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Abstract

In this paper we investigate simple t-designs having s-resolutions for t ≥
3 and 1 ≤ s < t. The study focuses particularly on recursive construction
methods for these designs. One of the results, viewed as the main theorem,
presents a general and effective method for finding s-resolvable t-designs, and
it also yields statements about large sets of s-designs as by-products. As an
example, we show the construction of a 3-resolvable infinite family of simple
4-designs with parameters 4-(2n + 2, 7, 70(2n − 2)/3), gcd(n, 6) = 1, n ≥ 5.
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1 Introduction

In this paper we are interested in non-trivial simple t-designs which are s-resolvable
with s > 1. Little attention has been given to the topic yet. Most known results on
resolvable t-designs concern the case s = 1. In particular, the (1, 1)-resolvable case,
i.e. the blocks of the design can be partitioned into classes where each class consists
of blocks which partition the points. By constrast, when the investigated designs are
the trivial t-designs, we deal with the question of partitioning the complete k-(v, k, 1)
design into s-designs which are widely known as large sets. In fact, there are a great
deal of results concerning large sets, for example [1, 11, 13, 14, 15, 16, 17, 18, 19,
21, 22, 28]. The great interest in large sets might be due to the celebrated result of
Teirlinck about the existence of non-trivial simple t-designs for arbitrary large t, whose
proof involves large sets, see [21, 22]. The subject of the paper inherently relates to a
recent article of the author [27] in which t-designs having s-resolutions are the basis of
a recursive method for constructing non-trivial simple t-designs. However, since very
little is currently known about s-resolutions for non-trivial t-designs, the applications
of the method as shown in [27] have been necessarily restricted to the trivial ingredient
designs with large sets only. Moreover, to a certain extent the method in [27] is
based on a recursive construction of simple t-designs in [26], also called the basic
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construction. The aim of the present paper primarily concerns recursion methods
for constructions of t-designs having s-resolutions. Among others, we show as the
main theorem that the basic construction indeed gives a general construction for s-
resolvable t-designs. Actually, it may be viewed as an effective and useful tool for
finding designs with resolutions. Interestingly, we obtain statements about large sets
as by-products of the main result. To illustrate the main theorem, we show the
construction of a 3-resolvable infinite family of simple 4-designs with parameters 4-
(2n + 2, 7, 70(2n − 2)/3), gcd(n, 6) = 1, n ≥ 5. The paper is organized as follows.
Section 2 recalls some basic facts about t-designs, and presents the definition and
elementary facts about s-resolutions. Section 3 deals with a brief account of known
infinite families of s-resolvable t-designs for s ≥ 2. Section 4 includes the basic
construction in [26] and presents a proof of the main theorem for constructing s-
resolvable t-designs; the section is closed with statements about large sets, a by-
product of the main result. Section 5 examines further recursive constructions for
s-resolvable t-designs. Section 6 displays an application of the main theorem. The
paper closes in Section 7.

2 Preliminaries

We recall a few basic definitions. A t-design, with parameters denoted by t-(v, k, λ),
is a pair (X,B), where X is a v-set of points and B is a collection of k-subsets of X,
called blocks, having the property that every t-subset of X is a subset of exactly λ
blocks in B. The parameter λ is called the index of the design. A t-design is called
simple if no two blocks are identical, i.e. no block of B is repeated; otherwise, it is
called non-simple (i.e. B is a multiset). It can be shown by simple counting that
a t-(v, k, λ) design is an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
.

Since λs is an integer, necessary conditions for the parameters of a t-design are that(
k−s
t−s

)
divides λ

(
v−s
t−s

)
, for 0 ≤ s ≤ t. For given t, v and k, we denote by λmin(t, k, v), or

λmin for short, the smallest positive integer such that these conditions are satisfied for
all 0 ≤ s ≤ t. By complementing each block in X of a t-(v, k, λ) design, we obtain a
t-(v, v − k, λ∗) design, called the complementary design, with λ∗ = λ

(
v−k
t

)
/
(
k
t

)
, hence

we shall assume that k ≤ v/2. If B is a collection of all k-subsets of X, then (X,B)
is a t-(v, k, λmax) design with λmax =

(
v−t
k−t

)
, and is called the complete design or the

trivial design. Thus the value λmax is the maximum λ of a simple t-(v, k, λ) design.
From a given t-(v, k, λ) design (X,B) we obtain a t-(v, k,

(
v−t
k−t

)
− λ) design (X,B∗),

called the supplementary design of (X,B), where B∗ is the set of all k-subsets of X
which are not a block in B. Let x ∈ X. The (t − 1)-(v − 1, k − 1, λ) design, called
the derived design at the point x, is the design with the point set X \ {x} and the
block set are all blocks B ∈ B containing x with x removed. Finally, the (t − 1)-
(v − 1, k, v−k

k−t+1
λ) design, called the residual design at the point x, with the point set

X \ {x} and the block set are the blocks of B not containing x.
We refer the reader to [4, 10] for more information about designs.

Definition 2.1 A t-(v, k, λ)-design (X,B) is said to be s-resolvable, or to have an
s-resolution, with 0 < s < t, if its block set B can be partitioned into N ≥ 2 classes
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A1, . . . ,AN such that each (X,Ai) is an s-(v, k, δ) design for i = 1, . . . , N. Each Ai is
called an s-resolution class or simply a resolution class. The set of N classes is called
an s-resolution of the design.

To display the full data of s-(v, k, δ) designs in the resolution we also write (s, δ)-
resolution. Thus a (1, 1)-resolution of a t-design, for example, is a partition of its
blocks into classes of 1-(v, k, 1) designs; each class consists of v/k mutually disjoint
blocks which partition the point set and are usually called a parallel class of the
design.

If the complete design k-(v, k, 1) is s-resolvable with N resolution classes, where
each class is an s-(v, k, δ) design, then we say that there exists a large set of size N
of s-designs, and it is denoted by LS[N ](s, k, v), or by LSδ(s, k, v) to emphasize the
value δ.

Following are some simple lemmas about basic properties of s-resolutions for t-
designs. We omit the proofs.

Lemma 2.1 If a t-(v, k, λ) design is s-resolvable with N resolution classes, then

N divides
(v
t)

(k
t)
λ.

Lemma 2.2 If a t-(v, k, λ) design is s-resolvable with N resolution classes, then

1. its (t− 1)-(v − 1, k − 1, λ) derived design and (t− 1)-(v − 1, k, v−k
k−t+1

λ) residual
design are (s− 1)-resolvable with N resolution classes;

2. its t-(v, v − k,
(v−k

t )
(k
t)
λ) complementary design is s-resolvable with N resolution

classes.

The next lemma is trivial but useful.

Lemma 2.3 Suppose that (X,B1) and (X,B2) are two s-resolvable t-designs with
the same block size having N resolution classes each such that B1 ∩B2 = ∅. Then
(X,B1 ∪B2) is an s-resolvable t-design with N resolution classes.

Proof. Let C1, . . . , CN (resp. D1, . . . , DN) be the resolution classes of (X,B1) (resp.
(X,B2 ). Then C1 ∪D1, . . . , CN ∪DN are the resolution classes of (X,B1 ∪B2). 2

3 Some known s-resolvable infinite families of sim-

ple t-designs

In this section we briefly address some infinite families of t-designs which are shown
to have s-resolutions with s ≥ 2. Let G be an s-homogeneous permutation group on
a set X (i.e. G is a permutation group of the set X such that for any two s-subsets
S1 and S2 of X, there exists a g ∈ G such that Sg1 = S2). It is well-known that for
any k-subset K ⊆ X, k ≥ s, the G-orbit of K will form the block set of an s-design
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defined on the point set X. More precisely, let B denote the G-orbit of K and let
|X| = v. Then (X,B) is an s-(v, k, δ) design admitting G as an automorphism group
with

δ =

(
k

s

)
|GS|/|GK |,

where S and K are an s-subset and a k-subset of X and GS and GK are the (setwise)
stabilizer of S and K in G, respectively.

The construction of t-(v, k, λ) designs using the action of an s-homogeneous group
G on a v-set X, where t > s ≥ 2, yields the commonly known examples of s-resolvable
t-designs. Actually, the obtained t-design (X,B) has the block set B as a disjoint
union of G-orbits of k-subsets of X. If B contains more than one G-orbit and all
these G-orbits have the same size, then (X,B) is s-resolvable, and each G-orbit is a
resolution class.

First of all [3] Baker shows that the Steiner quadruple system 3-(4m, 4, 1) con-
structed from an even dimensional affine space over the field of two elements is 2-
resolvable, having 2-(4m, 4, 1) designs as resolution classes. Also, Teirlinck shows for
example that there exist 2-resolvable 3-(2pn + 2, 4, 1) designs with p ∈ {7, 31, 127},
with 2-(2pn + 2, 4, 1) designs as resolution classes, for any positive integer n, [23].

In the following we focus on the case of the projective general linear group G =
PGL(2, q), q = 2n, acting on the projective line X = GF(q) ∪ {∞}. In fact, G acts
sharply 3-transitively on X, and thus |G| = (q + 1)q(q − 1) (in particular, G is 3-
homogeneous and the stabilizer GS is isomorphic to the symmetric group S3, for any
3-subset S of X).

We consider some known infinite families of simple 4-designs with k = 5, 6, 8, 9.

• k = 5. The first example is the family of simple 4-(q+1, 5, 5) designs constructed
by Alltop [2], for every q = 2n, n ≥ 5, n odd. Each 4-design (X,B) in the family
has block set B as a disjoint union of (q − 2)/6 G-orbits of 5-subsets B of X
with stabilizer GB

∼= E4, the elementary 2-group of order 4. It follows that,
each G-orbit of B is a 3-(q + 1, 5, 15) design. Thus (X,B) is 3-resolvable and
has N = (q − 2)/6 resolution classes.

We have checked that all the 4 − (q + 1, k, λ) designs for k = 6, 8, 9, constructed
by Bierbrauer in [6, 7, 8] are 3-resolvable. Following are some examples.

• k = 6. The family of 4-designs (X,B) with parameters 4-(2n + 1, 6, 10),
gcd(n, 6) = 1, and n ≥ 5, in [6], whose blocks are the disjoint union of (q− 2)/6
G-orbits of 6-subsets B of X with stabilizer GB

∼= S3 in G. Each G-orbit of B
is then a 3-(2n + 1, 6, 20) design. And (X,B) is 3-resolvable with N = (q− 2)/6
resolution classes.

In [8] it is shown that there is a family of 4-designs (X,B1) with parameters
4-(2n + 1, 6, 60) whose blocks are the disjoint union of (q − 2)/6 G-orbits of
6-subsets B of X with stabilizer GB = 1. Each of these G-orbits is a 3-(2n +
1, 6, 120) design. So (X,B1) is 3-resolvable with N = (q − 2)/6 resolution
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classes. Moreover, it holds that B ∩B1 = ∅. By Lemma 2.3, B ∪B1 forms a
3-resolvable 4-design with parameters 4-(2n+1, 6, 70). The number of resolution
classes remains unchanged withN = (q−2)/6 and each class is a 3-(2n+1, 6, 140)
design.

• k = 9. The family of 4-designs (X,B) with parameters 4-(2n+1, 9, 84), gcd(n, 6) =
1, and n ≥ 5, in [7], whose blocks are the disjoint union of (q − 2)/6 G-orbits
of 9-subsets B of X with stabilizer GB

∼= S3 in G. Each G-orbit of B forms a
3-(2n + 1, 9, 84) design. And again (X,B) is 3-resolvable with N = (q − 2)/6
resolution classes.

• k = 8. The family of 4-designs (X,B) with parameters 4-(2n+1, 8, 35), gcd(n, 6) =
1, and n ≥ 5, in [8], whose blocks are the disjoint union of (q − 2)/6 G-orbits
of 8-subsets B of X with stabilizer GB

∼= E8, the elementary abelian 2-group
of order 8, in G. Each G-orbit of B forms a 3-(2n + 1, 8, 42) design. (X,B) is
3-resolvable with N = (q − 2)/6 resolution classes.

Similarly, when the projective special linear groups PSL(2, q) are used to construct
t-designs, t ≥ 4, it is likely that it would yield s-resolvable t-designs with s = 2 or 3.
As examples, it is shown in [12] that there are 3-resolvable 4-(48, 5, λ) designs for
λ = 8, 12, 16, 20, constructed with PSL(2, 47). In [5] Betten, Laue, Molodtsov and
Wassermann have constructed 5-(84, 6, 1) designs whose blocks are unions of long
block orbits of PSL(2, 83), (i.e. orbits of length |PSL(2, 83)|) and showed that there
are 3 non-isomorphic such 5-(84, 6, 1) designs. Thus these designs are 3-resolvable
with 18 resolution classes and each class is a 3-(84, 6, 60) design.

4 The main theorem on construction of s-resolvable

t-designs

We include a summary of the basic construction as described in [26] in the following
theorem. This is necessary for the proof of the main theorem.

Theorem 4.1 (Basic construction) Let v, k, t be integers with v > k > t ≥ 2.
Let X be a v-set and let X = X1 ∪ X2 be a partition of X with |X1| = v1 and
|X2| = v2. Let Di = (X1,B

(i)) be the complete i-(v1, i, 1) design for i = 0, . . . , t and

let Di = (X1,B
(i)) be a simple t-(v1, i, λ

(i)
t ) design for i = t + 1, . . . , k. Similarly,

let D̄i = (X2, B̄
(i)) be the complete i-(v2, i, 1) design for i = 0, . . . , t, and let D̄i =

(X2, B̄
(i)) be a simple t-(v2, i, λ̄

(i)
t ) design for i = t+ 1, . . . , k. Define

B = B(0,k) × [u0] ∪B(1,k−1) × [u1] ∪ · · · ∪B(k−1,1) × [uk−1] ∪B(k,0) × [uk],

where
B(i,k−i) = {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.
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Assume that

L0,t = L1,t−1 = L2,t−2 = · · · = Lt,0 := Λ, (1)

for a positive integer Λ, where

Lr,t−r =
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
t−r , (2)

r = 0, . . . , t, and ui ∈ {0, 1}, for i = 0, . . . , k. Then (X,B) is a simple t-(v, k,Λ)
design.

Some explanations of the symbols in the theorem need to be included.

• Two degenerate cases for designs occur when either k = t = 0 or v = k.

– The case k = t = 0 gives an “empty” design, denoted by ∅; however note
that the number of blocks of the empty design is 1.

– The case v = k gives a degenerate k-design having just one block consisting
of all v points.

• The notation X × [u], where X is a finite set and u ∈ {0, 1}, has the following
meaning. X×[0] is the empty set ∅, and X×[1] = X. In particular, B(i,k−i)×[ui]
indicates that either it is an empty set ∅ (when ui = 0) or the set B(i,k−i) itself
(when ui = 1). The case ui = 0 means that the pair (Di, D̄k−i) is not involved
in the construction.

• Any t-subset T of X is denoted by T(r,t−r) where |T∩X1| = r and |T∩X2| = t−r,
for r = 0, . . . , t. And Lr,t−r is the number of blocks in B containing T(r,t−r).

We should mention that Theorem 1 in [25] is a special case of the basic construc-
tion, in particular, the easiest case with v1 = 1 and v2 = v has widely been used to
generate new designs from two specific known designs.

We are now in a position to prove the main theorem.

Theorem 4.2 Let s t, k, v be positive integers with v > k > t > s ≥ 1. Let N be
a fixed integer. Assume that, for i = 0, 1, . . . , k, each pair (B(i), B̄(k−i)) of the basic
construction has the property that either B(i) or B̄(k−i) has an s-resolution with N
resolution classes. Then any t-(v, k,Λ) resulting design of the basic construction is
s-resolvable with N resolution classes.

Proof. The main idea of the proof is that if each pair (B(i), B̄(k−i)) of the basic
construction has the required property, then we can contruct an s-resolution with N
classes for any resulting design. We keep the notation used in the basic construction.
Assume that B(i) is s-resolvable with N resolution classes. Then we write the t-
(v1, i, λ

(i)
t ) design (X1,B

(i)) as the union of N mutually disjoint s-(v1, i, δ
(i)
s ) designs

(X1,C
(i)
1 ), (X1,C

(i)
2 ), . . . , (X1,C

(i)
N )
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where δ
(i)
s = λ

(i)
s

N
=

(v1−s
t−s )

(i−s
t−s)

λ
(i)
t /N. Similarly, if B̄(k−i) is s-resolvable with N resolution

classes, then we write the t-(v2, k − i, λ̄
(k−i)
t ) design (X2, B̄

(k−i)) as the union of N

mutually disjoint s-(v2, k − i, δ̄(k−i)
s ) designs

(X2, C̄
(k−i)
1 ), (X2, C̄

(k−i)
2 ), . . . , (X2, C̄

(k−i)
N )

with δ̄
(k−i)
s = λ̄

(k−i)
s

N
=

(v2−s
t−s )

(k−i−s
t−s )

λ̄
(k−i)
t /N.

The basic construction states that (X,B) is a t-(v, k,Λ) design, when

L0,t = L1,t−1 = · · · = Lt−1,1 = Lt,0 = Λ

where

B = B(0,k) × [u0] ∪B(1,k−1) × [u1] ∪ · · · ∪B(k−1,1) × [uk−1] ∪B(k,0) × [uk],

and
B(i,k−i) = {B = Bi ∪ B̄k−i | Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Lr,t−r =
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
t−r ,

r = 0, . . . , t, and ui ∈ {0, 1}.
If B(j) is s-resolvable with N classes we write B(j,k−j) = (B(j) ∪ B̄(k−j)) as

B(j,k−j) = (C
(j)
1 ∪ B̄(k−j)) ∪ (C

(j)
2 ∪ B̄(k−j)) ∪ · · · ∪ (C

(j)
N ∪ B̄(k−j)),

whereas if B̄(k−j) is s-resolvable we write

B(j,k−j) = (B(j) ∪ C̄
(k−j)
1 ) ∪ (B(j) ∪ C̄

(k−j)
2 ) ∪ · · · ∪ (B(j) ∪ C̄

(k−j)
N ).

Define
J := {j | j = 0, . . . , k : B(j) is s-resolvable}

J̄ := {j | j = 0, . . . , k : B̄(j) is s-resolvable}
For i = 1, . . . , N define

Bi :=
⋃
j∈J

(C
(j)
i ∪ B̄(k−j))× [uj] ∪

⋃
j∈J̄

(B(k−j) ∪ C̄
(j)
i )× [uk−j].

Since the pairs (j, k − j), j ∈ J and (k − j, j), j ∈ J̄ cover all k + 1 pairs (j, k − j)
exactly once, for j = 0, . . . , k, we have

B = B1 ∪B2 ∪ · · · ∪BN .

We claim that (X,Bi) is an s-(v, k, δs) design with δs = Λs

N
=

(v−s
t−s)

(k−s
t−s)

Λ/N , for

i = 1, . . . , N .

7



In fact, if (X,B) is a t-(v, k,Λ) design, the equalities

L0,t = L1,t−1 = · · · = Lt−1,1 = Lt,0 = Λ

are satisfied. In particular, (X,B) is an s-design with parameters s-(v, k,Λs)=s-

(v, k,
(v−s
t−s)

(k−s
t−s)

Λ). In other words, the equalities

L0,s = L1,s−1 = · · · = Ls−1,1 = Ls,0 = Λs

are satisfied, where

Lr,s−r =
k∑
i=0

ui.λ
(i)
r .λ̄

(k−i)
s−r ,

r = 0, . . . , s. From the assumption that either B(j) or B̄(k−j) is s-resolvable for each
pair (B(j), B̄(k−j)) we may write Lr,s−r as follows

Lr,s−r =
∑
j∈J

ujδ
(j)
r .N.λ̄

(k−j)
s−r +

∑
j∈J̄

uk−jλ
(k−j)
r .δ̄

(j)
s−r.N

= N.(
∑
j∈J

ujδ
(j)
r .λ̄

(k−j)
s−r +

∑
j∈J̄

uk−jλ
(k−j)
r .δ̄

(j)
s−r)

Set
L∗r,s−r :=

∑
j∈J

ujδ
(j)
r .λ̄

(k−j)
s−r +

∑
j∈J̄

uk−jλ
(k−j)
r .δ̄

(j)
s−r.

Then we have

L∗0,s = L∗1,s−1 = · · · = L∗s−1,1 = L∗s,0 = Λs/N

which proves the claim. Finally, since B1, . . . ,BN are mutually disjoint, the t-design
(X,B) is the union of N pairwise disjoint s-designs (X,Bi). This completes the proof
of the theorem. 2

The following corollary presents simple and useful cases of Theorem 4.2.

Corollary 4.3 1. Assume that there exist s-resolvable t-designs with parameters
t-(v, k−1, λ

(k−1)
t ) and t-(v, k, λ

(k)
t ) having the same number of resolution classes,

say N , such that
λ

(k−1)
t−1 − λ(k−1)

t = λ
(k)
t .

Then there exists an s-resolvable t-(v + 1, k, λ
(k−1)
t−1 ) design with N resolution

classes.

2. Assume that there exists an s-resolvable t-(2k+1, k, λt) design with N resolution
classes. Then there exists an s-resolvable t-(2k + 2, k + 1, λt

2k+2−t
k+1−t ) design with

N resolution classes.
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Proof. (1.) is a special case of Theorem 4.2 with |X1| = 1, |X2| = v. (2.) is a special
case of (1.) with v = 2k + 1. 2

We now consider some consequences of the main theorem for large sets. This is
the case when all ingredient designs are the complete designs and s-resolutions are
replaced by large sets. Following are some statements about large sets as by-products
of Theorem 4.2.

Corollary 4.4 If there exist an LS[N ](t, k, v) and an LS[N ](t, k + 1, v), then there
exists an LS[N ](t, k + 1, v + 1).

Proof. Take |X1| = 1, |X2| = v and use the basic construction with complete designs
having t-large sets. 2

Corollary 4.5 Assume that there exist LS[N ](t, i, v) for t < i ≤ k. Then the follow-
ing hold.

(i) For any given 1 ≤ j < k − t there exists an LS[N ](t, t + 1 + h, v + j) for
j ≤ h < k − t.

(ii) If k ≥ 2t+ 1, then there also exists an LS[N ](t, k, 2v)

Proof. (i) Applying Theorem 4.2 recursively by starting with |X1| = 1, |X2| = v.
(ii) Applying Theorem 4.2 with |X1| = |X2| = v. 2

Corollary 4.6 If there exists an LS[N ](t, k, 2k+1), then there exists an LS[N ](t, k+
1, 2k + 2).

Proof. Applying Theorem 4.2 with |X1| = 1 and |X2| = 2k+1 by taking into account
Lemma 2.2. The corollary may also be viewed as Corollary 4.3 (2.) for large sets. 2

We hope that more involved consequences of the main theorem for large sets could
be found.

5 Further recursive constructions of s-resolvable

t-designs

In this section we examine two known constructions for t-designs in the papers [24, 25]
and show that they both can be extended to constructions of s-resolvable t-designs.

Theorem 5.1 Let (X,B) be an s-resolvable t-(v, k, λ) design with N resolution classes
having the property that |B1 ∩ B2| < k − k′ for any two distinct blocks B1, B2 ∈ B,
where k′ > 0 is a fixed integer. If there exists a t-(v − k, k′, λ′) design, then there
exists an s-resolvable t-(v, k + k′,Λ) design with N resolution classes where

Λ = λ
1(
v−t
k−t

) t∑
i=0

(
t

i

)(
v − t

k − t+ i

)
λ′i.
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Proof. First note that if the assumption of s-resolvability would be dropped, the
theorem would become Theorem 5 in [25], in which the construction of t-(v, k+k′,Λ)
design is as follows. For each block B ∈ B let (X \B,B′) be a t-(v− k, k′, λ′) design
on the point set (X \B). Define

B∗B := {B ∪B′ | B′ ∈ B′}

and
B∗ :=

⋃
B∈B

B∗B.

Then (X,B∗) is the constructed t-(v, k + k′,Λ) design.

Now assume that (X,B) is s-resolvable with N resolution classes C1, . . . ,CN , i.e.
(X,Ci) is an s-(v, k, δ) design, i = 1, . . . , N. Define

B∗Ci
=
⋃
B∈Ci

B∗B.

Then (X,B∗Ci
) is an s-(v, k + k′,∆s) design with

∆s = δs
1(
v−s
k−s

) s∑
i=0

(
s

i

)(
v − s

k − s+ i

)
λ′i,

where λ′s = λ′
(v−k−s

t−s )
(k′−s

t−s )
. Since B∗ = B∗C1

∪ · · · ∪B∗CN
and B∗Ci

’s are pairwise disjoint,

the constructed design (X,B∗) is thus s-resolvable. 2

Remark 5.1 Remark that if t > k′ in Theorem 5.1, then each trivial i-(v − k, i, 1)
design for i < t can be viewed as a t-(v − k, i, λ′) design with λ′ = 0. In particular,
Theorem 5.1 remains valid for t > k′.

Theorem 5.2 Assume that there exists an s-resolvable t-(v, k, λ) design with N res-
olution classes such that vλ0(λ0 − λ1) <

(
v
k

)
. Then there exists an s-resolvable t-

(v + 1, k, (v + 1− t)λ) design with N resolution classes.

Proof. Again if the assumption of s-resolvability would be removed, the theorem
would become Theorem A in [24], where the existence of the t-(v+ 1, k, (v+ 1− t)λ)
design is shown as the union of v + 1 mutually disjoint designs. Let (Y,D) denote
the t-(v, k, λ) design. Let X = {x1, . . . , xv+1} be a (v + 1)-set. Let Xi = X \ {xi}
and (Xi,Bi) be a copy of (Y,D) defined on Xi. If the condition of the theorem
is satisfied, then there are v + 1 mutually disjoint Bi. And the block set of the
constructed t-(v + 1, k, (v + 1− t)λ) design (X,B) is defined by B =

⋃v+1
i=1 Bi.

Now by the assumption, (Y,D) is s-resolvable with N resolution classes. As

(Xi,Bi) is a copy of (Y,D), we denote C
(i)
1 , . . . ,C

(i)
N the N resolution classes of (Xi,Bi)

i.e. (Xi,C
(i)
j ) is an s-(v, k, δ) design, j = 1, . . . , N and Bi = C

(i)
1 ∪ · · · ∪ C

(i)
N .

Define
Cj = C

(1)
j ∪ · · · ∪ C

(v+1)
j ,
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for j = 1, . . . , N. Then Cj ∩ Cj′ , for j 6= j′ and we have

B = C1 ∪ · · · ∪ CN .

We show that (X,Cj) is a simple s-(v + 1, k,∆) design with ∆ = (v + 1 − s)δ. Let
S = {xj1 , . . . , xjs} ⊆ X be an s-set. Then S appears in δ blocks of (Xi,Bi) for
i 6= j1, . . . , js. Thus S appears in (v + 1 − s)δ blocks of (X,Cj), i.e. (X,Cj) is an
s-(v+1, k, (v+1−s)δ) design. Hence (X,B) is s-resolvable with N resolution classes.
2

It is worth mentioning that for the sake of simplicity we have presented Theorem
5.2 as it is. Actually, Theorem 5.2 can be stated in a more general form by using the
result of Magliveras and Plambeck in [20].

5.1 An application: A 3-resolvable infinite family of 4-designs
with parameters 4-(2n + 2, 7, 70(2n − 2)/3)

As an application of Theorem 4.2, we construct 3-resolvable 4-designs with parameters
4-(2n + 2, 7, 70(2n − 3)/3). In [9] it is shown that the 4-(2n + 1, 6, 10) design (X,B),
with gcd(n, 6) = 1, n ≥ 5, constructed in [6] has the property that any two distinct
blocks intersect in at most 4 points. Applying Theorem 5.1 to (X,B) by using the
trivial 1-(2n − 5, 1, 1) design as the required t-(v − k, k′, λ′) design, see Remark 5.1,
gives a 4-(2n + 1, 7, 70(2n − 5)/3) design. Now, since the 4-(2n + 1, 6, 10) design is
3-resolvable with N = (2n−2)/6 resolution classes, it follows by Theorem 5.1 that the
4-(2n + 1, 7, 70(2n− 5)/3) design is 3-resolvable with the same number of resolutions.

Further, as shown in the previous section, there exists a 3-resolvable 4-(2n+1, 6, 70)
design, gcd(n, 6) = 1 for n ≥ 5, with N = (2n − 2)/6 resolution classes. We apply
Theorem 4.2 or Corollary 4.3 to these two families as ingredient designs for |X1| = 1
and |X2| = 2n + 1. More precisely, since |X1| = 1, we only have two expressions L0,4

and L1,3, where

L0,4 = λ̄
(7)
4 + λ̄

(6)
4 = 70(2n − 5)/3 + 70 = 70(2n − 2)/3,

L1,3 = λ̄
(6)
3 = 70(2n − 2)/3.

Thus the requirement L0,4 = L1,3 is satisfied and we obtain the following theorem.

Theorem 5.3 For any integer n ≥ 5 with gcd(n, 6) = 1 there exists a 3-resolvable
4-(2n + 2, 7, 70(2n − 2)/3) design with N = (2n − 2)/6 resolution classes.

6 Conclusion

The primary aim of the work is an investigation of recursive constructions for t-designs
having s-resolutions, emphasizing the cases s > 1. A brief account of known infinite
families of s-resolvable t-designs was included, whose existence is essentially based
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on the construction of t-designs with an s-homogeneous group. The main theorem
provides a general and effective tool for constructing designs having resolutions and
particularly yields statements about large sets as by-products. By virtue of the ex-
istence of general recursive constructions for t-designs using resolutions of ingredient
designs, we hope that this topic would attract more attention in the future as it was
the case with large sets in the past.
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