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Abstract

We present a new approach to designing public-key cryptosystems, based on covers and
logarithmic signatures of nonabelian finite groups. Initially, we describe a generic version of
the system for a large class of groups. We then propose a class of 2-groups for which we are
able to prove the security of the system under conceivable attacks. The proofs provide lower
bounds of the workload needed by an adversary to launch such an attack, and provide strong
security evidence for the system. The system is scallable, and the proposed underlying group,
represented as a matrix group, affords significant space and time efficiency.

Key words. Public-key cryptosystem, logarithmic signature, uniform cover, trapdoor one-way
function, Suzuki 2-group.

1 Introduction

At the writing of this paper, only a few asymmetric cryptographic primitives remain unbroken.
Most of these are based on the perceived intractibility of certain mathematical problems in very
large, finite, abelian groups, in particular representations. Prominent hard problems are
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i) the problem of factoring large integers, ii) the Discrete Logarithm Problem (DLP) in particular
representations of large cyclic groups, and iii) finding a short basis for a given integral lattice L
of large dimension. Unfortunately, in view of P. Shor’s quantum algorithms for integer factoring,
and solving the DLP [9], the known public-key systems will be insecure when quantum computers
become practical. A recent report edited by P. Nguyen [8] identifies these and other problems facing
the field of information security in the future.

The theoretical foundations for many of the current asymmetric cryptographic primitives lie in
the intractability of mathematical problems closer to number theory than group theory. Number
theory deals mostly with abelian groups.

In this paper we introduce a new approach to designing trapdoor one-way functions based on
non-abelian finite groups. Our primary motivation emerges from the observation that the security
of public key cryptosystem MST2 depends on the choice of a secret epimorphism. In particular,
the public key in MST2 consists of a mesh for a group G and its image under a certain epimorphism
f from G onto a group H, where f is the secret key [7]. Recommended usage is that f be chosen
as conjugation by an element g ∈ G. Indeed, in certain classes of groups, public knowledge of the
mesh and its image under g reveals some information about g. This could be used to mount an
attack against MST2 for these classes of groups [7].

Our assumption is that random covers in finite groups induce one-way functions. Beginning with
a random cover α for a subset of G, we obtain a two-sided transform α̃ of α. Then, using α̃ and
a secret, tame logarithmic signature β for the center of G, we construct γ which covers a second
subset of G. We make α and γ public, and keep secret the trap-door in the system β, as well as
the information which produces α̃ from α.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic
signatures, covers for finite groups and their induced mappings. For more details the reader is
refered to [6], [7]. The group theoretic notation used is standard and may be found in [3] .

Let G be a finite abstract group, we define the width of G to be the positive integer w = dlog |G|e.

Denote by G[Z] the collection of all finite sequences of elements in G and view the elements of G [Z]

as single-row matrices with entries in G. Let X = [x1, x2, . . . , xr] and Y = [y1, y2, . . . , ys] be two

elements in G [Z]. We define

X · Y = [x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . , x2ys, . . . , xry1, xry2, . . . , xrys]

Instead of X · Y we will also write X ⊗ Y as ordinary tensor product of matrices, or for short we

will write XY . If X = [x1, . . . , xr] ∈ G [Z], we denote by X the element
∑r

i=1 xi in the group
ring ZG.

Suppose that α = [A1, A2, . . . , As] is a sequence of Ai ∈ G [Z], such that
∑s

i=1 |Ai| is bounded by
a polynomial in log |G|. Let

A1 · A2 · · ·As =
∑

g∈G

agg , ag ∈ Z (2.1)
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Let S be a subset of G, then we say that α is

(i) a cover for G (or S), if ag > 0 for all g ∈ G (g ∈ S).

(ii) a logarithmic signature for G (S), if ag = 1 for every g ∈ G (g ∈ S).

Let α be a cover. Define λmin := min {ag : g ∈ G}, λmax := max {ag : g ∈ G} and λ := λmax/λmin.
The ratio λ measures the degree of uniformity of α. We say that α is a uniform cover if λ ≈ 1. In
particular, a logarithmic signature is a uniform cover.

Note that if α = [A1, . . . , As] is a logarithmic signature for G, then, each element y ∈ G can be
expressed uniquely as a product of the form

y = q1 · q2 . . . qs−1 · qs (2.2)

for qi ∈ Ai.

Of course, for general covers the factorization in (2.2) is not unique, and the problem of finding
a factorization for a given y ∈ G is in general intractable.

Let α = [A1, . . . , As] be a cover for G with ri = |Ai|, then the Ai are called the blocks of α and
the vector (r1, . . . , rs) of block lengths ri the type of α. We define the length of α to be the integer
` =

∑s
i=1 ri. A uniform cover α = [A1, . . . , As] of type (r, r, . . . , r) is called an [s, r] − mesh.

We say that α is nontrivial if s ≥ 2 and ri ≥ 2 for 1 ≤ i ≤ s; otherwise α is said to be trivial.
A cover α is called tame if the factorization in equation (2.2) can be achieved in time polynomial
in the width w of G, it is called wild if it is not tame. In particular, a logarithmic signature is
called supertame if the factorization can be achieved in time O(w2). The existence of supertame
logarithmic signatures is discussed in [6]. We denote by C(G) and Λ(G) the respective collections
of covers and logarithmic signatures.

For finite groups there are instances (G, α), α ∈ C(G), where the factorization in (2.2) is in-
tractable: For example, let G be the multiplicative group of a finite field Fq for which the discrete
logarithm problem is known to be hard. Let f be a generator of G, and s the least positive integer
such that 2s−1 ≤ |G| < 2s. If α = [A1, A2, . . . , As], where Ai = [1, f2i−1

], then α ∈ C(G), and
factorization with respect to α amounts to solving the discrete logarithm problem (DLP) in G.

Suppose that α = [A1, A2, . . . , As] is a cover. Let g0, g1, . . . , gs ∈ G, and consider β = [B1, B2, . . . , Bs]
with Bi = g−1

i−1Aigi. We say that β is a two sided transform of α by g0, g1, . . . , gs; in the special
case, where g0 = 1 and gs = 1, β is called a sandwich of α. Notice that β is a cover for G.

Let α = [A1, A2, . . . , As] be a cover of type (r1, r2, . . . , rs) for G with Ai = [ai,1, ai,2, . . . , ai,ri
]

and let m =
∏s

i=1 ri. Let m1 = 1 and mi =
∏i−1

j=1 ri for i = 2, . . . , s. Let τ denote the canonical
bijection from Zr1

⊕ Zr2
⊕ · · · ⊕ Zrs

on Zm; i.e.

τ : Zr1
⊕ Zr2

⊕ · · · ⊕ Zrs
→ Zm

τ(j1, j2, . . . , js) :=

s
∑

i=1

jimi.
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Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → G

ᾰ(x) := a1,j1 · a2,j2 · · · as,js
,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the mapping ᾰ(x) is
efficiently computable.

Conversely, given a cover α and an element y ∈ G, to determine any element x ∈ ᾰ−1(y) it is
necessary to obtain any one of the possible factorizations of type (2.2) for y and determine indices
j1, j2, . . . , js such that y = a1,j1 · a2,j2 · · · as,js

. This is possible if and only if α is tame. Once a
vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js) can be computed efficiently.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆.

3 Description of a new public key cryptosystem

We presently describe a new cryptosystem, called MST3. Let G be a finite non-abelian group with
nontrivial center Z such that G does not split over Z. Assume further that Z is sufficiently large
so that exhaustive search problems are computationally not feasible in Z.

The cryptographic hypothesis, which forms the security basis of our cryptosystem, is that if α =
[A1, A2, . . . , As] := (aij) is a random cover for a “large” subset S of G, then finding a factorization

g = a1j1a2j2 . . . asjs

for an arbitrary element g ∈ S with respect to α is, in general, an intractable problem.

3.1 Setup

Alice chooses a large group G as described above and generates

(1) a tame logarithmic signature β = [B1, B2, . . . , Bs] := (bij) of type (r1, r2, . . . , rs) for Z.

(2) a random cover α = [A1, A2, . . . , As] := (aij) of the same type as β for a certain subset J of
G such that A1, . . . , As ⊆ G \ Z.

She then chooses t0, t1 . . . , ts ∈ G \ Z and computes:

(3) α̃ = [Ã1, Ã2, . . . , Ãs], where Ãi = t−1
i−1 Ai ti for i = 1, . . . , s.

(4) γ := (hij) = (bij ãij)

Alice publishes her public key (α = (aij), γ = (hij)), keeping (β = (bij), (t0, . . . , ts)) as her
private key.
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3.2 Encryption

If Bob wants to send a message x ∈ Z|Z | to Alice, he

(i) computes y1 = ᾰ(x) and y2 = γ̆(x)

(ii) sends y = (y1, y2) to Alice.

3.3 Decryption

Now, Alice knows y2, figures that :

y2 = γ̆(x)

= b1j1 ã1j1 .b2j2 ã2j2 . . . bsjs
ãsjs

= b1j1t
−1
0 a1j1t1 . . . bsjs

t−1
s−1asjs

ts

= b1j1b2j2 . . . bsjs
t−1
0 a1j1a2j2 . . . asjs

ts

= β̆(x) . t−1
0 ᾰ(x)ts

= β̆(x) . t−1
0 y1ts,

and can therefore compute :
β̆(x) = y2t

−1
s y−1

1 t0.

Alice then recovers x from β̆(x) using β̆−1 which is efficiently computable as β is tame.

Remark 3.4

1. Let α = [A1, . . . , As] be a cover for J , satisfying Setup condition (2) so that

A1 · A2 · · ·As =
∑

h∈J

ahh,

and let λ = 1
|J |

∑

h∈J ah. The assumption that Alice is able to construct a cover α of the same

type as β implies that λ|J | ≤ |Z|.

Note also that for the construction of MST3 the cryptographic hypothesis that ᾰ and γ̆ are
one-way functions is still necessary, in general. However, we will show below that the hypothesis
can be removed if λmin := min {ah : h ∈ J } is sufficiently large.

2. The assumption that G does not split over Z implies that there is no subgroup H < G with
H∩Z = 1 such that G = Z ·H(= Z ×H, since Z is the center of G) . Without this assumption the
system may be vulnerable to attacks based on permutation group algorithms. In particular, if our
group is a direct product G = Z ×H and can be represented as a permutation group of reasonable
degree (e.g. ≤ 100000), then using an appropriate strong generating set for G and Schreier trees
one could extract bij from hij . The system will consequently be weakened.
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The encryption as described is a deterministic encryption: the same plaintext will give the same
ciphertext by each encryption. However, a randomized encryption can be realized as follows :

To encrypt a message x ∈ Z|Z | Bob chooses a random number R ∈ Z|Z |, R 6= 0, and

(i) computes y0 = x + R, where the computation is carried out in Z|Z |

(ii) computes y1 = ᾰ(R) and y2 = γ̆(R)

(iii) sends y = (y0, y1, y2) to Alice.

To decrypt y = (y0, y1, y2) Alice first recovers R from (y1, y2) as described above and then obtains
x = y0 − R.

4 Realization of MST3 and its security

In this section we propose a class of groups for the generic version of our public-key cryptosystem
MST3. Here, the crucial point is the fact that for arbitrary members G in this family we can show
the security and strength of the system.

Let q = 2m with 3 ≤ m ∈ N and let θ be a nontrivial automorphism of odd order of the field Fq.
Then, m can not be a power of 2.

Now let G be the Suzuki 2-group A(m, θ) of order q2 as given in [2] (see also [4]). So in particular,
G is a special 2-group of exponent 4 such that both Z := Z(G) = Φ(G) = G ′ = Ω1(G) and G/Z are
elementary abelian of order q. Moreover, o(g) = 4 for every g ∈ G \ Z.

In section 4.2 we represent G as a subgroup of GL(3, q). To discuss the security of this realization
of MST3 it suffices to know that G is a special 2-group with properties as described above.

Here we choose the elements for the cover α according to the following:

Property DC: For every Ai, i = 1, . . . , s, elements of Ai are selected so that if x 6= y, x, y ∈ Ai,

then xy−1 is an element of order 4 in G.

This means that distinct elements x and y of Ai are not in the same coset of Z.

4.1 Security of given realization of MST3

We can envisage the following types of attacks against MST3.

4.1.1 Attack 1

The first attack attempts to extract information about (t0, . . . , ts) and β = (bij) from the public
knowledge of α = (aij) and γ = (hij). However, it is sufficient for the attacker to obtain a
logarithmic signature β ′ equivalent to β, i.e. any convenient β ′ which is a sandwich transform of
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β. Thus, without loss of generality, by applying a sandwich transformation, we can assume that
the first element of each block, except for the last block of β, is the identity 1 ∈ G. The attacker
considers the general equations :

hi,j = bi,jt
−1
i−1ai,jti, i = 1, . . . , s, 1 ≤ j ≤ ri (4.3)

where the hi,j and ai,j are public.

Since b1,1 = 1, equation 4.3 yields :
h1,1 = t−1

0 a1,1t1. (4.4)

Since t0 ∈ G \ Z, the attacker has q2 − q choices for t0, and for each such choice, t1 is completely
determined from equation 4.4. Further, having selected a t0, since a1j and h1j are known, the
attacker can compute b1j from h1j = b1jt

−1
0 a1jt1, for each j ∈ {2, . . . , r1}. Thus, the choice of t0

determines uniquely all further elements of block B1.

By analogy, knowledge of t1, and the fact that b2,1 = 1, determine t2 and all elements b2,j for
j ∈ {2, . . . , r2}. Iteratively, having chosen t0, the attacker can compute t1, . . . , ts−1 and all possible
bi,j, for i ∈ {1, . . . , s − 1}, and corresponding j ∈ {1, . . . , ri}.

Now, the first element bs,1 of the last block Bs is in Z, but otherwise indeterminate. There
are q choices for bs,1 and for each such choice, ts and all elements of the last block are completely
determined. Thus, there are q2 − q choices for t0 and q choices for bs,1, i.e. (q − 1)q2 choices for
(t0, bs,1) each of which completely determines (t0, . . . , ts;β).

If t0 is replaced by t0z, where z ∈ Z , while keeping the public keys α and γ, as well as the private
β invariant, it is easy to verify from (4.3) that (t0, t1, . . . , ts) is replaced by (t0z, t1z, . . . , tsz). Thus,
from the point of view of the attacker, the choices for (t0, . . . , ts) fall into equivalence classes, each
of size |Z| = q. More precisely, it suffices to choose one t0 from each distinct coset of G modulo Z.
It follows that an attacker actually has

(q − 1)q2

q
= q(q − 1)

possible choices for the controlling pair (t0, bs,1). Since q is assumed to be very large, this type of
attack is not feasible.

4.1.2 Attack 2

The goal of the following chosen plaintext attack is to determine β and (t0, ts) from equations:

y2 = β̆(x)t−1
0 y1ts , x ∈ Z|Z | (4.5)

or equivalently,
β̆(x) = y2t

−1
s y−1

1 t0 , (4.6)

where y1 = ᾰ(x) and y2 = γ̆(x).

The attacker attempts to compute enough values β̆(xi) in order to reconstruct β using Proposition
4.1. in [7]: The proposition states that if G is a permutation group of degree N and if β is of known
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type (r1, . . . , rs), then one can reconstruct a logarithmic signature equivalent to β by using certain
1−s+

∑s
i=1 ri properly selected values β̆(xi). We note incidentally that the conclusion of Proposition

4.1 remains valid for abstract groups, i.e. the condition that G be a permutation group is not used
or needed in the proof of the proposition.

Let {x1, . . . , xn} be a collection of plaintexts, chosen by the attacker, from which information
about β is to be derived. We have:

β̆(xi) = yi,2 t−1
s y−1

i,1 t0, i = 1, . . . , n, (4.7)

where yi,1 := ᾰ(xi) and yi,2 := γ̆(xi).

The attacker tries to compute or guess the n distinct values β̆(xi) in order to reconstruct β. Note
that in each of the equations (4.7) only yi,1 and yi,2 are known. First of all we have :

yi,2 (y−1
i,1 ) ts t−1

s t0 = yi,2 y−1
i,1 yi,1(y−1

i,1 ) ts t−1
s t0 ∈ Z .

Since yi,1 (y−1
i,1 ) ts ∈ G ′ = Z, it follows that :

t−1
0 ts ∈ yi,2 y−1

i,1 Z,

or equivalently ,
ts ∈ t0 yi,2 y−1

i,1 Z, for i = 1, . . . , n. (4.8)

Suppose that
yi,2 y−1

i,1 Z 6= yj,2 y−1
j,1Z, for a pair i 6= j.

Then,
ts ∈ t0 yi,2 y−1

i,1 Z ∩ t0 yj,2 y−1
j,1Z = ∅,

which is a contradiction to the fact that there is at least one pair (t0, ts) satisfying (4.7). Hence,
we have :

yi,2 y−1
i,1 ∈ y1,2 y−1

1,1Z, for i = 1, . . . , n.

Set w := y1,2 y−1
1,1.

Since t0 ∈ G \ Z, there are q2 − q possibilities for t0. If t0 is chosen, then ts ∈ t0wZ , i.e. there
are q possibilities for ts. Thus we have q(q − 1)q “admissible” pairs (t0, ts).

Further, it is clear that if (t0, ts) satisfies equations (4.8), so does the pair (t0z, tsz) with z ∈ Z;
in other words, for each solution pair (t0, ts) of (4.7) one has q associated solutions (t0z, tsz) with
z ∈ Z.

Suppose now that (τ0, τs) and (t0, ts) satisfy :

yi,2 t−1
s y−1

i,1 t0 = z = β̆(xi) = yi,2 τ−1
s y−1

i,1 τ0.

Thus, we have :
τ−1
0 yi,1τs = t−1

0 yi,1ts, for i = 1, . . . , n.

Therefore,

τ−1
0 yi,1 y−1

j,1 τ0 = t−1
0 yi,1 y−1

j,1 t0, ∀ i, j = 1, . . . , n. (4.9)
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If there are enough pairs (i, j) such that the different elements yi,1y
−1
j,1 generate G (at least m such

elements are needed), then τ0 and t0 induce the same inner automorphism of G, i.e.

τ0 ≡ t0 mod Z (4.10)

Hence, τ0 = t0z and then τs = tsz for some z ∈ Z. Thus, the number admissible pairs (t0, ts)
yielding distinct β̆(xi) is

q2(q − 1)

q
= q(q − 1).

The result of this analysis shows that the attacker has to construct at least q(q − 1) solution
tuples (β̆(x1), . . . , β̆(xn)). Of these possible solutions only one is correct. In other words the
success probability of the attacker is 1

q(q−1) . Interestingly the number q(q− 1) of solution tuples for

(β̆(x1), . . . , β̆(xn)) is exactly the number of non-associated solutions (t0, ts) for (4.7).

Remark 4.1 1. If the attacker does not have enough equations of type (4.9), to conclude
(4.10), then there are more possibilities for (t0, ts) and therefore more possible solution tuples
(β̆(x1), . . . , β̆(xn)). Since only one of those possible solutions is the correct one, the probability of
a successful attack is even smaller than 1

q(q−1) .

2. According to Proposition 4.1 [7] one needs 1 − s +
∑s

i=1 ri diffferent values β̆(x) to reconstruct
a logarithmic signature equivalent to β. Now, β is a logarithmic signature of type (r1, . . . , rs) for
Z and |Z| = q = 2m. Let ri = 2ei for i = 1, . . . , s. Then

2m = 2e1 . . . . 2es , and

s
∑

i=1

ei = m.

Now,

s
∑

i=1

ri − s + 1 =

s
∑

i=1

(2ei − 1) + 1

>
s

∑

i=1

ei

= m

This inequality validates a statement mentioned in the analysis of Attack 2.

4.2 Space and time complexity for computing with G

In this section we discuss space and time requirements when computing with G = A(m, θ). As
before, let q = 2m, where m ≥ 3 is not a power of 2 and let θ be a nontrivial odd-order automorphism
of the field Fq . According to [2] or [4] the group G can be described as a subgroup of GL(3, q) as
follows.

Let a, b ∈ Fq and define
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S(a, b) =





1 0 0
a 1 0
b aθ 1





Then
G = {S(a, b) | a, b ∈ Fq}

and
Z := Z(G) = Φ(G) = G ′ = Ω1(G) = {S(0, b) | b ∈ Fq}.

Thus, G is a 2-group of exponent 4, class 2 and order q2 with |Z| = |G/Z| = q. It is then easily
verified that the multiplication of two elements in G is given by the rule:

S(a1, b1)S(a2, b2) = S(a1 + a2 , b1 + b2 + aθ
1a2). (4.11)

We could store the group elements S(a, b) as pairs (a, b), but this would require that we compute
some aθ each time we compute a product of group elements. In turn, each computation aθ requires
O(m) multiplications in Fq . It is therefore more time efficient to store the group elements as
triples (a, b, aθ). Thus, the product S(a1, b1) · S(a2, b2) is identified with the triple

(a1 + a2 , b1 + b2 + aθ
1a2 , aθ

1 + aθ
2)

and computation of the product requires just a single multiplication and four additions in Fq.

The reduced storage requirement for group elements and the highly efficient operation in the
2-group G are significant positive factors for the realization of the cryptosystem with underlying
group G = A(m, θ).

Remark 4.2 It has been shown in [2] that the groups A(m, θ) and A(m,φ) are isomorphic if and
only if φ = θ±1 .

4.3 MST3 without the cryptographic hypothesis for α

One striking fact emerges when comparing MST3 with MST2. This fact lies in our cryptographic
hypothesis that “randomly generated covers for large finite groups induce one-way functions”.

For MST2 the cryptographic hypothesis is fundamental. In other words, MST2 cannot be
built without the hypothesis. However, for MST3, if the parameters are chosen appropriately, the
cryptographic hypothesis may be dropped without impairing the security of the system.

The value |Z|/|J | can be viewed as the average number of representations for each element of J
with respect to cover α. This implies that any y ∈ J will have, on average, |Z|/|J | preimages in
Z|Z | with respect to ᾰ : Z|Z | −→ J . When the cryptographic hypothesis for α is removed, MST3

remains secure if |Z|/|J | is large. For, if ᾰ is not a one-way function, i.e. for any given y ∈ J
finding a z ∈ Z|Z | such that ᾰ(z) = y is computationally feasible, then using an oracle Ω that

outputs a z ∈ Z|Z | for a given input y ∈ J such that ᾰ(z) = y, will break MST3, after |Z|/2|J |
queries on average.
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Assume that x ∈ Z|Z | is a cleartext and y1 := ᾰ(x). Now, if |Z| ≥ 2|J |2, then the oracle

Ω needs at least |J | queries for input y1 in order to find x with a probability ≥ 1/2. As J is
large, any computation with time complexity O(|J |) is intractable, and the condition |Z| ≥ 2|J |2

simply means that the cryptographic hypothesis for α need not be made. This fact strengthens the
flexibility and security of MST3.

5 Conclusions

We have presented a new approach to designing a public-key cryptosystem based on covers and
logarithmic signatures of nonabelian finite groups in a particular class. As a realization of the
generic version of the system a class of special 2-groups is proposed, which allows us to carry out
a detailed analysis showing the strength of the system. We obtain lower bounds on the work effort
for two types of attacks against the system. The results show, as desired, that the cryptosystem is
secure against these attacks if the order of the chosen 2-group is sufficiently large. Further, when
the underlying 2-group is presented as a matrix group, it has an efficient representation, permitting
a minimal storage space for its elements, and even more significantly a shortest possible time for
group element mutiplications.
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