{n-1},\left(2^{n-1}-\right.\right.$ $3)\left(2^{n-2}-1\right)$) design (X, \mathcal{B}) of Alltop [2], we obtain an interesting result. Namely, we prove that there is a point-missing 3 -resolvable design $\left(X, \mathcal{B}^{*}\right)$ with the same parameters as (X, \mathcal{B}) and disjoint from (X, \mathcal{B}) (recall that any two distinct blocks $B, B^{\prime} \in \mathcal{B}$ have $\left.\left|B \cap B^{\prime}\right| \leq 2^{n-1}-2\right)$. Let $\mathcal{B}=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{v}$ be a partition of \mathcal{B} into point-missing 3 -resolution classes, i.e. each $\left(X_{i}, \mathcal{B}_{i}\right)$ is a $3-\left(2^{n}, 2^{n-1}, 2^{n-2}-1\right)$ design with $X_{i}=X \backslash\{i\}$. Consider $(X, \overline{\mathcal{B}})$ as the complement of (X, \mathcal{B}). So, $(X, \overline{\mathcal{B}})$ has parameters $4-\left(2^{n}+1,2^{n-1}+1,\left(2^{n-1}+1\right)\left(2^{n-2}-1\right)\right)$ and is pencil-like 3 -resolvable. Here, $\overline{\mathcal{B}}=\left(\{1\} \cup \tilde{\mathcal{B}}_{1}\right) \cup \cdots \cup\left(\{v\} \cup \tilde{\mathcal{B}}_{v}\right)$, where $\tilde{\mathcal{B}}_{j}$ is the complement of \mathcal{B}_{j} in X_{j}, and $\left(X_{j}, \tilde{\mathcal{B}}_{j}\right)$ is a $3-\left(2^{n}, 2^{n-1}, 2^{n-2}-1\right)$ design, for $j=1, \ldots, v$. The proof of Theorem 3.2 shows that $\left(X, \tilde{\mathcal{B}}^{*}\right)$ with $\tilde{\mathcal{B}}^{*}=\tilde{\mathcal{B}}_{1} \cup \cdots \cup \tilde{\mathcal{B}}_{v}$, is point-missing 3 -resolvable with $\left(X, \tilde{\mathcal{B}}_{j}\right)$ as the design in the resolution. Clearly, (X, \mathcal{B}) and $\left(X, \widetilde{\mathcal{B}}^{*}\right)$ are disjoint and they have the same parameters. Further, the 4 -design $\left(X, \mathcal{B} \cup \tilde{\mathcal{B}}^{*}\right)$ can be extended to a 5-design. Thus we have the following theorem.

Theorem 3.5 Let $n \geq 4$. Then

1. there exists a simple point-missing 3 -resovable $4-\left(2^{n}+1,2^{n-1}, 2\left(2^{n-1}-3\right)\left(2^{n-2}-\right.\right.$ 1)) design,
2. there exists a simple $5-\left(2^{n}+2,2^{n-1}+1,2\left(2^{n-1}-3\right)\left(2^{n-2}-1\right)\right)$ design.

4 A construction of point-missing s-resolvable t designs

In this section we show that the recursive construction of t-designs in [24] can be extended to a construction of point-missing s-resolvable t-designs. More precisely, we prove the following theorem.

Theorem 4.1 Assume that there exists a point-missing s-resolvable $t-(v, k, \lambda)$ design having s-(v-1,k, $\delta)$ designs in its resolution. If $v \lambda_{0}\left(\lambda_{0}-\lambda_{1}\right)<\binom{v}{k}$, then there exists a point-missing s-resolvable $t-(v+1, k,(v+1-t) \lambda)$ design having $s-(v, k,(v-s) \delta)$ designs in its resolution.

Proof. Assume that (Y, \mathcal{D}) is a point-missing s-resolvable $t-(v, k, \lambda)$ design. Let $X=\{1, \ldots, v+1\}$ and denote $X_{j}=X \backslash\{j\}$ for $j=1, \ldots, v+1$. Let $\left(X_{j}, \mathcal{B}^{(j)}\right)$ be a copy of (Y, \mathcal{D}) defined on X_{j}. If $v \lambda_{0}\left(\lambda_{0}-\lambda_{1}\right)<\binom{v}{k}$, then by Theorem A in [24] there
are $(v+1)$ mutually disjoint $\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(v+1)}$ and they form a t - $(v+1, k,(v+1-t) \lambda)$ design (X, \mathcal{B}), where

$$
\mathcal{B}=\bigcup_{j=1}^{v+1} \mathcal{B}^{(j)} .
$$

We prove that (X, \mathcal{B}) is point-missing s-resolvable. Denote the partition of $\left(X_{j}, \mathcal{B}^{(j)}\right)$ into point-missing s-resolution classes by

$$
\mathcal{B}^{(j)}=\overbrace{\mathcal{C}_{1}^{(j)} \cup \cdots \cup \mathcal{C}_{j-1}^{(j)} \cup \mathcal{C}_{j+1}^{(j)} \cup \cdots \cup \mathcal{C}_{v+1}^{(j)}}^{v},
$$

with $\left(X_{i, j}, \mathcal{C}_{i}^{(j)}\right)$ as an $s-(v-1, k, \delta)$ design, where $X_{i, j}=X_{j} \backslash\{i\}$ and $i \in X_{j}$. For each point $j \in X$ define

$$
\mathcal{C}_{j}=\overbrace{\mathcal{C}_{j}^{(1)} \cup \mathcal{C}_{j}^{(2)} \cup \cdots \cup \mathcal{C}_{j}^{(j-1)} \cup \mathcal{C}_{j}^{(j+1)} \cup \cdots \cup \mathcal{C}_{j}^{(v+1)}}^{v} .
$$

We claim that $\left(X_{j}, \mathcal{C}_{j}\right)$ is an $s-(v, k,(v-s) \delta)$ design. Let $S=\left\{j_{1}, \ldots, j_{s}\right\} \subseteq X_{j}$. Then S will not appear in the blocks of $\mathcal{C}_{j}^{\left(j_{1}\right)}, \mathcal{C}_{j}^{\left(j_{2}\right)}, \ldots, \mathcal{C}_{j}^{\left(j_{s}\right)}$. Hence S appears in $(v-s)$ block sets $\mathcal{C}_{j}^{(i)}$, for $i \neq j_{1}, \ldots, j_{s}$. In other words, S is contained in the blocks of \mathcal{C}_{j} exactly $(v-s) \delta$ times, which proves the claim. Further, since

$$
\mathcal{B}=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{v+1},
$$

(X, \mathcal{B}) is point-missing s-resolvable with $\mathcal{C}_{1}, \ldots, \mathcal{C}_{v+1}$ as resolution classes. Note that the value of δ can be computed in terms of t, v, k, λ by using Lemma 2.1.

As an application of Theorem 4.1 consider the infinite series of 4 -designs (X, \mathcal{D}) constructed by Alltop in [2]. (X, \mathcal{D}) has parameters $4-\left(2^{n}+1,2^{n-1},\left(2^{n-1}-3\right)\left(2^{n-2}-\right.\right.$ $1)$), $n \geq 4$, and is point-missing 3 -resolvable with $3-\left(2^{n}, 2^{n-1}, 2^{n-2}-1\right)$ designs in its resolution. For $n \geq 5$ the condition $v \lambda_{0}\left(\lambda_{0}-\lambda_{1}\right)<\binom{v}{k}$ is satisfied, therefore Theorem 4.1 gives the following corollary.

Corollary 4.2 For $n \geq 5$, there exists an infinite series of simple point-missing 3resolvable $4-\left(2^{n}+2,2^{n-1},\left(2^{n}-2\right)\left(2^{n-1}-3\right)\left(2^{n-2}-1\right)\right)$ designs. The parameters of the 3-designs in the resolution are $3-\left(2^{n}+1,2^{n-1},\left(2^{n}-2\right)\left(2^{n-2}-1\right)\right)$.

5 Conclusion

The paper deals with point-missing s-resolvable t-designs with emphasis on their use in constructing t-designs. Among others, we show the existence of infinite series of $4-(v, 5,5)$ designs with $v=2^{n}+1,3^{n}, 3^{n}+2$ for $n \geq 2$. It remains an open question about the simplicity of the designs in these series. We also present a recursive construction of point-missing s-resolvable t-designs including an application.

References

[1] Alltop W.O.: An infinite class of 4-designs, J. Combin. Theory A 6 320-322 (1969).
[2] Alltop W.O.: An infinite class of 5-designs, J. Combin. Theory A 12 (1972) 390-395 (1972).
[3] Baartmans A.H., Bluskov I. and Tonchev V.D.: The Preparata codes and a class of 4-designs, J. Combin. Des. 2 167-170 (1994).
[4] Bierbrauer J.: Some friends of Alltop's designs 4- $\left(2^{f}+1,5,5\right)$, J. Combin. Math. Combin. Comput. 36 43-53 (2001).
[5] Bierbrauer J.: A new family of 4-designs, Graphs Combin. 11, 209-211 (1995).
[6] Bierbrauer J.: A family of 4-designs with block size 9, Discret. Math. 138, 113117 (1995).
[7] Bierbrauer J.: An infinite family of 7-designs, Discret. Math. 240, 1-11 (2001).
[8] Bierbrauer J. and van Trung Tran: Shadow and shade of designs 4- $\left(2^{f}+1,6,10\right)$ (unpublished), https://www.uni-due.de/~hx0026/ShadowAndShade.pdf
[9] Breach D.R. and Street A.P.: Partitioning sets of quadruples into designs II, J. Combin. Math. Combin. Comput. 3, 41-48 (1988).
[10] Chouinard L.G.: Partitions of the 4 -subsets of a 13 -set into disjoint projective planes, Discret. Math. 45, 396-407 (1983).
[11] Jungnickel D. and Vanstone S.A.: Hyperfactorizations of graphs and 5-designs, J. Univ. Kuwait(Sci.) 14, 213-223 (1987).
[12] Kalotoğlu E., Magliveras S.S.: On large sets of projective planes of order 3 and 4, Discret. Math. 313, 2247-2252 (2013).
[13] Liebler R.A., Magliveras S.S., and Tsaranov S.V.: Block transitive resolutions of t-designs and room rectangles, J. Statist. Plann. and Inference 58, 119-133 (1997).
[14] Mathon R.: Searching for spreads and packings, in Geometry, Combinatorial Designs and Related Structures, J. W. P. Hirschfeld, S. S. Magliveras, and M. J. de Resmini, eds., Cambridge Univ. Press, Cambridge 161-176 (1997).
[15] Mathon R., Street A.P.: Partitions of sets of designs on seven, eight and nine points, J. Statist. Plann. and Inference 58, 135-150 (1997).
[16] Mathon R., Street A.P.: Overlarge sets of 2-(11,5,2) designs and related configurations, Discret. Math. 255, 275-286 (2002).
[17] Östergård P.R.J. and Pottonen O.: There exists no Steiner system $S(4,5,17)$, J. Combin. Theory A 115, 1570-1573 (2008).
[18] Sharry M.J., Street A.P.: Partitioning sets of triples into designs, Ars Combin. 26B, 51-66 (1988).
[19] Sharry M.J., Street A.P.: Partitions of sets of blocks into designs, Australas. J. Combin. 3, 111-140 (1991).
[20] Sharry M.J., Street A.P.: Partitions of sets of quadruples into designs III, Discret. Math. 92, 341-359 (1991).
[21] Teirlinck L.: Non-trivial t-designs without repeated blocks exist for all t, Discrete Math. 65, 301-311 (1987).
[22] Teirlinck L.: Locally trivial t-designs and t-designs without repeated blocks, Discrete Math. 77, 345-356 (1989).
[23] Teirlinck L.: Overlarge sets of disjoint Steiner quadruple systems, J. Combin. Designs 7, 311-315 (1999).
[24] van Trung Tran: On the existence of an infinite family of simple 5-designs, Math. Z. 187, 285-287 (1984).
[25] van Trung Tran: A recursive construction for simple t-designs using resolutions, Des. Codes Cryptogr. 86, 1185-1200 (2018).
[26] van Trung Tran: Recursive construction for s-resolvable t-designs, Des. Codes Cryptogr. 87, 2835-2845 (2019).

