A public key cryptosystem based on non-abelian finite groups

Wolfgang Lempken
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Ellernstrasse 29
45326 Essen, Germany
lempken@iem.uni-due.de
Tran van Trung
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Ellernstrasse 29
45326 Essen, Germany
trung@iem.uni-due.de

Spyros. S. Magliveras *
Department of Mathematical Sciences
Center
for Cryptology and Information Security
Florida Atlantic University
Boca Raton, FL 33431, U.S.A
spyros@fau.unl.edu
Wandi Wei*
Department of Mathematical Sciences Center
for Cryptology and Information Security Florida Atlantic University
Boca Raton, FL 33431, U.S.A
wei@brain.math.fau.edu

November 29, 2005

Abstract

We present a new approach to designing public-key cryptosystems, based on covers and logarithmic signatures of nonabelian finite groups. Initially, we describe a generic version of the system for a large class of groups. We then propose a class of 2 -groups for which we are able to prove the security of the system under conceivable attacks. The proofs provide lower bounds of the workload needed by an adversary to launch such an attack, and provide strong security evidence for the system. The system is scallable, and the proposed underlying group, represented as a matrix group, affords significant space and time efficiency.

Key words. Public-key cryptosystem, logarithmic signature, uniform cover, trapdoor one-way function, Suzuki 2-group.

1 Introduction

At the writing of this paper, only a few asymmetric cryptographic primitives remain unbroken. Most of these are based on the perceived intractibility of certain mathematical problems in very large, finite, abelian groups, in particular representations. Prominent hard problems are

[^0]i) the problem of factoring large integers, ii) the Discrete Logarithm Problem (DLP) in particular representations of large cyclic groups, and iii) finding a short basis for a given integral lattice \mathcal{L} of large dimension. Unfortunately, in view of P. Shor's quantum algorithms for integer factoring, and solving the DLP [9], the known public-key systems will be insecure when quantum computers become practical. A recent report edited by P. Nguyen [8] identifies these and other problems facing the field of information security in the future.

The theoretical foundations for many of the current asymmetric cryptographic primitives lie in the intractability of mathematical problems closer to number theory than group theory. Number theory deals mostly with abelian groups.

In this paper we introduce a new approach to designing trapdoor one-way functions based on non-abelian finite groups. Our primary motivation emerges from the observation that the security of public key cryptosystem $M S T_{2}$ depends on the choice of a secret epimorphism. In particular, the public key in $M S T_{2}$ consists of a mesh for a group \mathcal{G} and its image under a certain epimorphism f from \mathcal{G} onto a group \mathcal{H}, where f is the secret key [7]. Recommended usage is that f be chosen as conjugation by an element $g \in \mathcal{G}$. Indeed, in certain classes of groups, public knowledge of the mesh and its image under g reveals some information about g. This could be used to mount an attack against $M S T_{2}$ for these classes of groups [7].

Our assumption is that random covers in finite groups induce one-way functions. Beginning with a random cover α for a subset of \mathcal{G}, we obtain a two-sided transform $\tilde{\alpha}$ of α. Then, using $\tilde{\alpha}$ and a secret, tame logarithmic signature β for the center of \mathcal{G}, we construct γ which covers a second subset of \mathcal{G}. We make α and γ public, and keep secret the trap-door in the system β, as well as the information which produces $\tilde{\alpha}$ from α.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic signatures, covers for finite groups and their induced mappings. For more details the reader is refered to [6], [7]. The group theoretic notation used is standard and may be found in [3] .

Let \mathcal{G} be a finite abstract group, we define the width of \mathcal{G} to be the positive integer $w=\lceil\log |\mathcal{G}|\rceil$. Denote by $\mathcal{G}^{[\mathbb{Z}]}$ the collection of all finite sequences of elements in \mathcal{G} and view the elements of $\mathcal{G}^{[\mathbb{Z}]}$ as single-row matrices with entries in \mathcal{G}. Let $X=\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ and $Y=\left[y_{1}, y_{2}, \ldots, y_{s}\right]$ be two elements in $\mathcal{G}^{[\mathbb{Z}]}$. We define

$$
X \cdot Y=\left[x_{1} y_{1}, x_{1} y_{2}, \ldots, x_{1} y_{s}, x_{2} y_{1}, x_{2} y_{2}, \ldots, x_{2} y_{s}, \ldots, x_{r} y_{1}, x_{r} y_{2}, \ldots, x_{r} y_{s}\right]
$$

Instead of $X \cdot Y$ we will also write $X \otimes Y$ as ordinary tensor product of matrices, or for short we will write $X Y$. If $X=\left[x_{1}, \ldots, x_{r}\right] \in \mathcal{G}^{[\mathbb{Z}]}$, we denote by \bar{X} the element $\sum_{i=1}^{r} x_{i}$ in the group $\operatorname{ring} \mathbb{Z} \mathcal{G}$.

Suppose that $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ is a sequence of $A_{i} \in \mathcal{G}^{[\mathbb{Z}]}$, such that $\sum_{i=1}^{s}\left|A_{i}\right|$ is bounded by a polynomial in $\log |\mathcal{G}|$. Let

$$
\begin{equation*}
\overline{A_{1}} \cdot \overline{A_{2}} \cdots \overline{A_{s}}=\sum_{g \in \mathcal{G}} a_{g} g, \quad a_{g} \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

Let \mathcal{S} be a subset of \mathcal{G}, then we say that α is
(i) a cover for $\mathcal{G}($ or $\mathcal{S})$, if $a_{g}>0$ for all $g \in \mathcal{G}(g \in \mathcal{S})$.
(ii) a logarithmic signature for $\mathcal{G}(\mathcal{S})$, if $a_{g}=1$ for every $g \in \mathcal{G}(g \in \mathcal{S})$.

Let α be a cover. Define $\lambda_{\text {min }}:=\min \left\{a_{g}: g \in \mathcal{G}\right\}, \lambda_{\max }:=\max \left\{a_{g}: g \in \mathcal{G}\right\}$ and $\lambda:=\lambda_{\max } / \lambda_{\min }$. The ratio λ measures the degree of uniformity of α. We say that α is a uniform cover if $\lambda \approx 1$. In particular, a logarithmic signature is a uniform cover.

Note that if $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ is a logarithmic signature for \mathcal{G}, then, each element $y \in \mathcal{G}$ can be expressed uniquely as a product of the form

$$
\begin{equation*}
y=q_{1} \cdot q_{2} \ldots q_{s-1} \cdot q_{s} \tag{2.2}
\end{equation*}
$$

for $q_{i} \in A_{i}$.
Of course, for general covers the factorization in (2.2) is not unique, and the problem of finding a factorization for a given $y \in \mathcal{G}$ is in general intractable.

Let $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ be a cover for \mathcal{G} with $r_{i}=\left|A_{i}\right|$, then the A_{i} are called the blocks of α and the vector $\left(r_{1}, \ldots, r_{s}\right)$ of block lengths r_{i} the type of α. We define the length of α to be the integer $\ell=\sum_{i=1}^{s} r_{i}$. A uniform cover $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ of type (r, r, \ldots, r) is called an $[s, r]-m e s h$.

We say that α is nontrivial if $s \geq 2$ and $r_{i} \geq 2$ for $1 \leq i \leq s$; otherwise α is said to be trivial. A cover α is called tame if the factorization in equation (2.2) can be achieved in time polynomial in the width w of \mathcal{G}, it is called wild if it is not tame. In particular, a logarithmic signature is called supertame if the factorization can be achieved in time $O\left(w^{2}\right)$. The existence of supertame logarithmic signatures is discussed in [6]. We denote by $\mathcal{C}(\mathcal{G})$ and $\Lambda(\mathcal{G})$ the respective collections of covers and logarithmic signatures.

For finite groups there are instances $(\mathcal{G}, \alpha), \quad \alpha \in \mathcal{C}(\mathcal{G})$, where the factorization in (2.2) is intractable: For example, let \mathcal{G} be the multiplicative group of a finite field \mathbb{F}_{q} for which the discrete logarithm problem is known to be hard. Let f be a generator of \mathcal{G}, and s the least positive integer such that $2^{s-1} \leq|\mathcal{G}|<2^{s}$. If $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$, where $A_{i}=\left[1, f^{2^{i-1}}\right]$, then $\alpha \in \mathcal{C}(\mathcal{G})$, and factorization with respect to α amounts to solving the discrete logarithm problem (DLP) in \mathcal{G}.

Suppose that $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ is a cover. Let $g_{0}, g_{1}, \ldots, g_{s} \in \mathcal{G}$, and consider $\beta=\left[B_{1}, B_{2}, \ldots, B_{s}\right]$ with $B_{i}=g_{i-1}^{-1} A_{i} g_{i}$. We say that β is a two sided transform of α by $g_{0}, g_{1}, \ldots, g_{s}$; in the special case, where $g_{0}=1$ and $g_{s}=1, \beta$ is called a sandwich of α. Notice that β is a cover for \mathcal{G}.

Let $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ be a cover of type $\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ for \mathcal{G} with $A_{i}=\left[a_{i, 1}, a_{i, 2}, \ldots, a_{i, r_{i}}\right]$ and let $m=\prod_{i=1}^{s} r_{i}$. Let $m_{1}=1$ and $m_{i}=\prod_{j=1}^{i-1} r_{i}$ for $i=2, \ldots, s$. Let τ denote the canonical bijection from $Z_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{s}}$ on \mathbb{Z}_{m}; i.e.

$$
\begin{gathered}
\tau: \quad \mathbb{Z}_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{s}} \rightarrow \mathbb{Z}_{m} \\
\tau\left(j_{1}, j_{2}, \ldots, j_{s}\right):=\sum_{i=1}^{s} j_{i} m_{i}
\end{gathered}
$$

Using τ we now define the surjective mapping $\breve{\alpha}$ induced by α.

$$
\begin{aligned}
& \breve{\alpha}: \quad \mathbb{Z}_{m} \rightarrow \mathcal{G} \\
& \breve{\alpha}(x):= \\
& a_{1, j_{1}} \cdot a_{2, j_{2}} \cdots a_{s, j_{s}},
\end{aligned}
$$

where $\left(j_{1}, j_{2}, \ldots, j_{s}\right)=\tau^{-1}(x)$. Since τ and τ^{-1} are efficiently computable, the mapping $\breve{\alpha}(x)$ is efficiently computable.

Conversely, given a cover α and an element $y \in \mathcal{G}$, to determine any element $x \in \breve{\alpha}^{-1}(y)$ it is necessary to obtain any one of the possible factorizations of type (2.2) for y and determine indices $j_{1}, j_{2}, \ldots, j_{s}$ such that $y=a_{1, j_{1}} \cdot a_{2, j_{2}} \cdots a_{s, j_{s}}$. This is possible if and only if α is tame. Once a vector $\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ has been determined, $\breve{\alpha}^{-1}(y)=\tau\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ can be computed efficiently.

Two covers (logarithmic signatures) α, β are said to be equivalent if $\breve{\alpha}=\breve{\beta}$.

3 Description of a new public key cryptosystem

We presently describe a new cryptosystem, called $M S T_{3}$. Let \mathcal{G} be a finite non-abelian group with nontrivial center \mathcal{Z} such that \mathcal{G} does not split over \mathcal{Z}. Assume further that \mathcal{Z} is sufficiently large so that exhaustive search problems are computationally not feasible in \mathcal{Z}.

The cryptographic hypothesis, which forms the security basis of our cryptosystem, is that if $\alpha=$ $\left[A_{1}, A_{2}, \ldots, A_{s}\right]:=\left(a_{i j}\right)$ is a random cover for a "large" subset \mathcal{S} of \mathcal{G}, then finding a factorization

$$
g=a_{1 j_{1}} a_{2 j_{2}} \ldots a_{s j_{s}}
$$

for an arbitrary element $g \in \mathcal{S}$ with respect to α is, in general, an intractable problem.

3.1 Setup

Alice chooses a large group \mathcal{G} as described above and generates
(1) a tame logarithmic signature $\beta=\left[B_{1}, B_{2}, \ldots, B_{s}\right]:=\left(b_{i j}\right)$ of type $\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ for \mathcal{Z}.
(2) a random cover $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]:=\left(a_{i j}\right)$ of the same type as β for a certain subset \mathcal{J} of \mathcal{G} such that $A_{1}, \ldots, A_{s} \subseteq \mathcal{G} \backslash \mathcal{Z}$.

She then chooses $t_{0}, t_{1} \ldots, t_{s} \in \mathcal{G} \backslash \mathcal{Z}$ and computes:
(3) $\tilde{\alpha}=\left[\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{s}\right]$, where $\tilde{A}_{i}=t_{i-1}^{-1} A_{i} t_{i}$ for $i=1, \ldots, s$.
(4) $\gamma:=\left(h_{i j}\right)=\left(b_{i j} \tilde{a}_{i j}\right)$

Alice publishes her public key $\left(\alpha=\left(a_{i j}\right), \gamma=\left(h_{i j}\right)\right)$, keeping $\left(\beta=\left(b_{i j}\right),\left(t_{0}, \ldots, t_{s}\right)\right)$ as her private key.

3.2 Encryption

If Bob wants to send a message $x \in \mathbb{Z}_{|\mathcal{Z}|}$ to Alice, he
(i) computes $y_{1}=\breve{\alpha}(x)$ and $y_{2}=\breve{\gamma}(x)$
(ii) sends $y=\left(y_{1}, y_{2}\right)$ to Alice.

3.3 Decryption

Now, Alice knows y_{2}, figures that :

$$
\begin{aligned}
y_{2} & =\breve{\gamma}(x) \\
& =b_{1 j_{1}} \tilde{a}_{1 j_{1}} b_{2 j_{2}} \tilde{a}_{2 j_{2}} \ldots b_{s j_{j}} \tilde{a}_{s j_{s}} \\
& =b_{1 j_{1}} t_{0}^{-1} a_{1 j_{1}} t_{1} \ldots b_{s j_{s}} t_{s-1}^{-1} a_{s j_{s}} t_{s} \\
& =b_{1 j_{1}} b_{2 j_{2}} \ldots b_{s j_{s}} t_{0}^{-1} a_{1 j_{1}} a_{2 j_{2}} \ldots a_{s j_{s}} t_{s} \\
& =\breve{\beta}(x) \cdot t_{0}^{-1} \breve{\alpha}(x) t_{s} \\
& =\breve{\beta}(x) \cdot t_{0}^{-1} y_{1} t_{s},
\end{aligned}
$$

and can therefore compute :

$$
\breve{\beta}(x)=y_{2} t_{s}^{-1} y_{1}^{-1} t_{0} .
$$

Alice then recovers x from $\breve{\beta}(x)$ using $\breve{\beta}^{-1}$ which is efficiently computable as β is tame.

Remark 3.4

1. Let $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ be a cover for \mathcal{J}, satisfying Setup condition (2) so that

$$
\overline{A_{1}} \cdot \overline{A_{2}} \cdots \overline{A_{s}}=\sum_{h \in \mathcal{J}} a_{h} h,
$$

and let $\lambda=\frac{1}{|\mathcal{J}|} \sum_{h \in \mathcal{J}} a_{h}$. The assumption that Alice is able to construct a cover α of the same type as β implies that $\lambda|\mathcal{J}| \leq|\mathcal{Z}|$.

Note also that for the construction of $M S T_{3}$ the cryptographic hypothesis that $\breve{\alpha}$ and $\breve{\gamma}$ are one-way functions is still necessary, in general. However, we will show below that the hypothesis can be removed if $\lambda_{\text {min }}:=\min \left\{a_{h}: h \in \mathcal{J}\right\}$ is sufficiently large.
2. The assumption that \mathcal{G} does not split over \mathcal{Z} implies that there is no subgroup $\mathcal{H}<\mathcal{G}$ with $\mathcal{H} \cap \mathcal{Z}=1$ such that $\mathcal{G}=\mathcal{Z} \cdot \mathcal{H}(=\mathcal{Z} \times \mathcal{H}$, since \mathcal{Z} is the center of $\mathcal{G})$. Without this assumption the system may be vulnerable to attacks based on permutation group algorithms. In particular, if our group is a direct product $\mathcal{G}=\mathcal{Z} \times \mathcal{H}$ and can be represented as a permutation group of reasonable degree (e.g. ≤ 100000), then using an appropriate strong generating set for \mathcal{G} and Schreier trees one could extract $b_{i j}$ from $h_{i j}$. The system will consequently be weakened.

The encryption as described is a deterministic encryption: the same plaintext will give the same ciphertext by each encryption. However, a randomized encryption can be realized as follows :

To encrypt a message $x \in \mathbb{Z}_{|\mathcal{Z}|}$ Bob chooses a random number $R \in \mathbb{Z}_{|\mathcal{Z}|}, R \neq 0$, and
(i) computes $y_{0}=x+R$, where the computation is carried out in $\mathbb{Z}_{|\mathcal{Z}|}$
(ii) computes $y_{1}=\breve{\alpha}(R)$ and $y_{2}=\breve{\gamma}(R)$
(iii) sends $y=\left(y_{0}, y_{1}, y_{2}\right)$ to Alice.

To decrypt $y=\left(y_{0}, y_{1}, y_{2}\right)$ Alice first recovers R from $\left(y_{1}, y_{2}\right)$ as described above and then obtains $x=y_{0}-R$.

4 Realization of MST_{3} and its security

In this section we propose a class of groups for the generic version of our public-key cryptosystem $M S T_{3}$. Here, the crucial point is the fact that for arbitrary members \mathcal{G} in this family we can show the security and strength of the system.

Let $q=2^{m}$ with $3 \leq m \in \mathbb{N}$ and let θ be a nontrivial automorphism of odd order of the field \mathbb{F}_{q}. Then, m can not be a power of 2 .

Now let \mathcal{G} be the Suzuki 2-group $A(m, \theta)$ of order q^{2} as given in [2] (see also [4]). So in particular, \mathcal{G} is a special 2-group of exponent 4 such that both $\mathcal{Z}:=\mathbb{Z}(\mathcal{G})=\Phi(\mathcal{G})=\mathcal{G}^{\prime}=\Omega_{1}(\mathcal{G})$ and $\mathcal{G} / \mathcal{Z}$ are elementary abelian of order q. Moreover, $o(g)=4$ for every $g \in \mathcal{G} \backslash \mathcal{Z}$.

In section 4.2 we represent \mathcal{G} as a subgroup of $G L(3, q)$. To discuss the security of this realization of $M S T_{3}$ it suffices to know that \mathcal{G} is a special 2-group with properties as described above.

Here we choose the elements for the cover α according to the following:
Property DC: For every $A_{i}, i=1, \ldots, s$, elements of A_{i} are selected so that if $x \neq y, x, y \in A_{i}$, then $x y^{-1}$ is an element of order 4 in \mathcal{G}.

This means that distinct elements x and y of A_{i} are not in the same coset of \mathcal{Z}.

4.1 Security of given realization of $M S T_{3}$

We can envisage the following types of attacks against $M S T_{3}$.

4.1.1 Attack 1

The first attack attempts to extract information about $\left(t_{0}, \ldots, t_{s}\right)$ and $\beta=\left(b_{i j}\right)$ from the public knowledge of $\alpha=\left(a_{i j}\right)$ and $\gamma=\left(h_{i j}\right)$. However, it is sufficient for the attacker to obtain a logarithmic signature β^{\prime} equivalent to β, i.e. any convenient β^{\prime} which is a sandwich transform of
β. Thus, without loss of generality, by applying a sandwich transformation, we can assume that the first element of each block, except for the last block of β, is the identity $1 \in \mathcal{G}$. The attacker considers the general equations :

$$
\begin{equation*}
h_{i, j}=b_{i, j} t_{i-1}^{-1} a_{i, j} t_{i}, \quad i=1, \ldots, s, \quad 1 \leq j \leq r_{i} \tag{4.3}
\end{equation*}
$$

where the $h_{i, j}$ and $a_{i, j}$ are public.
Since $b_{1,1}=1$, equation 4.3 yields :

$$
\begin{equation*}
h_{1,1}=t_{0}^{-1} a_{1,1} t_{1} \tag{4.4}
\end{equation*}
$$

Since $t_{0} \in \mathcal{G} \backslash \mathcal{Z}$, the attacker has $q^{2}-q$ choices for t_{0}, and for each such choice, t_{1} is completely determined from equation 4.4. Further, having selected a t_{0}, since $a_{1 j}$ and $h_{1 j}$ are known, the attacker can compute $b_{1 j}$ from $h_{1 j}=b_{1 j} t_{0}^{-1} a_{1 j} t_{1}$, for each $j \in\left\{2, \ldots, r_{1}\right\}$. Thus, the choice of t_{0} determines uniquely all further elements of block B_{1}.

By analogy, knowledge of t_{1}, and the fact that $b_{2,1}=1$, determine t_{2} and all elements $b_{2, j}$ for $j \in\left\{2, \ldots, r_{2}\right\}$. Iteratively, having chosen t_{0}, the attacker can compute t_{1}, \ldots, t_{s-1} and all possible $b_{i, j}$, for $i \in\{1, \ldots, s-1\}$, and corresponding $j \in\left\{1, \ldots, r_{i}\right\}$.

Now, the first element $b_{s, 1}$ of the last block B_{s} is in \mathcal{Z}, but otherwise indeterminate. There are q choices for $b_{s, 1}$ and for each such choice, t_{s} and all elements of the last block are completely determined. Thus, there are $q^{2}-q$ choices for t_{0} and q choices for $b_{s, 1}$, i.e. $(q-1) q^{2}$ choices for $\left(t_{0}, b_{s, 1}\right)$ each of which completely determines $\left(t_{0}, \ldots, t_{s} ; \beta\right)$.

If t_{0} is replaced by $t_{0} z$, where $z \in \mathcal{Z}$, while keeping the public keys α and γ, as well as the private β invariant, it is easy to verify from (4.3) that $\left(t_{0}, t_{1}, \ldots, t_{s}\right)$ is replaced by $\left(t_{0} z, t_{1} z, \ldots, t_{s} z\right)$. Thus, from the point of view of the attacker, the choices for $\left(t_{0}, \ldots, t_{s}\right)$ fall into equivalence classes, each of size $|\mathcal{Z}|=q$. More precisely, it suffices to choose one t_{0} from each distinct coset of \mathcal{G} modulo \mathcal{Z}. It follows that an attacker actually has

$$
\frac{(q-1) q^{2}}{q}=q(q-1)
$$

possible choices for the controlling pair $\left(t_{0}, b_{s, 1}\right)$. Since q is assumed to be very large, this type of attack is not feasible.

4.1.2 Attack 2

The goal of the following chosen plaintext attack is to determine β and $\left(t_{0}, t_{s}\right)$ from equations:

$$
\begin{equation*}
y_{2}=\breve{\beta}(x) t_{0}^{-1} y_{1} t_{s}, \quad x \in \mathbb{Z}_{|\mathcal{Z}|} \tag{4.5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\breve{\beta}(x)=y_{2} t_{s}^{-1} y_{1}^{-1} t_{0} \tag{4.6}
\end{equation*}
$$

where $y_{1}=\breve{\alpha}(x)$ and $y_{2}=\breve{\gamma}(x)$.
The attacker attempts to compute enough values $\breve{\beta}\left(x_{i}\right)$ in order to reconstruct β using Proposition 4.1. in [7]: The proposition states that if \mathcal{G} is a permutation group of degree N and if β is of known
type $\left(r_{1}, \ldots, r_{s}\right)$, then one can reconstruct a logarithmic signature equivalent to β by using certain $1-s+\sum_{i=1}^{s} r_{i}$ properly selected values $\breve{\beta}\left(x_{i}\right)$. We note incidentally that the conclusion of Proposition 4.1 remains valid for abstract groups, i.e. the condition that \mathcal{G} be a permutation group is not used or needed in the proof of the proposition.

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a collection of plaintexts, chosen by the attacker, from which information about β is to be derived. We have:

$$
\begin{equation*}
\breve{\beta}\left(x_{i}\right)=y_{i, 2} t_{s}^{-1} y_{i, 1}^{-1} t_{0}, \quad i=1, \ldots, n \tag{4.7}
\end{equation*}
$$

where $y_{i, 1}:=\breve{\alpha}\left(x_{i}\right)$ and $y_{i, 2}:=\breve{\gamma}\left(x_{i}\right)$.
The attacker tries to compute or guess the n distinct values $\breve{\beta}\left(x_{i}\right)$ in order to reconstruct β. Note that in each of the equations (4.7) only $y_{i, 1}$ and $y_{i, 2}$ are known. First of all we have :

$$
y_{i, 2}\left(y_{i, 1}^{-1}\right)^{t_{s}} t_{s}^{-1} t_{0}=y_{i, 2} y_{i, 1}^{-1} y_{i, 1}\left(y_{i, 1}^{-1}\right)^{t_{s}} t_{s}^{-1} t_{0} \in \mathcal{Z}
$$

Since $y_{i, 1}\left(y_{i, 1}^{-1}\right)^{t_{s}} \in \mathcal{G}^{\prime}=\mathcal{Z}$, it follows that :

$$
t_{0}^{-1} t_{s} \in y_{i, 2} y_{i, 1}^{-1} \mathcal{Z}
$$

or equivalently,

$$
\begin{equation*}
t_{s} \in t_{0} y_{i, 2} y_{i, 1}^{-1} \mathcal{Z}, \quad \text { for } i=1, \ldots, n \tag{4.8}
\end{equation*}
$$

Suppose that

$$
y_{i, 2} y_{i, 1}^{-1} \mathcal{Z} \neq y_{j, 2} y_{j, 1}^{-1} \mathcal{Z}, \quad \text { for a pair } i \neq j
$$

Then,

$$
t_{s} \in t_{0} y_{i, 2} y_{i, 1}^{-1} \mathcal{Z} \cap t_{0} y_{j, 2} y_{j, 1}^{-1} \mathcal{Z}=\emptyset
$$

which is a contradiction to the fact that there is at least one pair $\left(t_{0}, t_{s}\right)$ satisfying (4.7). Hence, we have :

$$
y_{i, 2} y_{i, 1}^{-1} \in y_{1,2} y_{1,1}^{-1} \mathcal{Z}, \quad \text { for } i=1, \ldots, n
$$

Set $w:=y_{1,2} y_{1,1}^{-1}$.
Since $t_{0} \in \mathcal{G} \backslash \mathcal{Z}$, there are $q^{2}-q$ possibilities for t_{0}. If t_{0} is chosen, then $t_{s} \in t_{0} w \mathcal{Z}$, i.e. there are q possibilities for t_{s}. Thus we have $q(q-1) q$ "admissible" pairs $\left(t_{0}, t_{s}\right)$.

Further, it is clear that if $\left(t_{0}, t_{s}\right)$ satisfies equations (4.8), so does the pair $\left(t_{0} z, t_{s} z\right)$ with $z \in \mathcal{Z}$; in other words, for each solution pair $\left(t_{0}, t_{s}\right)$ of (4.7) one has q associated solutions $\left(t_{0} z, t_{s} z\right)$ with $z \in \mathcal{Z}$.

Suppose now that $\left(\tau_{0}, \tau_{s}\right)$ and $\left(t_{0}, t_{s}\right)$ satisfy :

$$
y_{i, 2} t_{s}^{-1} y_{i, 1}^{-1} t_{0}=z=\breve{\beta}\left(x_{i}\right)=y_{i, 2} \tau_{s}^{-1} y_{i, 1}^{-1} \tau_{0} .
$$

Thus, we have :

$$
\tau_{0}^{-1} y_{i, 1} \tau_{s}=t_{0}^{-1} y_{i, 1} t_{s}, \quad \text { for } \quad i=1, \ldots, n
$$

Therefore,

$$
\begin{equation*}
\tau_{0}^{-1} y_{i, 1} y_{j, 1}^{-1} \tau_{0}=t_{0}^{-1} y_{i, 1} y_{j, 1}^{-1} t_{0}, \quad \forall i, j=1, \ldots, n \tag{4.9}
\end{equation*}
$$

If there are enough pairs (i, j) such that the different elements $y_{i, 1} y_{j, 1}^{-1}$ generate \mathcal{G} (at least m such elements are needed), then τ_{0} and t_{0} induce the same inner automorphism of \mathcal{G}, i.e.

$$
\begin{equation*}
\tau_{0} \equiv t_{0} \bmod \mathcal{Z} \tag{4.10}
\end{equation*}
$$

Hence, $\tau_{0}=t_{0} z$ and then $\tau_{s}=t_{s} z$ for some $z \in \mathcal{Z}$. Thus, the number admissible pairs $\left(t_{0}, t_{s}\right)$ yielding distinct $\breve{\beta}\left(x_{i}\right)$ is

$$
\frac{q^{2}(q-1)}{q}=q(q-1)
$$

The result of this analysis shows that the attacker has to construct at least $q(q-1)$ solution tuples $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$. Of these possible solutions only one is correct. In other words the success probability of the attacker is $\frac{1}{q(q-1)}$. Interestingly the number $q(q-1)$ of solution tuples for $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$ is exactly the number of non-associated solutions $\left(t_{0}, t_{s}\right)$ for (4.7).

Remark 4.1 1. If the attacker does not have enough equations of type (4.9), to conclude (4.10), then there are more possibilities for $\left(t_{0}, t_{s}\right)$ and therefore more possible solution tuples $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$. Since only one of those possible solutions is the correct one, the probability of a successful attack is even smaller than $\frac{1}{q(q-1)}$.
2. According to Proposition 4.1 [7] one needs $1-s+\sum_{i=1}^{s} r_{i}$ diffferent values $\breve{\beta}(x)$ to reconstruct a logarithmic signature equivalent to β. Now, β is a logarithmic signature of type $\left(r_{1}, \ldots, r_{s}\right)$ for \mathcal{Z} and $|\mathcal{Z}|=q=2^{m}$. Let $r_{i}=2^{e_{i}}$ for $i=1, \ldots, s$. Then

$$
2^{m}=2^{e_{1}} \ldots 2^{e_{s}}, \quad \text { and } \quad \sum_{i=1}^{s} e_{i}=m
$$

Now,

$$
\begin{aligned}
\sum_{i=1}^{s} r_{i}-s+1 & =\sum_{i=1}^{s}\left(2^{e_{i}}-1\right)+1 \\
& >\sum_{i=1}^{s} e_{i} \\
& =m
\end{aligned}
$$

This inequality validates a statement mentioned in the analysis of Attack 2.

4.2 Space and time complexity for computing with \mathcal{G}

In this section we discuss space and time requirements when computing with $\mathcal{G}=A(m, \theta)$. As before, let $q=2^{m}$, where $m \geq 3$ is not a power of 2 and let θ be a nontrivial odd-order automorphism of the field \mathbb{F}_{q}. According to [2] or [4] the group \mathcal{G} can be described as a subgroup of $G L(3, q)$ as follows.

Let $a, b \in \mathbb{F}_{q}$ and define

$$
S(a, b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & a^{\theta} & 1
\end{array}\right)
$$

Then

$$
\mathcal{G}=\left\{S(a, b) \mid a, b \in \mathbb{F}_{q}\right\}
$$

and

$$
\mathcal{Z}:=\mathbb{Z}(\mathcal{G})=\Phi(\mathcal{G})=\mathcal{G}^{\prime}=\Omega_{1}(\mathcal{G})=\left\{S(0, b) \mid b \in \mathbb{F}_{q}\right\} .
$$

Thus, \mathcal{G} is a 2-group of exponent 4, class 2 and order q^{2} with $|\mathcal{Z}|=|\mathcal{G} / \mathcal{Z}|=q$. It is then easily verified that the multiplication of two elements in \mathcal{G} is given by the rule:

$$
\begin{equation*}
S\left(a_{1}, b_{1}\right) S\left(a_{2}, b_{2}\right)=S\left(a_{1}+a_{2}, b_{1}+b_{2}+a_{1}^{\theta} a_{2}\right) \tag{4.11}
\end{equation*}
$$

We could store the group elements $S(a, b)$ as pairs (a, b), but this would require that we compute some a^{θ} each time we compute a product of group elements. In turn, each computation a^{θ} requires $O(m)$ multiplications in \mathbb{F}_{q}. It is therefore more time efficient to store the group elements as triples $\left(a, b, a^{\theta}\right)$. Thus, the product $S\left(a_{1}, b_{1}\right) \cdot S\left(a_{2}, b_{2}\right)$ is identified with the triple

$$
\left(a_{1}+a_{2}, b_{1}+b_{2}+a_{1}^{\theta} a_{2}, a_{1}^{\theta}+a_{2}^{\theta}\right)
$$

and computation of the product requires just a single multiplication and four additions in \mathbb{F}_{q}.
The reduced storage requirement for group elements and the highly efficient operation in the 2 -group \mathcal{G} are significant positive factors for the realization of the cryptosystem with underlying group $\mathcal{G}=A(m, \theta)$.

Remark 4.2 It has been shown in [2] that the groups $A(m, \theta)$ and $A(m, \phi)$ are isomorphic if and only if $\phi=\theta^{ \pm 1}$.

4.3 $M S T_{3}$ without the cryptographic hypothesis for α

One striking fact emerges when comparing $M S T_{3}$ with $M S T_{2}$. This fact lies in our cryptographic hypothesis that "randomly generated covers for large finite groups induce one-way functions".

For $M S T_{2}$ the cryptographic hypothesis is fundamental. In other words, $M S T_{2}$ cannot be built without the hypothesis. However, for MST_{3}, if the parameters are chosen appropriately, the cryptographic hypothesis may be dropped without impairing the security of the system.

The value $|\mathcal{Z}| /|\mathcal{J}|$ can be viewed as the average number of representations for each element of \mathcal{J} with respect to cover α. This implies that any $y \in \mathcal{J}$ will have, on average, $|\mathcal{Z}| /|\mathcal{J}|$ preimages in $\mathbb{Z}_{|\mathcal{Z}|}$ with respect to $\breve{\alpha}: \mathbb{Z}_{|\mathcal{Z}|} \longrightarrow \mathcal{J}$. When the cryptographic hypothesis for α is removed, MST $_{3}$ remains secure if $|\mathcal{Z}| /|\mathcal{J}|$ is large. For, if $\breve{\alpha}$ is not a one-way function, i.e. for any given $y \in \mathcal{J}$ finding a $z \in \mathbb{Z}_{|\mathcal{Z}|}$ such that $\breve{\alpha}(z)=y$ is computationally feasible, then using an oracle Ω that outputs a $z \in \mathbb{Z}_{|\mathcal{Z}|}$ for a given input $y \in \mathcal{J}$ such that $\breve{\alpha}(z)=y$, will break $M S T_{3}$, after $|\mathcal{Z}| / 2|\mathcal{J}|$ queries on average.

Assume that $x \in \mathbb{Z}_{|\mathcal{Z}|}$ is a cleartext and $y_{1}:=\breve{\alpha}(x)$. Now, if $|\mathcal{Z}| \geq 2|\mathcal{J}|^{2}$, then the oracle Ω needs at least $|\mathcal{J}|$ queries for input y_{1} in order to find x with a probability $\geq 1 / 2$. As \mathcal{J} is large, any computation with time complexity $O(|\mathcal{J}|)$ is intractable, and the condition $|\mathcal{Z}| \geq 2|\mathcal{J}|^{2}$ simply means that the cryptographic hypothesis for α need not be made. This fact strengthens the flexibility and security of MST_{3}.

5 Conclusions

We have presented a new approach to designing a public-key cryptosystem based on covers and logarithmic signatures of nonabelian finite groups in a particular class. As a realization of the generic version of the system a class of special 2-groups is proposed, which allows us to carry out a detailed analysis showing the strength of the system. We obtain lower bounds on the work effort for two types of attacks against the system. The results show, as desired, that the cryptosystem is secure against these attacks if the order of the chosen 2-group is sufficiently large. Further, when the underlying 2-group is presented as a matrix group, it has an efficient representation, permitting a minimal storage space for its elements, and even more significantly a shortest possible time for group element mutiplications.

Acknowledgements

The third author wishes to express his thanks to the Department of Mathematical Sciences and to the Center for Cryptology and Information Security, Florida Atlantic University, U.S.A., for their hospitality he enjoyed while carrying out parts of this research.

References

[1] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information Theory, 31(1985), 469-472.
[2] G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), pp. 79-96.
[3] B. Huppert Endliche Gruppen I Springer-Verlag Berlin Heidelberg New York 1967
[4] B. Huppert and N. Blackburn, Finite Groups II Springer-Verlag Berlin Heidelberg New York 1982.
[5] S. S. Magliveras, A cryptosystem from logarithmic signatures of finite groups, In Proceedings of the 29'th Midwest Symposium on Circuits and Systems, Elsevier Publishing Company, (1986), pp. 972-975.
[6] S. S. Magliveras and N. D. Memon, The Algebraic Properties of Cryptosystem PGM, J. of Cryptology, 5 (1992), pp. 167-183.
[7] S. S. Magliveras, D. R. Stinson and Tran van Trung, New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups, J. Cryptology, 15 (2002), 285-297.
[8] P. Nguyen, Editor, New Trends in Cryptology, European project "STORK - Strategic Roadmap for Crypto" - IST-2002-38273. http://www.di.ens.fr/ pnguyen/pub.html\#Ng03
[9] Peter Shor, Polynomial time algorithms for prime factorization and discrete logarithms on quantum computers. SIAM Journal on Computing, 26(5): 1484-1509, 1997.

[^0]: *This work was partially supported by a Federal Earmark grant for Research in Secure Telecommunication Networks (2004-05)

