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Abstract

Logarithmic signatures for finite groups are the essential constituent of public key cryptosys-
tems MST1 and MST3. Especially they form the main component of the private key of MST3.
Constructing new classes of logarithmic signatures having features that do not share with the
well-known class of transversal or fused transversal logarithmic signatures, has become a vital
issue regarding the use of MST3. For this purpose Baumeister and de Wiljes recently present
an interesting method of constructing aperiodic logarithmic signatures for abelian groups. In
this paper we introduce the concept of strongly aperiodic logarithmic signatures and show their
constructions for abelian p-groups on the basis of the Baumeister-de Wiljes method.

Keywords. Public-key cryptosystem MST3, aperiodic logarithmic signature, strongly aperi-
odic logarithmic signature, Baumeister-de Wiljes method.

1 Introduction

The public key cryptosystems MST1 [8] and MST3 [5], [12] are developed on the basis of logarithmic
signatures, a kind of factorization of finite groups. The basic idea for building MST3 is to construct
trapdoor one-way functions using random covers for finite non-abelian groups having a large center.
An integrated trapdoor information, which forms the main part of the private key of the scheme,
employs logarithmic signatures of the center. The Suzuki 2-groups have been proposed as the
underlying groups for an instantiation of MST3. The first analysis of the simple version of MST3

[5] due to Magliveras, Svaba, Tran van Trung and Zajac [9] shows that transversal logarithmic
signatures are unfit for use in the scheme. A further investigation of Blackburn, Cid and Mullan
[2] proves that the use of fused transversal logarithmic signatures also makes the simple version
of MST3 insecure. However, for the strengthened version of MST3 [12], it is shown that fused
transversal logarithmic signatures still withstand the powerful Matrix-Permutation attack, see [12].
It is therefore essential to study further classes of logarithmic signatures having features that would
be more suitable for use in public key cryptosystems like MST3.

In a recent paper [1] Baumeister and de Wiljes propose an interesting method for contructing
aperiodic logarithmic signatures for abelian groups, in particular, for abelian 2-groups, that thwart
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the Blackburn-Cid-Mullan attack. It is worthy to mention that transversal or fused transversal
logarithmic signatures have the property of being periodic. In this paper we introduce the concept
of strongly aperiodic logarithmic signatures and present their constructions for abelian p-groups
based on Baumeister-de Wiljes method. Aperiodic and strongly aperiodic logarithmic signatures
provide classes of logarithmic signatures having features befitting the use of MST3. Moreover,
we are convinced that strongly aperiodic logarithmic signatures for abelian groups are also of
theoretical interest in their own right.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic
signatures, covers for finite groups and their induced mappings. For more details the reader is
refered to [7], [8]. The group theoretic notation used is standard and may be found in any textbook.

Let G be a finite abstract group, we define the width of G to be the positive integer w = dlog |G|e.
Let S be a subset of G and let α = [A1, A2, . . . , As] be an ordered collection of ordered subsets
Ai = {ai,1, . . . , ai,ri} of G, such that

∑s
i=1 |Ai| is bounded by a polynomial in log |S|. Then we say

that α is a cover for S, if every product a1,j1 · · · as,js lies in S and if every g ∈ S can be written as

g = a1,j1 · · · as,js (2.1)

with ai,ji ∈ Ai. If, moreover, the expression in (2.1) is unique for every g ∈ S, then α is called a
logarithmic signature for S. We denote by C(S ⊆ G) and Λ(S ⊆ G) the respective collections of
covers and logarithmic signatures for S ⊆ G. When S = G, we simply write C(G) and Λ(G) instead
of C(G ⊆ G) and Λ(G ⊆ G). A cover or a logarithmic signature α = [A1, A2, . . . , As] for a group G
is said to be proper if |Ai| 6= 1 and Ai 6= G, for every i, 1 ≤ i ≤ s. We assume that all covers and
logarithmic signatures are proper. The product a1,j1 · · · as,js in (2.1) is called a factorization of g
with respect to α.

Let α = [A1, . . . , As] be a cover for G with ri = |Ai|, then the Ai are called the blocks of α and
the vector (r1, . . . , rs) of block lengths ri the type of α. We define the length of α to be the integer
`(α) =

∑s
i=1 ri.

Let Γ = {(G`, α`)}`∈N be a family of pairs, indexed by the security parameter `, where the G`
are groups in a common representation, and where α` is a specific cover for G` of length polynomial
in `. We say that Γ is tame if there exists a probabilistic polynomial time algorithm A such that
for each g ∈ G`, A accepts (α`, g) as input, and outputs a factorization of g with respect to α`
(as in equation (2.1) with overwhelming probability of success. We say that Γ is wild if for any
probabilistic polynomial time algorithm A, the probability that A succeeds in factorizing a random
element g of G is negligible. In other words Γ is tame if there exists an algorithm by means of
which the factorization in (2.1) for each instance {(G, α`)} can be achieved in time polynomial in
dlog |G`|e; and Γ is wild if it is not tame. Often we simply say α` is tame or wild.

For finite groups there are instances {(G, α`)}` where the factorization in (2.1) is believed to
be hard: For example, let q be a prime power for which the discrete logarithm problem in the
multiplicative group of a finite field Fq is believed to be hard. Suppose that 2`−1 ≤ q − 1 < 2`,
and let G` be the multiplicative group F∗q just mentioned. Let f be a generator of G`. If α` =
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[A1, A2, . . . , A`], where Ai = [1, f2i−1
], then α` is a cover of G`, and factorization with respect to

α` amounts to solving the discrete logarithm problem (DLP) in G`.

Let α = [A1, A2, . . . , As] be a cover of type (r1, r2, . . . , rs) for S ⊆ G with Ai = [ai,1, ai,2, . . . , ai,ri ]
and let m =

∏s
i=1 ri. Let m1 = 1 and mi =

∏i−1
j=1 rj for i = 2, . . . , s. Let τ denote the canonical

bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on Zm; i.e.

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm

τ(j1, j2, . . . , js) :=
s∑
i=1

jimi.

Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → S
ᾰ(x) := a1,j1 · a2,j2 · · · as,js ,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the mapping ᾰ(x) is
efficiently computable.

Conversely, given a cover α and an element y ∈ S, to determine any element x ∈ ᾰ−1(y) it is
necessary to obtain any one of the possible factorizations of type (2.1) for y and determine indices
j1, j2, . . . , js such that y = a1,j1 · a2,j2 · · · as,js . This is possible if and only if α is tame. Once a
vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js) can be computed efficiently.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆.

It is worth noting that random covers and logarithmic signatures have been used to construct
pseudorandom number generators which are suitable for cryptographic applications [10], [6].

3 The cryptosystem MST3

Let G be a finite non-abelian group with nontrivial center Z such that G does not split over Z.
Assume further that Z is sufficiently large so that exhaustive search problems are computationally
not feasible in Z. We describe the strengthened version of MST3, see [12].

Alice chooses a large group G as described above and generates

(1) a tame logarithmic signature β = [B1, B2, . . . , Bs] := (bij) of type (r1, r2, . . . , rs) for Z.

(2) a random cover α = [A1, A2, . . . , As] := (aij) of the same type as β for a certain subset J of
G such that A1, . . . , As ⊆ G \ Z.

She further selects t0, t1 . . . , ts ∈ G \ Z, a homomorphism f : G −→ Z and computes:

(3) γ = (hi,j), hi,j = t−1
i−1 · ai,j · f(ai,j) · bi,j · ti
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Alice publishes her public key (α, γ), keeping (β, t0, t1 . . . , ts, f) as her private key.

To encrypt a message x ∈ Z Bob chooses a random number R ∈ Z|Z |, R 6= 0, and computes

y1 = ᾰ(R) · x, y2 = γ̆(R) · x = t−1
0 · ᾰ(R) · f(ᾰ(R)) · β̆(R) · ts · x, and sends y = (y1, y2) to Alice.

To decrypt y = (y1, y2) Alice computes β̆(R) = f(ᾰ(R))−1 ·y−1
1 ·t0 ·y2 ·t−1

s = f(y1)−1 ·y−1
1 ·t0 ·y2 ·t−1

s

by using the fact that f(y1) = f(ᾰ(R)), she then computes R from β̆(R) which is efficiently
computable as β is tame. She computes ᾰ(R) and recovers x from y1.

In the description above if we choose f as the trivial homomorphism i.e. f(g) = 1G for all g ∈ G,
we obtain the simple version of the cryptosystem MST3 [5]. The use of nontrivial homomorphism
f considerably strengthens the scheme as shown in [12]. The homomorphism f is used to mask
the secret logarithmic signature β with information computed from cover α. We refer the reader
to [12] and [5] for more detailed information about MST3.

As an instantiation of MST3 it has been suggested that the Suzuki 2-groups [3] might be used
for the underlying groups [5] and [12]. Let q = 2m with 3 ≤ m ∈ N such that the field Fq has a
nontrivial automorphism θ of odd order, i.e. m is not a power of 2. Then a Suzuki 2-group G can
be briefly described as follows.

G := {(a, b) ∈ Fq × Fq | (a1, b1)× (a2, b2) = (a1 + a2 , b1 + b2 + aθ1a2)}

Thus G has order q2 and Z(G) = Φ(G) = G′ = Ω1(G) = {(0, b) | b ∈ Fq}. In particular the center
Z(G) is elementary abelian of order q.

4 Classes and transformations of logarithmic signatures

In this section we briefly discuss classes of logarithmic signatures and basic transformations on
logarithmic signatures for a group G.

Let γ : 1G = G0 < G1 < · · · < Gs = G be a chain of subgroups of G, and let Ai be an
ordered, complete set of right (or left) coset representatives of Gi−1 in Gi. Then [A1, . . . , As]
forms a logarithmic signature for G, called exact transversal logarithmic signature. We denote the
collection of all exact transversal logarithmic signatures for a group G by ET (G). A logarithmic
signature α for a group G is called transversal if α is equivalent to a β ∈ ET (G), otherwise α is called
non-transversal. Further, if none of the blocks of α is a coset of a non-trivial subgroup of G, then
α is called totally non-transversal. We will denote the class of transversal, non-transversal, and
totally non-transversal logarithmic signatures for G by T (G), NT (G), and T NT (G) respectively.

We list some basic transformations on logarithmic signatures. By applying certain transforma-
tions on a logarithmic signature, new logarithmic signatures will be derived. Let α = [A1, . . . , As] ∈
Λ(G).

• Element shuffle: Permute the elements within each block of α.

• Block shuffle: If G is non-abelian, permuting two blocks of α may result in a cover for a
certain subset of G. If G is abelian, then the result of a block shuffle is indeed a logarithmic
signature.
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• Two sided transformation: Let g0, g1, . . . , gs ∈ G. Define a new logarithmic signature β =
[B1, . . . , Bs] by Bi = g−1

i−1Aigi. Then β is called a two sided transform of α. When g0 = gs = 1,
we say that β is a sandwich of α. When g0 = 1, β, is said to be a right translation of α by gs.
If gs = 1, then β is called a left translation of α by g0.

• Fusion: If G is non-abelian, then replacing two consecutive blocks Ai and Ai+1, 1 ≤ i ≤ s− 1
by a single block B = AiAi+1 := {xy | x ∈ Ai, y ∈ Ai+1} will result in a logarithmic signature.
B is called a fused block. If G is abelian, the fusion transformation can be done on any two
blocks of α.

• Automorphism action: If ϕ is an automorphism of G, then β = [B1, . . . , Bs] with Bi = ϕ(Ai),
1 ≤ i ≤ s, is a logarithmic signature for G.

5 Aperiodic logarithmic signatures and Baumeister-de Wiljes con-
struction

Investigating tame aperiodic logarithmic signatures for abelian groups is a problem of theoretical
interest and of practical importance. They present a new class of logarithmic signatures beyond
the well-known classes of transversal and their fused logarithmic signatures which are all periodic.
Regarding cryptosystem MST3 aperiodic logarithmic signatures appear to be especially significant.

Definition 5.1 A non-empty subset X of a group G is called periodic if there exists an element
g ∈ G \ {1G} such that gX = X. Such an element g is called a period of X.

The set of all periods of X will be denoted by P (X), i.e. P (X) = {g ∈ G \ {1G} : gX = X}.

Definition 5.2 A logarithmic signature α = [A1, . . . , As] ∈ Λ(G) is called aperiodic if none of the
blocks Ai is periodic.

We denote the set of all aperiodic logarithmic signatures for G by A(G).

In a recent paper of Baumeister and de Wiljes [1], the authors present an interesting method for
constructing aperiodic signatures for abelian groups. The method is based on the theory in the
book of Szabó [13], and it describes an approach to constructing aperiodic logarithmic signatures
for abelian groups. The method is not an algorithm in the strict sense, since the requirement posed
by the method prohibits quickly its computational feasibility even for groups of moderate order.
However, the basic idea of the method has proved to be useful, since it provides a technique for
searching aperiodic logarithmic signatures for abelian groups. We now describe the Baumeister-de
Wiljes construction.

Baumeister-de Wiljes construction

Let G be a finite abelian group. Let H be a subgroup of G and let T be a transversal of H in G
(i.e. T is a complete set of coset representatives of H in G).
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(i) Let θ = [T1, . . . , Ts] be a logarithmic signature of type (r1, . . . , rs) for T , where Ti =
{ti,1, . . . , ti,ri}.

(ii) Suppose that for each i with 1 ≤ i ≤ s there exists a collection

Li = {Ai,1, . . . , Ai,ri}

of subsets Ai,j of H such that any choice [A1,j1 , . . . , As,js ] with Ai,ji ∈ Li forms a logarithmic
signature for H.

(iii) Then β := [B1, . . . , Bs] defined by Bi = ti,1Ai,1 ∪ . . . ∪ ti,riAi,ri , for 1 ≤ i ≤ s forms a
logarithmic signature of type (`1, . . . , `s) for G, where `i =

∑ri
j=1 |Ai,j |.

For any subsets A,B of a group G we say that B is a translate of A if there is an element g ∈ G
such that gA = B. The translate B is called proper if A 6= B.

Baumeister and de Wiljes give the following characterization of aperiodicity for the constructed
logarithmic signature β.

Proposition 1 Suppose that Ai,j is not a translate of Ai,k for any j, k ∈ {1, . . . , ri}. Then Bi is
periodic if and only if

ri⋂
j=1

P (Ai,j) 6= ∅.

The main idea of Baumeister-de Wiljes construction of aperiodic logarithmic signatures is to find
sets Li satisfying condition (ii).

Example 1 Let G be an elementary abelian 2-group of order 29 generated by g1, g2, . . . , g9. Let
H :=< g1, g2, g3, g4, g5, g6 > and T =< g7, g8, g9 >. Set θ = [T1, T2, T3] with T1 = {1, g7}, T2 =
{1, g8}, T3 = {1, g9}. Define

L1 = { A1,1 = {1, g1, g2, g1g2}, A1,2 = {1, g1g3, g2g4, g1g3g2g4} },

L2 = { A2,1 = {1, g3, g4, g3g4}, A2,2 = {1, g1g2g3, g1g4, g2g3g4} },

L3 = { A3,1 = {1, g5, g6, g5g6}, A3,2 = {1, g1g3g5, g2g4g6, g1g2g3g4g5g6} }.

It can be checked that each of the eight combinations [A1,j1 , A2,j2 , A3,j3 ] with j1, j2, j3 ∈ {1, 2}
forms a logarithmic signature for H. We thus obtain an aperiodic logarithmic signature β =
[B1, B2, B3] of type (8, 8, 8) with

B1 = {1, g1, g2, g1g2, g7, g1g3g7, g2g4g7, g1g3g2g4g7},

B2 = {1, g3, g4, g3g4, g8, g1g2g3g8, g1g4g8, g2g3g4g8},

B3 = {1, g5, g6, g5g6, g9, g1g3g5g9, g2g4g6g9, g1g2g3g4g5g6g9}.

The aperiodicity of β follows from Proposition 1, since Ai,1 ∩Ai,2 = {1} for all i = 1, 2, 3.

An important property of logarithmic signatures constructed by the Baumeister-de Wiljes method
is that they are tame when certain conditions are satisfied, see [1], [4]. The result is given by the
following theorem.
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Theorem 1 Let β := [B1, . . . , Bs] be a logarithmic signature constructed by the Baumeister-de
Wiljes method. Assume that θ and all logarithmic signatures [A1,j1 , . . . , As,js ], 1 ≤ ji ≤ ri and
1 ≤ i ≤ s, are tame. If θ and L1, . . . ,Ls are known, then β is tame.

Proof. Let g ∈ G be an element that we want to factorize with respect to β. Then there exist
unique elements t ∈ T and h ∈ H such that g = ht. Since θ is tame, we can find a factorization
of t = t1,j1 · · · ts,js with respect to θ in time bounded by O(wc1), where w = dlog |G|e and c1 is a
constant. Having obtained (j1, . . . , js) we can determine the logarithmic signature [A1,j1 , . . . , As,js ]
which is tame by the assumption. So, the complexity of factoring h = a1,k1 · · · as,ks with respect to
[A1,j1 , . . . , As,js ] is bounded by O(wc2), where c2 is a constant. Thus

g = ht = a1,k1 · · · as,ks .t1,j1 · · · ts,js = (a1,k1t1,j1)︸ ︷︷ ︸
∈B1

· · · (as,ksts,js)︸ ︷︷ ︸
∈Bs

.

Since, finding ai,ki
ti,ji ∈ Bi only requires a time of O(log2(|Bi|) when Bi is sorted. It follows that

β is tame. �

6 Strongly aperiodic logarithmic signatures for abelian groups

Within the class A(G) of aperiodic logarithmic signatures, we are interested in a subclass called
strongly aperiodic logarithmic signatures, which we denote by SA(G).

A simple observation shows that aperiodicity property of a logarithmic signature is preserved
under the transformations described above, except the fusion. For fusing two or more blocks of an
aperiodic logarithmic signature may result in a periodic logarithmic signature. Observe that if we
fuse all the blocks of a logarithmic signature β, we obtain one block, namely the group G itself,
which is in turn a trivial periodic logarithmic signature. We will exclude this trivial case. Thus a
fusion can be done on any set of at most s − 1 blocks of β. In general, we might expect that any
nontrivial fusion is permitted, however it is not always so as we can see from following results as
shown in the book of Szabó [13] for abelian p-groups.

Theorem 2 Let p be a prime and let G be an abelian group of order pn. Further let r1 ≥ r2 ≥
· · · ≥ rs ≥ p be powers of p such that

s∏
i=1

ri = pn.

(i) ([13], Theorem 7.3.1) Suppose p = 2 and G is an elementary abelian 2-group. A logarithmic
signature α of type (r1, . . . , rs) with r1 ≥ · · · ≥ rs ≥ 2 can only be aperiodic if we have

– s = 2 and r2 ≥ 8, or

– s ≥ 3 and r1 ≥ 8, r2 ≥ · · · ≥ rs ≥ 4.

α is always periodic for each of the following cases.

– rs = 2,
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– s = 2 and r2|4,

– s ≥ 3 and r1|4, . . . , rs|4.

(ii) ([13], Theorem 2.3.2) Suppose p = 3 and G is not cyclic or of type (3n−1, 3). Suppose further
that (r1, . . . , rs) 6∈ {(3, . . . , 3), (32, 3, . . . , 3),
(3n−1, 3)}. Then there exist aperiodic logarithmic signatures of type (r1, . . . , rs) for G.

(iii) ([13], Theorem 2.3.1) Suppose p ≥ 5, G is not cyclic and (r1, . . . , rs) 6= (p, . . . , p). Then there
exist aperiodic logarithmic signatures of type (r1, . . . , rs) for G.

Now suppose that we have an aperiodic logarithmic signature β = [B1, . . . , Bs] with s ≥ 3 for
an elementary abelian 2-group G. Note that from Theorem 2 we have |B1| ≥ 8 and |Bi| ≥ 4 for
2 ≤ i ≤ s. If β is of type |Bi| ≥ 8 for 1 ≤ i ≤ s, then we say that β is strongly aperiodic when
any fusion of at most s− 1 blocks results in an aperiodic logarithmic signature. However, suppose,
for instance, |B1| = 8 and |B2| = · · · = |Bs| = 4. Then β is strongly aperiodic if any fusion of its
blocks results in an aperiodic logarithmic signature γ, when the type of γ satisfies the conditions
of aperiodicity of Theorem 2. This says, in particular, that if block B1 would be fused with (s− 2)
other blocks we would obtain a logarithmic signature γ of type (23+2(s−2), 4), which is periodic due
to Theorem 2. Hence, this type of fusion for β is “non-admissible”. In other words, block B1 can
be fused with at most (s− 3) other blocks. Moreover, fusing all blocks B2, . . . , Bs of β together is
admissible, as it will result in a logarithmic signature of type (8, 22(s−1)) that does not violate the
aperiodicity condition of Theorem 2.

Theorem 2 motivates the following definition.

Definition 6.1 Let G be an abelian group and let β = [B1, . . . , Bs] ∈ A(G). A fusion of certain
d blocks Bi1 , . . . , Bid is called admissible, if the type of the resulting logarithmic signature γ does
not violate necessary conditions for being aperiodic. Let {d1, . . . , dt} be the set of positive integers
whose di indicates the largest possible number of blocks permitted by an admissible fusion of a
certain “type”. The values d1, . . . , dt are called the admissible fusion degrees of β. We say that β
achieves the admissible fusion degrees, if for each di ∈ {d1, . . . , dt}, any “admissible” fusion of di
blocks of β results in an aperiodic logarithmic signature.

For example, let β = [B1, B2, . . . , Bs], s ≥ 3, be an aperiodic logarithmic signature of type
(8, 4, 4, . . . , 4) for an elementary abelian group G of order 22s+1. Then from Theorem 2 and Defini-
tion 6.1, the admissible fusion degrees of β are {s− 2, s− 1}.

Definition 6.2 Let G be an abelian group and let β = [B1, . . . , Bs] ∈ A(G). The logarithmic
signature β is called strongly aperiodic if it achieves its admissible fusion degrees.

Remark 6.1 It seems not meaningful to extend the definition 6.2 to non-abelian groups. This
is because a fusion of non-consecutive blocks is almost prohibited, since the result is no longer a
logarithmic signature in this case.

Example 2 We use the setup for G, H and T and θ as in Example 1. Define
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L1 = { A1,1 = {1, g1, g2, g1g2}, A1,2 = {1, g1g2g4g6, g2g3g5, g1g3g4g5g6} },

L2 = { A2,1 = {1, g3, g4, g3g4}, A2,2 = {1, g1g3, g2g4, g1g3g2g4} },

L3 = { A3,1 = {1, g5, g6, g5g6}, A3,2 = {1, g1g5, g2g6, g1g5g2g6} }.

Then we obtain an aperiodic logarithmic signature β = [B1, B2, B3] of type (8, 8, 8) for G with

B1 = {1, g1, g2, g1g2, g7, g1g2g4g6g7, g2g3g5g7, g1g3g4g5g6g7},

B2 = {1, g3, g4, g3g4, g8, g1g3g8, g2g4g8, g1g3g2g4g8},

B3 = {1, g5, g6, g5g6, g9, g1g5g9, g2g6g9, g1g5g2g6g9}.

Now, it can be checked that the fusion of any two blocks of β yields an aperiodic block. Hence
β is strongly aperiodic.

Remark 6.2 We note that the logarithmic signature β in Example 1 is aperiodic but not strongly
aperiodic. For, when fusing B1 with B2 we obtain a periodic block. Even more, B1B2 is a subgroup
of order 26 in G.

As we will use the Baumeister-de Wiljes construction, denoted by BW-construction for short, to
investigate strongly aperiodic logarithmic signatures, we make use of the following simple observa-
tion about the fusion operation on a logarithmic signature obtained from the BW-construction.

Lemma 1 We use the notation as described in the BW-construction above. The fusion of blocks
Bi and Bj, i 6= j, of β results in a logarithmic signature, which is again derived from the BW-
construction, in which Li and Lj are replaced by LiLj and Ti and Tj by TiTj.

The next lemma is useful for the query about the strong aperiodicity of a logarithmic signature.

Lemma 2 Let G be an abelian group. Let β = [B1, . . . , Bs] be a logarithmic signature for G. Let
I ⊆ {1, . . . , s}. Suppose that the fused block

∏
i∈I Bi is aperiodic. Then

∏
j∈J Bj is aperiodic for

any non-empty subset J ⊆ I.

Proof. Recall that element shuffle does not effect periodicity. Assume, by contradiction, that
BJ :=

∏
j∈J Bj is periodic for a subset J ⊆ I. Let g ∈ G\{1} be a period for BJ . Set BI :=

∏
i∈I Bi.

We may write BI = BJ · C, where C :=
∏
k∈I\J Bk (note that BI on the left side of equality

BI = BJ · C is considered as an unordered set, since permuting the elements of BI does not effect
the property of aperiodicity). Now, since g is a period for BJ we have gBI = gBJ ·C = BJ ·C = BI .
Thus g is a period for BI , a contradiction. �

Lemma 2 is a crucial tool. Suppose we want to verify the strong aperiodicity of a logarithmic
signature β having s blocks. Suppose further that we are allowed to fuse up to any s− 1 blocks of
β. Without Lemma 2 we have to check all

(
s
1

)
+
(
s
2

)
+ · · · +

(
s
s−1

)
= 2s − 2 possible fusions of the

blocks of β. Whereas by using Lemma 2 we only need to check
(
s
s−1

)
= s fusions of all combinations

of s− 1 blocks of β.
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In the remaining sections we present constructions of strongly aperiodic signatures for elementary
abelian p-groups. The basic tool we use is the BW-construction. We first construct certain types
of aperiodic logarithmic signatures, and then in a further more involved step we prove that they
are strongly aperiodic.

From now on let G be an elementary abelian p-group. We use additive notation for the group
operation and 0 will denote the identity of G. In fact we identify G with the additive group of the
Galois field Fpn . In this way G is viewed as a vector space of dimension n over Fp, and thus we
may freely use the language of linear algebra with respect to G. For example, a minimal generator
set for G may be called a basis for G.

7 Strongly aperiodic logarithmic signatures of type (p3, . . . , p3)

In this section we first construct a strongly aperiodic logarithmic signature of type (p3, . . . , p3) for
an elementary abelian p-group G of order p3s, where p = 2 or p is an odd prime and s ≥ 2. Let
v1, v2, . . . , v2s, . . . , v3s be a generator set of G. Using the BW-construction we define

(i) T = 〈v2s+1, . . . , v3s〉 and θ = [T1, . . . , Ts] with

Ti = {0, v2s+i, 2v2s+i, . . . , (p− 1)v2s+i} for i = 1, . . . , s,

(ii) H = 〈v1, . . . , v2s〉.

Let u ∈ {1, . . . , p− 1} = Fp \ {0} be a chosen parameter. For i = 1, . . . , s define collection

Li = {Ai,0, Ai,1, . . . , Ai,(p−1)}

as follows.

A1,0 = 〈v1, v2〉, A1,j = 〈v1 + v2 + j ·
s∑
`=2

v2`, u · v2 + j ·
s∑
`=2

v2`−1〉 for all

j ∈ {1, . . . , p− 1},

Ai,j = 〈v2i−1 + jv1, v2i + jv2〉 for all i ∈ {2, . . . , s}, j ∈ {0, . . . , p− 1}.

Remark 7.1 Note that in (i) we may replace T by any transversal T R of H. Here T R is not a
subgroup in general. In fact, it is simple to create a logarithmic signature for a transversal of H by
passing to the quotient group T̄ = G/H. Namely, let θ̄ = [T̄1, . . . , T̄s] be a logarithmic signature for
T̄ , where T̄i = [xi,0H, . . . , xi,(p−1)H, 1 ≤ i ≤ s. Note that there are |H| possibilities for choosing
xi,j as coset representative. By lifting θ̄ to G we obtain a logarithmic signature θ = [T1, . . . , Ts]
with Ti = [xi,0, . . . , xi,(p−1)] for a certain transversal T R of H.

We now prove that the subsets Ai,j of Li, 1 ≤ i ≤ s satisfy condition (ii) of the BW-construction.
This means that for any (j1, j2, . . . , js) ∈ {0, 1, . . . , p−1}s the collection [A1,j1 , A2,j2 , . . . , As,js ] forms
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a logarithmic signature forH. This is equivalent to say that the basis elements ofA1,j1 , A2,j2 , . . . , As,js
are linearly independent.

We first consider the case j1 = 0.

We then have A1,j1 = 〈v1, v2〉, A2,j2 = 〈j2 · v1 + v3, j2 · v2 + v4〉,
A3,j3 = 〈j3 · v1 + v5, j3 · v2 + v6〉, . . . , As,js = 〈js · v1 + v2s−1, js · v2 + v2s〉. When forming a linear
combination of the basis elements of A1,0, A2,j2 , . . . , As,js for the zero element we have

0 = λ1,1.(v1) + λ1,2.(v2) +
λ2,1.(v2i−1 + j2v1) + λ2,2.(v2i + j2v2) + · · ·+ (7.2)
λs,1.(v2s−1 + jsv1) + λs,2.(v2s + jsv2)

with λi,j ∈ Fp. The matrix form of equation 7.2 is given by

(λ1,1, λ1,2, . . . , λs,1, λs,2) M = (0, 0, . . . , 0),

where M is the following (2s× 2s)-matrix over Fp

M =



1 0 0 0 0 0 . . . 0 0 0
0 1 0 0 0 0 . . . 0 0 0
j2 0 1 0 0 0 . . . 0 0 0
0 j2 0 1 0 0 . . . 0 0 0
j3 0 0 0 1 0 . . . 0 0 0
0 j3 0 0 0 1 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

js 0 0 0 0 0 . . . 0 1 0
0 js 0 0 0 0 . . . 0 0 1


As M is a lower triangular matrix with all 1 on the main diagonal, M is invertible and equation

7.2 has λi,j = 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ 2 as the unique solution. Thus the basis elements of
A1,0, A2,j2 , . . . , As,js are linearly independent. This says, in particular, that [A1,0, A2,j2 , . . . , As,js ]
forms a logarithmic signature for H.

We now consider the case j1 6= 0.

We then have

A1,j1 = 〈v1 + v2 + j1

s∑
`=2

v2`, u · v2 + j1

s∑
`=2

v2`−1〉,

A2,j2 = 〈j2 · v1 + v3, j2 · v2 + v4〉, A3,j3 = 〈j3 · v1 + v5, j3 · v2 + v6〉, . . .
As,js = 〈js · v1 + v2s−1, js · v2 + v2s〉 and we obtain a linear combination of the zero element as
follows:

0 = λ1,1 · (v1 + v2 + j1 ·
s∑
`=2

v2`) + λ1,2.(u · v2 + j1 ·
s∑
`=2

v2`−1) +

λ2,1.(v2i−1 + j2v1) + λ2,2.(v2i + j2v2) + · · ·+ (7.3)
λs,1.(v2s−1 + jsv1) + λs,2.(v2s + jsv2)
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The coefficient matrix M of equation 7.3 has the form

M =



1 1 0 j1 0 j1 . . . j1 0 j1
0 u j1 0 j1 0 . . . 0 j1 0
j2 0 1 0 0 0 . . . 0 0 0
0 j2 0 1 0 0 . . . 0 0 0
j3 0 0 0 1 0 . . . 0 0 0
0 j3 0 0 0 1 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

js 0 0 0 0 0 . . . 0 1 0
0 js 0 0 0 0 . . . 0 0 1


By subtracting j1 times the rows 4, 6, . . . , 2s from the first row, and j1 times the rows 3, 5, . . . , 2s−

1 from the second row of M we obtain the following matrix



1 1− j1 ·
∑s

l=2 jl 0 0 0 0 . . . 0 0 0
−j1 ·

∑s
l=2 jl u 0 0 0 0 . . . 0 0 0
j2 0 1 0 0 0 . . . 0 0 0
0 j2 0 1 0 0 . . . 0 0 0
j3 0 0 0 1 0 . . . 0 0 0
0 j3 0 0 0 1 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

js 0 0 0 0 0 . . . 0 1 0
0 js 0 0 0 0 . . . 0 0 1


with determinant u + (1 − J)J = −(J2 − J − u) where J := j1 ·

∑s
`=2 j`. Since for each given

p we can choose a u ∈ Fp \ {0} such that the polynomial X2 −X − u ∈ Fp[X] has no root in Fp,
we can conclude that matrix M is invertible and therefore equation 7.3 has a unique solution with
λi,j = 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ 2. So the basis elements of A1,j1 , A2,j2 , . . . , As,js are linearly
independent. Hence [A1,j1 , A2,j2 , . . . , As,js ] forms a logarithmic signature for H.

Thus we have constructed a logarithmic signature β of type (p3, . . . , p3) for G by the method
of Baumeister and de Wiljes. By using Proposition 1 and the fact that Ai,j ∩ Ai,k = {0} for any
Ai,j , Ai,k ∈ Li with j 6= k and for all 1 ≤ i ≤ s, we conclude that β is aperiodic.

The strong aperiodicity of β will be proved by the following theorem.

Theorem 3 The above constructed logarithmic signature β of type (p3, . . . , p3) is strongly aperiodic.

Proof. Recall that Lemma 1 says that fusing any two blocks of β results in a logarithmic signature,
which is again obtained from the BW-construction. By using Lemma 2 we need only to consider
the fusion of any (s − 1) blocks of β. Finally, we use Proposition 1 to show that the resulting
logarithmic signature derived from each such fusion is aperiodic. This is done by showing that the
fusion of any (s − 1) collections Li yields a collection of subgroups of G having only the identity
element 0 of G in their intersection.
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We consider three cases.

Case 1: Fusing L2, . . . ,Ls.

Let denote L2 + · · ·+Ls the collection obtained by fusing L2, . . . ,Ls. The subsets of L2 + · · ·+Ls
are of the form (A2,j2 +A3,j3 + · · ·+As,js) with (j2, j3, . . . , js) ∈ {0, 1, . . . , p− 1}s−1

We now prove that ⋂
∀ (j2,j3,...,js)
∈{0,1,...,p−1}s−1

(A2,j2 +A3,j3 + · · ·+As,js) = {0}.

Observe that
(A2,0 +A3,0 + · · ·+As,0) ∩ (A2,1 +A3,0 + · · ·+As,0) =

〈v3, v4, v5, v6, . . . , v2s−1, v2s〉 ∩ 〈v1 + v3, v2 + v4, v5, v6, . . . , v2s−1, v2s〉 =

〈v5, v6, . . . , v2s−1, v2s〉 = A3,0 +A4,0 + · · ·+As,0.

Similarly, we have

(A2,0 +A3,0 +A4,0 + · · ·+As,0) ∩ (A2,0 +A3,1 +A4,0 + · · ·+As,0) =

A2,0 +A4,0 + · · ·+As,0, . . . ,

(A2,0 + · · ·+As−1,0 +As,0) ∩ (A2,0 + · · ·+As−2,0 +As−1,1 +As,0) =

A2,0 +A3,0 + · · ·+As−2,0 +As,0,

(A2,0 + · · ·+As−1,0 +As,0) ∩ (A2,0 +A3,0 + · · ·+As−1,0 +As,1) =

A2,0 +A3,0 + · · ·+As−1,0.

Obviously, the intersection of the elements on the right hand side of the equalities is trivial.

Case 2: Fusing L1,L2, . . . ,Ls−1.

We prove that ⋂
∀ (j1,j2,...,js−1)
∈{0,1,...,p−1}s−1

(
A1,j1 +A2,j2 + · · ·+As−1,js−1

)
= {0}.

Recall that

A1,0 = 〈v1, v2〉, A1,j = 〈v1 + v2 + j ·
s∑
`=2

v2l, u · v2 + j ·
s∑
`=2

v2`−1〉,

j ∈ {1, . . . , p− 1},

Ai,j = 〈v2i−1 + jv1, v2i + jv2〉, i ∈ {2, . . . , s}, j ∈ {0, . . . , p− 1}.
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So we have
(A1,0 +A2,0 + · · ·+As−1,0) ∩ (A1,1 +A2,0 + · · ·+As−1,0) =

〈v1, v2, v3, v4, . . . , v2s−3, v2s−2〉 ∩ 〈v1 + v2 +
s∑
`=2

v2`, u · v2 +
s∑
`=2

v2`−1,

v3, v4, . . . , v2s−3, v2s−2〉 = 〈v3, v4, . . . , v2s−3, v2s−2〉 =

A2,0 +A3,0 + · · ·+As−1,0.

Consider further intersection:

(A2,0 +A3,0 + · · ·+As−1,0) ∩ (A1,1 +A2,1 +A3,0 + · · ·+As−1,0) =

(A2,0 +A3,0 + · · ·+As−1,0) ∩ (A2,1 +A3,0 + · · ·+As−1,0) =

〈v3, v4, v5, . . . , v2s−3, v2s−2〉 ∩ 〈v3 + v1, v4 + v2, v5, . . . , v2s−3, v2s−2〉 =

〈v5, v6, . . . , v2s−3, v2s−2〉 = (A3,0 + · · ·+As−1,0) .

Similarly,

(A3,0 + · · ·+As−1,0) ∩ (A1,1 +A2,0 +A3,1 +A4,0 + · · ·+As−1,0) =

(A3,0 + · · ·+As−1,0) ∩ (A2,0 +A3,1 +A4,0 + · · ·+As−1,0) =

〈v5, v6, . . . , v2s−3, v2s−2〉 ∩ 〈v3, v4, v5 + v1, v6 + v2, v7, . . . , v2s−3, v2s−2〉 =

〈v7, v8, . . . , v2s−3, v2s−2〉 = A4,0 + · · ·+As−1,0

This process can be iterated until we get {0} as the intersection.

Case 3: Fusing L1, . . . ,Lk−1,Lk+1, . . . ,Ls−1,Ls for all k ∈ {2, 3, . . . , s− 2, s− 1}.

We claim that

⋂
∀ (j1,...,jk−1,
jk+1,...,js)

∈{0,1,...,p−1}s−1

(
A1,j1 + · · ·+Ak−1,jk−1

+Ak+1,jk+1
+ · · ·+As,js

)
= {0}.

We define an isomomorphism Φ of G as follows

Φ(vi) =


v2s−1 if i = 2k − 1
v2k−1 if i = 2s− 1
v2s if i = 2k
v2k if i = 2s
vi otherwise

Thus Φ interchanges v2k−1 with v2s−1 and v2k with v2s, and fixes the remaining generators. Then
we have

Φ (A1,j1) = Φ

(
〈v1 + v2 + j1

s∑
`=2

v2`, u · v2 + j1

s∑
`=2

v2`−1〉

)
= A1,j1 ,
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Φ (A2,j2) = Φ (〈j2 · v1 + v3, j2 · v2 + v4〉) = A2,j2 , . . . ,

Φ
(
Ak−1,jk−1

)
= Φ

(
〈jk−1 · v1 + v2(k−1)−1, j2 · v2 + v2(k−1)〉

)
= Ak−1,jk−1

,

Φ (Ak,jk) = Φ (〈jk · v1 + v2k−1, jk · v2 + v2k〉) = 〈jk · v1 + v2s−1, jk · v2 + v2s〉 = As,jk ,

Φ
(
Ak+1,jk+1

)
= Φ

(
〈jk+1 · v1 + v2(k+1)−1, j2 · v2 + v2(k+1)〉

)
= Ak+1,jk+1

, . . . ,

Φ
(
As−1,js−1

)
= Φ

(
〈js−1 · v1 + v2(s−1)−1, j2 · v2 + v2(s−1)〉

)
= As−1,js−1 ,

Φ (As,js) = Φ (〈js · v1 + v2s−1, js · v2 + v2s〉) = 〈js · v1 + v2k−1, js · v2 + v2k〉 = Ak,js .

From ⋂
∀ (j1,j2,...,js−1)
∈{0,1,...,p−1}s−1

(
A1,j1 +A2,j2 + · · ·+As−1,js−1

)
= {0}

we conclude that ⋂
∀ (j1,j2,...,js−1)
∈{0,1,...,p−1}s−1

(
Φ (A1,j1) + Φ (A2,j2) + · · ·+ Φ

(
As−1,js−1

))
= {0}

This implies that⋂
∀ (j1,j2,...,js−1)
∈{0,1,...,p−1}s−1

(
A1,j1 + · · ·+Ak−1,jk−1

+ Φ (Ak, jk) +Ak+1,jk+1
+ · · ·+As−1,js−1

)

= {0}.

So we have ⋂
∀ (j1,j2,...,js−1)
∈{0,1,...,p−1}s−1

(
A1,j1 + · · ·+Ak−1,jk−1

+As,jk +Ak+1,jk+1
+ · · ·+As−1,js−1

)

= {0},

which shows the claim. This completes the proof. �

Remark 7.2 The strongly aperiodic logarithmic signature β of type (8, 8, 8) in Example 2 above
is constructed by the method in this section.

8 Strongly aperiodic logarithmic signatures of type (23, 22, . . . , 22)

In this section we will construct strongly aperiodic logarithmic signatures of type (23, 22, . . . , 22)
for an elementary abelian 2-group G of order 22s−1 with s ≥ 4. Let v1, v2, . . . , vs, vs+1, . . . , v2s−1 be
a generator set of G. Using the BW-construction we define

(i) T = 〈vs+1, . . . , v2s−1〉 and θ = [T1, T3, T4, . . . , Ts] with T1 = {0, vs+1} and Ti = {0, vs+(i−1)}
for i = 3, 4, . . . , 2s,
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(ii) H = 〈v1, . . . , vs〉.

Note that for the reason of simplicity we have omitted i = 2 in indexing the collections Li and
also the blocks Ti so that we only have s− 1 blocks.

For i = 1, 3, 4, . . . , s define collection

Li = {Ai,0, Ai,1}

as follows

A1,0 = 〈v1, v2〉, A1,1 = 〈v1 +
ds/2e∑
`=2

v2`−1 , v2 +
bs/2c∑
`=2

v2`〉,

and for i = 3, . . . , s,

Ai,0 = 〈vi〉, Ai,1 = 〈vi +
bi/2c∑
`=1

v2`〉, if i is odd,

Ai,0 = 〈vi〉, Ai,1 = 〈vi +
i/2∑
`=1

v2`−1〉, if i is even.

Remark 8.1 In the same manner as Remark 7.1, we may choose θ as a logarithmic signature for
a certain transversal T R of H in G.

At first we prove that for any choice of (j1, j3, j4, . . . , js) ∈ {0, 1}s−1 the corresponding collection
[A1,j1 , A3,j3 , . . . , As,js ] forms a logarithmic signature for H. The is equivalent to show that the linear
combination of the zero element of G with respect to the basis elements ofA1,j1 , A3,j3 , A4,j4 , . . . , As,js ,
i.e.

0 = λ1 · (v1 + j1(
ds/2e∑
`=2

v2`−1) + λ2.(v2 + j1(
bs/2c∑
`=2

v2`) +

b(s−1)/2c∑
i=1

λ2i+1.(v2i+1 + j2i+1

i∑
`=1

v2`) (8.4)

d(s−1)/2e∑
i=2

λ2i.(v2i + j2i

i∑
`=1

v2`−1)

only has the trivial solution λi = 0 for all i = 1, 3, . . . , s. This means that the (s × s) coefficient
matrix Ms(j1, j3, j4, . . . , js) for λi’s of equation 8.4 is invertible.

If s is even, we have
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Ms(j1, j3, j4, . . . , js) =

1 0 j1 0 j1 0 . . . j1 0 j1 0
0 1 0 j1 0 j1 . . . 0 j1 0 j1
0 j3 1 0 0 0 . . . 0 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

0 js−3 0 js−3 0 js−3 . . . 1 0 0 0
js−2 0 js−2 0 js−2 0 . . . js−2 1 0 0

0 js−1 0 js−1 0 js−1 . . . 0 js−1 1 0
js 0 js 0 js 0 . . . js 0 js 1



If s is odd, we have

Ms(j1, j3, j4, . . . , js) =

1 0 j1 0 j1 0 . . . j1 0 j1 0
0 1 0 j1 0 j1 . . . 0 j1 0 j1
0 j3 1 0 0 0 . . . 0 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

js−3 0 js−3 0 js−3 0 . . . 1 0 0 0
0 js−2 0 js−2 0 js−2 . . . js−2 1 0 0

js−1 0 js−1 0 js−1 0 . . . 0 js−1 1 0
0 js 0 js 0 js . . . js 0 js 1


In both cases the matrix is invertible if j1 = 0. Hence we assume that j1 = 1.

We show by induction on s that the determinant of Ms(j1, j3, j4, . . . , js) is 1 in both cases.

To begin with if s = 3 we have

det (M3(j1, j3)) = det

 1 0 j1
0 1 0
0 j3 1

 = 1.

Now, let s > 3.

If s is even, we subtract js times the first row from the last row and obtain
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det (Ms(j1, j3, j4 . . . , js)) =

det



1 0 j1 0 j1 0 . . . j1 0 j1 0
0 1 0 j1 0 j1 . . . 0 j1 0 j1
0 j3 1 0 0 0 . . . 0 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

0 js−3 0 js−3 0 js−3 . . . 1 0 0 0
js−2 0 js−2 0 js−2 0 . . . js−2 1 0 0

0 js−1 0 js−1 0 js−1 . . . 0 js−1 1 0
0 0 0 0 0 0 . . . 0 0 0 1



= det



1 0 j1 0 j1 0 . . . j1 0 j1
0 1 0 j1 0 j1 . . . 0 j1 0
0 j3 1 0 0 0 . . . 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0

...
...

...
...

...
...

...
...

...
0 js−3 0 js−3 0 js−3 . . . 1 0 0

js−2 0 js−2 0 js−2 0 . . . js−2 1 0
0 js−1 0 js−1 0 js−1 . . . 0 js−1 1


= det (Ms−1(j1, j3, j4 . . . , js−1)) .

If s is odd, we subtract js times the second row from the last row and obtain

det (Ms(j1, j3, j4 . . . , js)) =

det



1 0 j1 0 j1 0 . . . 0 j1 0 j1
0 1 0 j1 0 j1 . . . j1 0 j1 0
0 j3 1 0 0 0 . . . 0 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

js−3 0 js−3 0 js−3 0 . . . 1 0 0 0
0 js−2 0 js−2 0 js−2 . . . js−2 1 0 0

js−1 0 js−1 0 js−1 0 . . . 0 js−1 1 0
0 0 0 0 0 0 . . . 0 0 0 1
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= det



1 0 j1 0 j1 0 . . . 0 j1 0
0 1 0 j1 0 j1 . . . j1 0 j1
0 j3 1 0 0 0 . . . 0 0 0
j4 0 j4 1 0 0 . . . 0 0 0
0 j5 0 j5 1 0 . . . 0 0 0
j6 0 j6 0 j6 1 . . . 0 0 0

...
...

...
...

...
...

...
...

...
js−3 0 js−3 0 js−3 0 . . . 1 0 0

0 js−2 0 js−2 0 js−2 . . . js−2 1 0
js−1 0 js−1 0 js−1 0 . . . 0 js−1 1


= det (Ms−1(j1, j3, j4 . . . , js−1)) .

In both cases induction shows us that the determinant is 1. Hence [A1,j1 , A3,j3 , . . . , As,js ] forms
a logarithmic signature for H.

Thus we have constructed a logarithmic signature β of type (23, 22 . . . , 22) for G from the method
of Baumeister and de Wiljes. By using Proposition 1 and the fact that Ai,1 ∩ Ai,2 = {0} for any
i = 1, 3, 4, . . . , s, we conclude that β is aperiodic.

Next we prove the following theorem.

Theorem 4 The above constructed logarithmic signature β of type (23, 22, . . . , 22) is strongly ape-
riodic.

The proof of the strong aperiodicity for β is given by a number of lemmas.

In view of Theorem 2, we have to consider two types of fusions for β: (a) fusing all (s−1) blocks
of size 22 each (b) fusing any (s − 2) blocks, where one block is of size 23. By Lemmas 1, 2 and
Proposition 1 we have to show that for type (a) fusion of L3,L4, . . . ,Ls and for type (b) fusion of
L1 with any (s− 3) other collections Li each yields a collection of subgroups of G having only the
identity element 0 in their intersection.

Case (a): Fusing L3,L4, . . . ,Ls.

Lemma 3 ⋂
(j3,j4,...,js−1,js)
∈{0,1}s−2

(
A3,j3 +A4,j4 + · · ·+As−1,js−1 +As,js

)
= {0}.

Proof. We consider the following two sums

A3,0 +A4,0 +A5,0 + · · ·+As−2,0 +As−1,0 +As,0 = 〈v3, v4, . . . , vs−1, vs〉,

and

[A3,0 +A4,0 +A5,0 + · · ·+As−2,0 +As−1,0 +As,1 =
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〈v3, v4, . . . , vs−2, vs−1, vs + vs−1 + vs−3 + · · · 〉.

Their intersection is
〈v3, v4, . . . , vs−2, vs−1〉,

because either v1 or v2 occurs as a summand in the last term of the second sum.

When intersecting 〈v3, v4, . . . , vs−2, vs−1〉 further with the sum

A3,0 +A4,0 +A5,0 + · · ·+As−3,0 +As−2,0 +As−1,1 +As,0 =

〈v3, v4, . . . , vs−3, vs−2, vs, (vs−1 + vs−2 + vs−4 + · · · )〉

we obtain
〈v3, v4, . . . , vs−3, vs−2〉,

as their intersection, because either v1 or v2 occurs as a summand in the last two terms of the sum.
By doing further iterations we eventually get {0} as intersection, as claimed. �

Case (b): Fusing L1 with (s− 3) other Li’s.

Now, let I = {i1, . . . , is−3} ⊆ {3, 4, . . . , s} be arbitrary with |I| = s − 3. Let {3, 4, . . . , s} \ I =
{k1, k2}, where we assume that k1 < k2.

We have to prove that ⋂
∀ (j1,j3,j4,...,
jk1−1,jk1+1,...,

jk2−1,jk2+1,...,js)

∈{0,1}s−3

(
∑

i∈I∪{1}

Ai,ji) = {0} (8.5)

Here we have

A1,0 +
∑

i∈I Aj,0 =

〈v1, v2, vi1 , vi2 , . . . , vk1−1, vk1+1, . . . , vk2−1, vk2+1, . . . , vis−3〉.

There are three subcases which we have to handle separately.

(i) k1 ≡ k2 ≡ 1 mod 2,

(ii) k1 ≡ k2 ≡ 0 mod 2,

(iii) k1 + k2 ≡ 1 mod 2.

Lemma 4 Suppose that k1 ≡ k2 ≡ 1 mod 2. Then equation (8.5) is satisfied.

Proof. First consider

A1,1 +
∑

i∈I Ai,0 =

〈v1 + v3 + v5 + · · · , v2 + v4 + v6 + · · · , vi1 , vi2 , . . . , vk1−1, vk1+1, . . . ,
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vk2−1, vk2+1, . . . , vis−3〉.

Since v1 /∈ A1,1 +
∑

i∈I Ai,0 and v2 ∈ A1,1 +
∑

i∈I Ai,0, we have

C :=

(
A1,0 +

∑
i∈I

Ai,0

)⋂(
A1,1 +

∑
i∈I

Ai,0

)
= 〈{v2} ∪ {vi | i ∈ I}〉.

To compute further intersections we need to introduce some notation.

For i ∈ I let Ai be defined by
Ai := Ai,1 +

∑
j∈I,j 6=i

Aj,0.

Then
Ai = 〈{vj | j ∈ I \ {i}} ∪ {vi + vi−1 + vi−3 + · · · }〉.

For i, j ∈ I let Ai,j be defined by

Ai,j := Ai,1 +Aj,1 +
∑

`∈I,` 6=i,j
A`,0.

Then

Ai,j = 〈{v` | ` ∈ I \ {i, j}} ∪ {vi + vi−1 + vi−3 + · · · , vj + vj−1 + vj−3 + · · · }〉.

To prove (8.5) we proceed with a number of steps.

Step 1: k even and k > k1.

We prove that
C ∩ (A1,0 +Ak) = 〈{v2} ∪ {vj | j ∈ I \ {k}}〉.

Since we have

A1,0 +Ak = A1,0 + 〈{vj | j ∈ I \ {k}} ∪ {vk + vk−1 + vk−3 + · · · }〉 =

〈{vj | j ∈ I \ {k}} ∪ {v1, v2, vk + vk−1 + vk−3 + · · · }〉,

it is obvious that
〈{v2} ∪ {vj | j ∈ I \ {k}}〉 ⊆ C ∩ (A1,0 +Ak) .

Moreover, since 〈{v2} ∪ {vj | j ∈ I \ {k}}〉 has codimension 1 in C, it suffices to show that
vk /∈ A1,0 +Ak. Suppose, by contradiction, that vk ∈ A1,0 +Ak. Then there exist λ1, λ2, · · · ∈ {0, 1}
with

vk = λ1v1 + λ2v2 + λk(vk + vk−1 + vk−3 + · · · ) +
∑

j∈I\{k}

λjvj .

But vk1 occurs exactly once on the right hand side of this equation (note that k is even, k1 is odd
and k > k1), and we conclude λk = 0. But then

vk = λ1v1 + λ2v2 +
∑

j∈I\{k}

λjvj ,
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a contradiction. Hence, for all k > k1 with k even, we have

C ∩ (A1,0 +Ak) = 〈{v2} ∪ {vj |j ∈ I \ {k}}〉.

Let I ′ := {k ∈ I | k > k1, k even}. We conclude

C ′ := C ∩ (∩k∈I′ (A1,0 +Ak)) = ∩k∈I′ (C ∩ (A1,0 +Ak)) =

∩k∈I′ (〈{v2} ∪ {vj | j ∈ I \ {k}}〉) = 〈{v2} ∪ {vj | j ∈ I \ I ′}〉.

Next, we prove that

C ′′ := C ′ ∩ (A1,1 +Ak1+1) = 〈{vj | j ∈ I\I ′}〉.

We have

A1,1 +Ak1+1 = A1,1 + 〈{vj | j ∈ I \ {k1 + 1}} ∪ {vk1+1 + vk1 + vk1−2 + · · · }〉

= 〈{vj | j ∈ I \ {k1 + 1}}∪ {v1 + v3 + v5 + · · · , v2 + v4 + v6 + · · · , vk1+1 + vk1 + vk1−2 + · · · }〉.

Since k1 + 1 ∈ I ′, we clearly have 〈{vj | j ∈ I \ I ′}〉 ⊆ C ′′.

Moreover, since 〈{vj | j ∈ I \ I ′}〉 has codimension 1 in C ′, it suffices to show that v2 /∈
A1,1+Ak1+1. Suppose, by contradiction, that v2 ∈ A1,1+Ak1+1. Then there exist λ1, λ2, · · · ∈ {0, 1}
with

v2 = λ1(v1+v3+v5+· · · )+λ2(v2+v4+v6+· · · )+λk1+1(vk1+1+vk1+vk1−2+· · · )+
∑

j∈I\{k1+1} λjvj .

But since vk2 occurs exactly once on the right hand side of this equation, we conclude that λ1 = 0;
also, since vk1 occurs only once on the right hand side of this equation, we conclude that λk1+1 = 0;
further, since vk1+1 occurs only once, we conclude that λ2 = 0. But this is a contradiction.

Step 2: k even and k < k1.

We prove that
C ′′ ∩ (A1,1 +Ak,k1+1) = 〈{vj | j ∈ (I \ I ′) \ {k}}〉.

We have

A1,1 +Ak,k1+1 = A1,1 + 〈{vj | j ∈ I \{k, k1 + 1}}∪{vk +vk−1 +vk−3 + · · · , vk1+1 +vk1 +vk1−2 +
· · · }〉 = 〈{vj | j ∈ I \ {k, k1 + 1}} ∪ {v1 + v3 + v5 + · · · , v2 + v4 + v6 + · · · , vk + vk−1 + vk−3 +
· · · , vk1+1 + vk1 + vk1−2 + · · · }〉.

It is clear that
〈{vj | j ∈ (I \ I ′) \ {k}}〉 ⊆ C ′′ ∩ (A1,1 +Ak,k1+1) .

Moreover, since 〈{vj | j ∈ (I \ I ′) \ {k}}〉 has codimension 1 in C ′′, it suffices to show that vk /∈
A1,1 +Ak,k1+1. Suppose, by contradiction, that vk ∈ A1,1 +Ak,k1+1. Then there exist λ1, λ2, · · · ∈
{0, 1} with

vk = λ1(v1 + v3 + v5 + . . . ) + λ2(v2 + v4 + v6 + . . . ) + λk(vk + vk−1 + vk−3 + . . . ) + λk1+1(vk1+1 +
vk1 + vk1−2 + · · · ) +

∑
j∈I\{k,k1+1} λjvj .
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This implies that on the right hand side of this equation the coefficient of vk is equal to 1 and
all other coefficients of vj , j 6= k, are equal to 0. Following is the set of respective coefficients of
{vk1+1, vk1 , v1, v2}:

{λ2 + λk1+1 = 0, λ1 + λk1+1 = 0, λ1 + λk + λk1+1 = 0, λ2 = 0}.

It follows that λ2 = λ1 = λk = λk1+1 = 0. So λ2 + λk = 0, but this is a contradiction because
λ2 + λk is the coefficient of vk and should be equal to 1.

Hence, for all k < k1 with k even, we have

C ′′ ∩ (A1,1 +Ak,k1+1) = 〈{v2} ∪ {vj |j ∈ (I \ I ′) \ {k}}〉.

Let I ′′ := {k ∈ I | k < k1, k even}.

We conclude

D := C ′′ ∩ (∩k∈I′′ (A1,1 +Ak,k1+1)) = ∩k∈I′′ (C ′′ ∩ (A1,1 +Ak,k1+1)) =

∩k∈I′′ (〈{vj | j ∈ (I \ I ′) \ {k}}〉) = 〈{vj | j ∈ I \ (I ′ ∪ I ′′)}〉 = 〈{vj | j ∈ I, j odd}〉.

Step 3: k odd and k < k1.

Let denote I = Io ∪ Ie, where Io respectively Ie are subsets of odd respectively even numbers in
I. We prove that

D ∩ (A1,1 +Ak,k+1) = 〈{vj | j ∈ Io \ {k}}〉.

We have

A1,1 +Ak,k+1 = A1,1 + 〈{vj | j ∈ I \{k, k+1}}∪{vk+vk−1 +vk−3 + · · · , vk+1 +vk+vk−2 + · · · }〉 =
〈{vj | j ∈ I \ {k, k + 1}} ∪ {v1 + v3 + v5 + · · · , v2 + v4 + v6 + · · · , vk + vk−1 + vk−3 + · · · , vk+1 +
vk + vk−2 + · · · }〉.

Observe that
〈{vj | j ∈ Io \ {k}}〉 ⊆ D ∩ (A1,1 +Ak,k+1) .

Moreover, since 〈{vj | j ∈ Io \ {k}}〉 has codimension 1 in D, it suffices to show that vk /∈
A1,1+Ak,k+1. Suppose, by contradiction, that vk ∈ A1,1+Ak,k+1. Then there exist λ1, λ2, · · · ∈ {0, 1}
with

vk = λ1(v1 + v3 + v5 + . . . ) + λ2(v2 + v4 + v6 + . . . ) +
λk(vk + vk−1 + vk−3 + . . . ) + λk+1(vk+1 + vk + vk−2 + · · · ) +

∑
j∈I\{k,k+1} λjvj .

This says that on the right hand side of this equation the coefficient of vk is equal to 1 and
all other coefficients of vj , j 6= k, are equal to 0. Following is the set of respective coefficients of
{vk+1, v1, v2, vk1}:

{λ2 + λk+1 = 0, λ1 + λk+1 = 0, λ2 + λk = 0, λ1 = 0}.

It follows that λ1 = λk+1 = λ2 = λk = 0. So λ1 + λk + λk+1 = 0, but this is a contradiction
because λ1 + λk + λk+1 is the coefficient of vk and should be equal to 1.

Hence, for all k < k1 with k odd, we have

D ∩ (A1,1 +Ak,k+1) = 〈{vj |j ∈ Io \ {k}}〉.
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Let J := {k ∈ Io | k < k1, k odd}.

We conclude

D′ := D ∩ (∩k∈J (A1,1 +Ak,k+1)) = ∩k∈J (D ∩ (A1,1 +Ak,k+1)) = ∩k∈J (〈{vj | j ∈ Io \ {k}}〉) =
〈{vj | j ∈ Io \ J}〉.

Step 4: k odd and k > k1.

By considering further intersections of D′ with A1,0 +Ak−1,k for all odd k > k1 we show in this
step that equation (8.5) is satisfied.

First we prove that

D′ ∩ (A1,0 +Ak−1,k) = 〈{vj | j ∈ Io \ (J ∪ {k})}〉.

We have

A1,0+Ak−1,k = A1,0+〈{vj | j ∈ I\{k−1, k}}∪{vk−1+vk−2+vk−4+· · · }, {vk+vk−1+vk−3+· · · }〉 =
〈{vj | j ∈ I \ {k − 1, k}} ∪ {v1, v2, vk−1 + vk−2 + vk−4 + · · · , vk + vk−1 + vk−3 + · · · }〉.

Observe that
〈{vj | j ∈ Io \ (J ∪ {k})}〉 ⊆ D′ ∩ (A1,0 +Ak−1,k) .

Moreover, since 〈{vj | j ∈ Io \ (J ∪ {k})}〉 has codimension 1 in D′, it suffices to show that vk /∈
A1,0+Ak−1,k. Suppose, by contradiction, that vk ∈ A1,0+Ak−1,k. Then there exist λ1, λ2, · · · ∈ {0, 1}
with

vk = λ1v1 +λ2v2 +λk−1(vk−1 +vk−2 +vk−4 + . . . ) +λk(vk +vk−1 +vk−3 + . . . ) +
∑

j∈I\{k−1,k} λjvj .

On the right hand side of this equation the coefficient of vk is equal to 1 and all other coefficients
of vj , j 6= k, are equal to 0. Now the coefficient of vk−1 is λk−1 + λk = 0. Note that vk1 appears
once in the summand vk−1 + vk−2 + vk−4 + . . . . So the coefficient of vk1 is λk−1 = 0. This implies
that λk = 0, a contradiction to the fact that λk = 1, because the coefficient of vk is λk.

Hence for all k > k1 with k odd, we have

D′ ∩ (A1,0 +Ak−1,k) = 〈{vj |j ∈ Io \ (J ∪ {k})}〉.

Let J ′ := {k ∈ Io | k > k1, k odd}. We conclude

D′′ := D′ ∩ (∩k∈J ′ (A1,0 +Ak−1,k)) = ∩k∈J ′ (D′ ∩ (A1,0 +Ak−1,k)) =

∩k∈J ′ (〈{vj | j ∈ Io \ (J ∪ {k})}〉) = 〈{vj | j ∈ Io \ (J ∪ J ′)}〉 = {0}.

This completes the proof of Lemma 4. �

Lemma 5 Suppose that k1 ≡ k2 ≡ 0 mod 2. Then equation (8.5) is satisfied.

The proof of Lemma 5 is similar to that of Lemma 4, which we omit.

The next lemma deals with the last subcase.

Lemma 6 Suppose that k1 + k2 ≡ 1 mod 2. Then equation (8.5) is satisfied.
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Proof. W.l.o.g. we assume k1 ≡ 1 mod 2 and k2 ≡ 0 mod 2.

We give a brief description of the steps that need to be carried out to prove (8.5) without showing
the detail.

Step 1: Prove that

C := (A1,0 +
∑

i∈I Ai,0) ∩ (A1,1 +
∑

i∈I Ai,0) = 〈{vj | j ∈ I}〉.

Step 2: k odd and k < k2.

Prove
C ∩ (A1,1 +Ak) = 〈{vj | j ∈ I \ {k}}〉

by showing vk 6∈ (A1,1 +Ak).

Let I ′ := {k ∈ I | k < k2, k odd}. Then we have

C ′ := C ∩ (∩k∈I′ (A1,0 +Ak)) = ∩k∈I′ (C ∩ (A1,0 +Ak)) =

∩k∈I′ (〈{vj | j ∈ I \ {k}}〉) = 〈{vj | j ∈ I \ I ′}〉.

Step 3: k odd and k > k2.

Prove
C ∩ (A1,0 +Ak) = 〈{vj | j ∈ I \ {k}}〉

by showing vk 6∈ (A1,0 +Ak).

Let I ′′ := {k ∈ I | k > k2, k odd}. Then we have

C ′′ := C ′ ∩ (∩k∈I′′ (A1,0 +Ak)) = ∩k∈I′′ (C ′ ∩ (A1,0 +Ak)) =

∩k∈I′′ (〈{vj | j ∈ I \ {I ′ ∪ k}}〉) = 〈{vj | j ∈ I \ (I ′ ∪ I ′′)}〉 = 〈{vj | j ∈ Ie}〉,

where Ie is the subset of all even numbers in I.

Step 4: k even and k < k1.

Prove
C ′′ ∩ (A1,1 +Ak) = 〈{vj | j ∈ Ie \ {k}}〉

by showing vk 6∈ (A1,1 +Ak).

Let J := {k ∈ Ie | k < k1, k even}. Then we have

D := C ′′ ∩ (∩k∈J (A1,1 +Ak)) = ∩k∈J (C ′′ ∩ (A1,1 +Ak)) =

∩k∈J (〈{vj | j ∈ Ie \ {k}}〉) = 〈{vj | j ∈ I \ J}〉.

Step 5: k even and k > k1.

Prove
D ∩ (A1,0 +Ak) = 〈{vj | j ∈ Ie \ {J ∪ k}}〉

by showing vk 6∈ (A1,0 +Ak).
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Let J ′ := {k ∈ Ie | k > k1, k even}. Then we have

D′ := D ∩ (∩k∈J ′ (A1,0 +Ak)) = ∩k∈J ′ (D ∩ (A1,0 +Ak)) =

∩k∈J ′ (〈{vj | j ∈ Ie \ {J ∪ k}}〉) = 〈{vj | j ∈ I \ {J ∪ J ′}} = {0}〉,

which proves (8.5). �

9 Some open questions

As we have seen from Theorem 1 that the logarithmic signature β constructed from the Baumeister-
de Wiljes method is tame provided the logarithmic signatures [A1,j1 , . . . , As,js ] and θ are known
and tame. Obviously, if θ or/and [A1,j1 , . . . , As,js ] are not tame, even they are known, no efficient
method is known regarding the factorization with respect to β. It is worth finding an answer to
the following interesting problem.

Question 1 Suppose [A1,j1 , . . . , As,js ], 1 ≤ ji ≤ ri, and θ are tame but they are not known.
Suppose further that β is strongly aperiodic. Can elements of G be (efficiently) factorized with
respect to β?

The result of the cryptanalysis of the enhanced version of MST3 [12] has shown that the scheme
is secure when fused transversal logarithmic signatures are used. More precisely, fused transversal
logarithmic signatures withstand the powerful Matrix-Permutation attack, a type of chosen plain-
text attack, against the scheme and moreover one can determine a bound on the complexity of the
attack for a given fused transversal logarithmic signature. It turns out that the complexity is less
than the input length of the scheme, see [12]. By virtue of the Baumeister-de Wiljes construction
method we would conjecture that the complexity of the Matrix-Permutation attack against MST3

is of size of the input length, when strongly aperiodic logarithmic signatures constructed in this
paper are used. Hence we put the following challenging and important question.

Question 2 Determine the complexity of the Matrix-Permutation attack of the enhanced version
of MST3, when strongly aperiodic logarithmic signatures constructed in this paper are used.

Recall that fusing blocks of a strongly aperiodic logarithmic signature constructed in this paper
remains a logarithmic signature of Baumeister-de Wiljes type. Furthermore, a logarithmic signature
β = [B1, . . . , Bs] used in MST3 of Question 2 should have a reasonable block size, say, |Bi| ≥ 26

for 1 ≤ i ≤ s. So, β is obtained by fusing blocks of a logarithmic signature constructed in Sections
7 and 8.

10 Conclusion

We introduced the concept of strongly aperiodic logarithmic signatures, having properties suitable
for use in cryptosystem MST3. We developed an algebraic approach based on the Baumeister-de
Wiljes method which enables the construction of such logarithmic signatures for elementary abelian
p-groups. The existence of strongly aperiodic logarithmic signatures not only extends the private
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key space of MST3 but would significantly contribute to its security. It is therefore worthwhile to
investigate further method for constructing strongly aperiodic logarithmic signatures for abelian
groups.
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