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Abstract. Covers for finite groups, a generalization of logarithmic signatures,
form the basis of the ElGamal-like public-key cryptosystem MST2. A relevant
and open problem about the practical use of covers is the question of how
to generate random covers for groups of large order. In this paper we show
the connection between this problem and the classical occupancy problem.
As a consequence, we can solve the problem of generating random covers for
arbitrarily large finite groups completely. We also present several experimental
computer results about covers and uniform covers for some alternating groups.
These results provide useful hints for generating uniform random covers.

1. Introduction and Preliminaries

Covers for finite groups which have been introduced in [5] are the basis of the
public-key cryptosystem MST2. The cryptosystem MST2, which can be viewed as
a generalization of the ElGamal cryptosystem for non-abelian groups, makes use
of random [r, s]-meshes as its public-keys, where [r, s]-meshes are a special type
of covers. The problem of generating random covers for finite groups is therefore
crucial for the realization of MST2 and for public-key cryptosystems based on
random covers (see [5, 2, 3]). To date, this problem remains unsolved. Our aim is
to show a connection of this problem with the classical occupancy problem. The
connection allows us to derive the probability of deciding whether or not a randomly
generated “object” for a given group is a cover. The problem of generating random
covers for finite groups of arbitrarily large order can therefore be completely solved.
Furthermore, generation of random covers can be done with high efficiency and at
minimum cost.

Let G be a finite group and let X be a subset of G. Let α = [A1, . . . , As] be a
collection of ordered subsets Ai = [ai1, ai2, . . . , airi

] of G. We say that α is a cover

for G (resp. for X) if for each element g ∈ G (resp. g ∈ X) there are elements
aiji

∈ Ai such that

g = a1j1 .a2j2 . . . asjs
.(1.1)

In particular, if equation (1.1) is unique, then α is called a logarithmic signature

for G (resp. for X) [4]. Thus, logarithmic signatures are a special form of covers.
The vector (r1, r2, . . . , rs), where ri = |Ai|, is called the type of α and the value
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` = r1 + · · · + rs is called the length of the cover. For simplicity of discussion we
will consider covers for G.

Let α = [A1, . . . , As] be a cover of type (r1, r2, . . . , rs) for G. Let λg denote the
number of ways for which an element g ∈ G has a representation given in equation
(1.1). Let λmin = min {λg : g ∈ G} and λmax = max {λg : g ∈ G}. The ratio
λ := λmax/λmin ≥ 1 measures the degree of uniformity of α. A cover α is uniform

if λ ≤ 2. We note here that the reason for taking λ ≤ 2 as bound for uniform covers
is that we want to include the case of 1-quasi logarithmic signatures [5], for which
λmin = 1 and λmax = 2. If, however, the value of λmin is large, we shall expect
that the ratio λ would be much smaller than 2, namely close to 1, in the above
definition. A uniform cover of type (r1, . . . , rs) with ri = r for all i = 1, . . . , s is
called an [s, r]-mesh.

2. A bound for random covers

Assume that we are given a collection α = [A1, . . . , As] of random subsets Ai of
a group G. We want to determine the probability, proving the “covering property”
for α. It should be noted that in a real cryptographic application the order of G is
very large, hence a direct checking of the covering property of α by running through
all elements of G is obviously impossible.

In what follows we show that the problem is strictly related to a well known prob-
lem, the classical occupancy problem (see e.g.[1]), and can therefore be completely
solved.

Let n = |G| be the order of G and let α = [A1, . . . , As] be an ordered collection
of random subsets Ai of G, i.e. each element of Ai is chosen with probability 1/n.
Let N = r1 × · · · × rs, where ri = |Ai|. The elements of Ai, i = 1, . . . , s, can be
interpreted as a set of randomly chosen elements from G with replacement. The
set of all elements g ∈ G which can be expressed by equation (1.1) is said to be
created by α. Note that, in general, g can be written in more than one way by
equation (1.1). Thus, as with the elements of α, we may assume that the set of
elements created by α is a random set of elements of G. We assign each of n cells

1, 2, . . . , n to each of the n elements g1, g2, . . . , gn of G. An element gi ∈ G of
the form gi = a1j1 .a2j2 . . . asjs

is interpreted as a ball in cell i. Thus the problem
becomes the problem of a random distribution of N balls (N elements generated
by α) in n cells, where each arrangement has probability n−N . Let Ej1 ,j2,...,jm

be
the event that elements gj1 , gj2 , . . . , gjm

∈ G are not created by α, i.e. Ej1 ,j2,...,jm
is

the event that cells j1, j2, . . . , jm are empty. In this event all N balls are placed in
the remaining n −m cells, and this can be done in (n −m)N different ways. Thus
pj1,j2,...,jm

= (1 − m
n )N is the probability of event Ej1,j2,...,jm

. Set

Tm :=

(

n

m

)(

1 −
m

n

)N

.

The method of inclusion and exlusion shows that the probability that at least one
cell is empty equals

n
∑

i=1

(−1)i−1Ti =

n
∑

i=1

(−1)i−1

(

n

i

)(

1 −
i

n

)N

.
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Let pm(N, n) denote the probability that exactly m cells remain empty. Then
the probability that all elements of G are covered by α (i.e. no cell is empty) is
p0(N, n) and we have

(2.1) p0(N, n) =

n
∑

j=0

(−1)j

(

n

j

)(

1 −
j

n

)N

Consider now pm(N, n). Since m cells can be chosen in
(

n
m

)

ways and since each of
the remaining n−m cells is occupied, the number of patterns of these distributions
is (n − m)Np0(N, n − m). Dividing by nN we obtain pm(N, n). Thus

pm(N, n) =

(

n

m

) n−m
∑

j=0

(−1)j

(

n − m

j

)(

1 −
m + j

n

)N

.

Define µ := ne−N/n. It has been shown (see [1]) that if N , n → ∞ but µ remains
bounded, then

pm(N, n) − e−µ µm

m!
→ 0

for each fixed m. Hence we have

pm(N, n) ≈ e−µ µm

m!

for large n.
In particular,

p0(N, n) ≈ e−µ.

This implies that for any given value 0 < ν < 1 there is an N0 ∈ Z+ such that
for any N ≥ N0 random covers of type (r1, . . . , rs) with N = r1 × · · · × rs can be
generated with probability p0(N, n) ≥ ν. This means that we can choose N so that
1 − p0(N, n) is close to 0.

Thus we have the following theorem.

Theorem 2.1. Let G be a finite group with |G| = n. For any given value 0 < ν < 1
there is an N0 ∈ Z+ such that any collection α = [A1, . . . , As] of random subsets Ai

of G with N = |A1|×· · ·×|As| ≥ N0 is a cover for G with a probability p0(N, n) ≥ ν.

Moreover, for large n we have

p0(N, n) ≈ e−µ, µ = ne−θ,

where θ := N
n .

Experimental results in the next section show that even with moderate values of
n the error of the approximation of p0(N, n) in Theorem 2.1 is small.

3. Experimental results for generating random covers

We present the experimental results with the alternating groups A8, A9 and A10.
For each group G = Ai and for each test we randomly generate 10000 collections
α = [A1, . . . , As] of subsets of G of a certain type (r1, . . . , rs), and then count the
number of elements of G covered by α. We repeat the test for several types of
α. Eventually, we obtain the probabilities that α is a cover. The results show
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that these probabilities are almost identical with those of the theoretical results in
Theorem 2.1.

Each line in the table below presents a test (10000 random collections of α). The
theoretical bounds for the probabilities Pm := pm(N, n) and the corresponding test
results from the experiment, also denoted by Pm are in the second and third column,
respectively. We are mainly interested in P0 given in Theorem 2.1. For instance,
the second line of the table shows that G = A8, s = 8, r1 = · · · = r7 = 5 and
r8 = 4, i.e. ` = r1 + · · · + r8 = 39 and N = r1 × · · · × r8 = 57.4 and θ = N

n = 15.5,

where n = |A8| = 1

2
8! = 20160.

theoretical [%] experimental [%]1

G s ` N θ P0 P1 P2 P3 P0 P1 P2 P3

A8 8 38 56 · 42 12.4 92.0 7.6 0.4 0 90.5 8.6 0.8 0.1
39 57 · 4 15.5 99.6 0.4 0 0 99.6 0.4 0 0
40 58 19.4 100 0 0 0 100 0 0 0
41 6 · 57 23.3 100 0 0 0 100 0 0 0
42 62 · 56 27.9 100 0 0 0 100 0 0 0

A9 9 47 62 · 57 15.5 96.7 3.2 0.1 0 97.0 3.0 0 0
48 63 · 56 18.6 99.8 0.2 0 0 100 0 0 0
49 64 · 55 22.3 100 0 0 0 100 0 0 0
50 65 · 54 26.8 100 0 0 0 100 0 0 0

A10 10 56 66 · 54 16.1 82.7 15.7 1.5 0.1 83.7 14.7 1.6 0
57 67 · 53 19.3 99.2 0.8 0 0 100 0 0 0
58 68 · 52 23.1 100 0 0 0 99.3 0.7 0 0
59 69 · 5 27.8 100 0 0 0 100 0 0 0

4. Uniform random covers

4.1. Random generating covers. The value λ = λmax/λmin ≥ 1 defined in the
introduction measures the degree of uniformity of a cover. Our further experiment
shows that the values of λ decrease and tend to 1 when the lengths ` = r1 + · · ·+rs

of the covers increase, i.e. the uniformity of the covers increases with their lengths
`. We conjecture that this fact is true in general. This would imply that we could
generate random covers with a high degree of uniformity by increasing the lengths.
It is therefore interesting to find a formula expressing the degree of uniformity of
covers with respect to their lengths. The diagram in the following table shows the
degree of uniformity λ as a function of the length ` of the covers for the alternating
group A8. Experiment has been done with 1000 repeats for each length. The
table shows for instance that random generated covers of length ` ≥ 52 for A8 are
uniform.

1Experiment done with 10000 repeats for each type of cover
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General random algorithm for covers of specified length for A8

40 42 44 46 48 50 52 54 56 58 60
1

2

3

4

5

6

7

8

9

length of cover

λ

General Random Algorithm
Uniformity Bound

4.2. Comparison of covers from a random algorithm and a greedy algo-

rithm. As we have seen in the previous experiment, the uniformity of the covers
increases with their lengths. A natural question emerges: for a given length ` can
we construct random covers with higher degree of uniformity than that of random
generating covers? An experiment has been made with a greedy algorithm for the
groups Ai, i = 5, 6, 7, 8. And the results in the table below show that improvements
can indeed be obtained.

• Greedy algorithm

input : Random cover (table[s][r])
output : Improved cover
—————–
FOR i:= 2 TO s STEP 1 DO

FOR j:= 2 TO r STEP 1 DO
bestelm:= Find best from T elements for position [i,j]
table[i][j]:= bestelm

END;
END;

• Find best from T elements for position [i, j] function returns

a) element which maximizes product, if group not covered
b) element with best uniformity product, otherwise
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Greedy algorithm compared to general random for small alternating groups

G s ` N θ λrand λgreedy
2 λgreedy

λrand

A5 5 20 45 17.1 2.66 1.64 0.62
A6 6 27 53 · 43 17.4 4.40 2.40 0.55
A7 7 33 55 · 42 18.6 6.56 3.85 0.53
A8 8 40 58 19.4 8.49 5.25 0.62

s : number of blocks in cover
` : length of cover
N = r1 × · · · × rs

θ = N/n

Finally, we have carried out two further experiments concerning the degree of
uniformity for random covers for A8. These include random covers generated with
elements of specified orders and random covers generated with elements of specified
distance to the identity. In both cases no improvement of the degree of uniformity
has been obtained when compared with the general generated random covers.

References

1. William Feller, An Introduction to Probability Theory and Its Applications. John Wiley &
Sons, vol.1, 1957.

2. M.I. Gonzales Vasco, R. Steinwandt, Obstacles in two public key cryptosystems based on group

factorizations. Tatra Mt. Math. Publ., 25 (2002), 23-37.
3. M.I. Gonzales Vasco, C. Martinez, R. Steinwandt, (2004).Towards a uniform description of

several group based cryptographic primitives. Designs, Codes, and Cryptography, 33 (2004),
215-226.

4. S.S. Magliveras, N.D. Memon, Algebraic properties of cryptosystem PGM. J. of Cryptology,
5 (1992), 167-183.

5. S.S. Magliveras, D.R. Stinson, Tran van Trung, New approaches to designing public key cryp-

tosystems using one-way functions and trap-doors in finite groups. J. of Cryptology, 15 (2002),
285-297.

Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse

29, 45326 Essen, Germany

E-mail address: svaba,trung@iem.uni-due.de

2Experiment done with T = n/10 (tries for each possition in cover) and 1000 repeats for each
cover


