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Abstract

Scalability of symmetric ciphers is still not as nat-
ural as for public-key cryptosystems. Most of the
current block ciphers do not support freely vari-
able block and key lengths, nor do they allow free
memory-speed balancing. In this work we discuss
possible approaches to a scalable block cipher de-
sign and propose a new scalable scheme related
to the Feistel structure. We analyze the desirable
properties of the used building blocks and present
one of their possible implementation. Beside a se-
curity discussion of the cipher we present some ex-
perimental results regarding its statistical proper-
ties and efficiency. The nice property of the new
cryptosystem 1is its unlimited scalability and the
possibility of a memory-speed tradeoff by a con-
trolled security level.

1 Introduction

Scalability is a desirable property of cryptographic
primitives. Mathematically well-founded scalable
cryptographic primitives are useful not only be-
cause they enable us to adjust an encryption con-
figuration according to security and performance
requirements for a specific application, but also be-
cause they make it possible to adapt our cryptosys-
tems to a new situation in the event of a break-
through in computer design or a progress in math-
ematical theory.

An algorithm is called scalable, if 1ts basic pa-
rameters are alterable by design. For instance, a
block cipher is scalable, if 1ts block length n and
key length k can be adjusted without redefining or
extending the cipher. It is particularly important
that the security properties of a cryptographic al-

gorithm change in some predictable and naturally
expectable way, when one of its parameters has
been altered. For example, when varying the block
length of an iterative cipher, we should be able to
tell easily how many rounds need to be performed
to achieve a specified security level.

While most public key cryptosystems are scalable
intrinsically !, the scalability of symmetric block ci-
phers 1s not that common. The first modern block
ciphers like DES were not scalable at all. The can-
didates for the recent cryptographic standard AES
were already required to support three different key
lengths and some of them (e.g. RC6 [5] or Rijn-
dael [6]) supported even multiple block lengths, but
this is still not what we understand by full scala-
bility.

According to their scalability, block ciphers can
be classified into the following four categories:

e strongly scalable - ciphers which by design sup-
port any combination of block length n and key
length k (both in bits).

e fully scalable - ciphers with some minor restric-
tions regarding the format of n and k (e.g. n
must be a power of 2 and k& must be a multi-
ple of 32) but without upper limits for these
values.

e partially scalable - ciphers supporting only a
small finite set of possible values for n and k.

e not scalable - ciphers where n and k are fixed
by design.

Most of the AES candidates are only partially scal-
able ciphers. We think that in the future, block

IFor example, the key length of RSA can be increased
simply by choosing longer primes p and q.



cipher design will be moving towards full scalabil-
ity. Strongly scalable ciphers might be at least of
academic interest, even if there is no practical need
for them.

Full scalability is especially relevant for a soft-
ware implementation, because only a generic soft-
ware implementation of a scalable algorithm can
exploit all its capabilities. Hence, it is particularly
important to design scalability in such a way that it
can be effectively implemented in software. Hard-
ware solutions are usually more restricted because
of the hard-wired algorithms and limited resources
(e.g. smart cards) and can therefore usually imple-
ment only a constrained, fast version of an other-
wise fully scalable algorithm.

In what follows we first discuss the general ap-
proaches to a scalable cipher design. Then we pro-
pose our general scalable scheme which will lead
us, after some analysis, to a concrete scalable ci-
pher. Our cipher example is more software-oriented
but the same idea might be implemented in a more
hardware-suitable way as well. At the end of the
paper we present some experimental results regard-
ing the security and efficiency of our cipher.

2 Scalability Approaches by
Block Ciphers

2.1 Scalable Key Length

Iterative block ciphers usually use a main key for
generating a sequence of round keys and, possibly,
some key-dependent tables. Non-iterative block ci-
phers based on some specific mathematical objects
(e.g. permutations, polynomials, bases, etc.) at-
tempt to generate the appropriate randomly look-
ing objects depend on the key. In both cases the
key expansion algorithm is actually a simple pseudo
random number generator which tries to make all
key-dependent components of the cipher depending
on as many bits of the main key as possible.
Flexible key expansion algorithms, like the one
of RC6, support variable lengths of the main key
by design. In some of them it is necessary to gen-
erate more round keys (and therefore execute more
rounds) if we want to incorporate a longer main
key with the same quality. In general, it is pos-
sible to create a generic key expansion algorithm
with parameters k and k' > k which expands an
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Figure 1: Scaling Approaches

input sequence of k bits (the main key) to a unique
randomly looking sequence of &’ bits (the round
key material). Consequently, it is also possible to
separate the key expansion algorithm from the en-
cryption algorithm. Choosing an arbitrary combi-
nation of these two algorithms is not very advan-
tageous if we want to implement a cryptographic
standard like AES, because simplicity and porta-
bility are more important than versatility in this
case. The separation, however, might be useful for
some high-security applications. For example, pre-
computation attacks become much harder when the
communicating parties settle on one of many possi-
ble encryption configurations just before transmis-
sion.

2.2 Scalable Block Length

Scalability of block length n can be achieved either
through a modification of the size of the basic oper-
ations (primitives) used, or through a modification
of the encryption scheme. A 64-bit Feistel cipher in
Figure 1A, whose round operates on two 32-bit sub-
blocks, might be scaled to a 128-bit version either
by “doubling the size” of the round function from
F: {01132 = {0,132 to F : {0,1}5% = {0,1}54,
as shown in Figure 1B, or by doubling the number
of processed sub-blocks from 2 to 4 (Figure 1C).
In either case the way of scaling does not au-
tomatically ensure that the bigger version of the
cipher will have security properties equivalent to
the original ones. In general, scalability through
the primitives is more probable to retain equiva-
lent security properties than scalability through the
scheme. For example, if our 64-bit cipher used only
three simple mathematical primitives, say, an 8 x 8
bit key-dependent random S-box, addition modulo
216 and 16-bit bitwise XOR, then the 128-bit ver-
sion using the same structure with double-length
operations (i.e. 16 x 16 bit S-box, addition modulo
232 and 32-bit XOR) will very probably have the



expected security properties.

Ensuring the compatibility of security proper-
ties by scaling through the structure is less trivial.
One can, for example, define a chain of structures
$1, 89, 83,... and show by induction that if s; has
some security properties (e.g. the avalanche prop-
erty), then s;41 has these properties as well. Tf this
induction works for all important security proper-
ties, the chain of structures can be used for cipher
scaling. It is usually not enough to change only
the “width” of the structure (e.g. number of sub-
blocks). The “depth” of the structure (e.g. number
of rounds or complexity of a round) also has to be
increased to retain equivalent security properties.

Even if scaling through the primitives is more
straightforward, scalability through the scheme is
usually more practical for larger cipher versions.
For example, if we wish to create a 256-bit version
of the Feistel cipher in the same way as described
above, we would fail to implement a 32 x 32 bit S-
box. The reason for our problems is the exponen-
tially growing complexity of large non-linear prim-
itives. Scaling through the scheme is more practi-
cable in that case.

Of course, combinations of the mentioned two
scaling approaches are also possible. Tt might be
more convenient in some applications to use “a
somewhat larger” structure together with “a bit
bigger” primitives, rather than a completely dou-
bled structure or completely doubled primitives. A
memory-time tradeoff with a constant security level
might be achieved in this way.

3 Feistel Networks

Many 64-bit iterative block ciphers (e.g. Lucifer,
DES, FEAL, LOKI, GOST, etc.) are based on
the Feistel network (FN) because of its simplic-
ity and guaranteed self-invertibility. When we de-
note the block length of a cipher by n, the round
function of an FN utilizes a function of the form
f o {0,1} = {0,1}™, where m = 3 (see e.g.
Figure 1A). As the block length of an FN can not

be easily scaled through the primitives?, the classi-

?Doubling the “size” of f while preserving its crypto-
graphic complexity requires exponentially more resources.
Hence, designing and implementing a good f : {0,1}64 —
{0,1}%4, required for » = 128, is much harder than con-
structing f : {0,1}®2 — {0,1}%2, used for n = 64.
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Figure 2: Extended Feistel Networks

Figure 3: Unbalanced Feistel Networks

cal FN is not very suitable for constructing ciphers
with block length n > 64. For that reason some of
the AES candidates introduced the extended Feis-
tel networks (EFN). These modified structures use
four equally-sized sub-blocks and an %-bit function
f. Even if EFN were originally not constructed
to provide full scalability, a generalization of the
number of their sub-blocks can be used for scaling
the block length. For instance, when using a fixed
f:{0,13™ = {0,1}™, the schemes of Cast256 and
Mars can be principally scaled to any block lengths
of the form n = s - m, s € N, and the RC6 scheme
can be scaled to any n = s-m, s even. This is
a typical scaling through the structure. Unfortu-
nately, we are aware of no papers discussing either
the cryptographic properties of EFN with s > 4
in general, or presenting concrete scalable block ci-
phers based on these structures. General properties
of EFN with s = 4 based on an ideal f were ana-
lyzed in [1].

Another generalization of the Feistel struc-
ture are the so-called Unbalanced Feistel Networks
(UFN) introduced in [2]. This generalization works
with two sub-blocks of different lengths, i.e. the
original Feistel structure (Figure 3A) processing
two Z-bit halves is generalized to a structure with
two input blocks of lengths s and ¢ bits respectively
(n=s+1).

Such a structure is called an s-on-t UFN. The
s-bit sub-block 1s called the source, and the t-bit
sub-block the target. A UFN 1s called source heavy
when s > t (Figure 3B) and target heavy when ¢ > s



(Figure 3C). The special case of UFN for s =t is
the classical FN. A UFN is said to be homogenous if
its round function is identical in each round (except
for the round keys) and heterogenous otherwise.

Even if the main goal for introducing UFN was
generalizing the FN rather than implementing scal-
ability, these structures can be used to provide fully
scalable block length as well. For instance, the
block cipher BEAR [3], based on UFN, provides
full scalability by admitting variable s in its first
source-heavy round. BEAR and the other two ci-
phers presented in [3] are, however, not conven-
tional block ciphers, because they are built from
components that must be cryptographically secure
themselves. Such a design (a meta-cipher) is in fact
a conversion from one cryptographic primitive into
another. Besides the three meta-ciphers introduced
in [3] we know of no other fully scalable block cipher
proposals based on UFN.

4 Scalable Feistel-like Cipher

4.1 The Encryption Scheme

Our scalable cipher design, presented in this sec-
tion, was initially motivated by symmetric encryp-
tion based on group bases (see e.g. [8]). Tt can,
however, be described even without the knowledge
of that theory, because it is similar to the Feistel
networks.

Let n denote the block length of a cipher, k
the key length, and r the number of rounds. An
additional characteristic parameter m < % of
our encryption scheme will be called the seg-
ment length. A consecutive sequence of m bits
Tem40s -+ Temi(m—1), ¢ € N, of a binary vector »
will be called a segment. The left most segment of a
binary vector x will be denoted by xr,, and the rest
of the vector by xg. One round of our encryption
scheme is displayed in Figure 4. The binary oper-
ations @, @, and H are not particularly important
at this point. The scheme will work with any three
invertible binary operations.

The round works as follows. An n-bit input z is
split into two parts #7, and xg. First, a round key k;
is added to z g and the resulting value 2%, = rOk;
is fed into the hash function® h which produces an

8This is not a cryptographic hash function. It is just an
ordinary unkeyed hash function like CRC or similar check-

Figure 4: Round Structure

m-bit output. The output of h is added to xj,
and the resulting m-bit value z7 = zp @ h(z})
is transformed by a key-dependent random S-box
S into a unique (n — m)-bit value. The mapping
S {0,1}™ — {0,1}"~™ is realized by a table of
2™ uniformly distributed random (n — m)-bit val-
ues s;, thus, a computation of S(i) requires a single
table lookup S(7) = s;. The output of S is added
to &5 which results in yf, = 2, B.S(27 ). The 2] is
furthermore transformed by a permutation S-box
P which maps it on a unique m-bit value y;. The
mapping P : {0, 1}™ — {0, 1}™ is represented by
a table of 2™ key-dependent random m-bit values
pi, such that p; # p; for all 1 # j. (P is in fact
a permutation of 2™ elements.) The intermediate
output of the transformations above is an n-bit vec-
tor ¢ = y; ||yr. The final output y of one round is
obtained by a ¢-bit rotation of ¥/, i.e. y = rote(y).

Given a fixed pair of tables (S, P) we will de-
note the mapping performed by one round as y =
RSP (x k). An encryption y = ex(x) is per-
formed by r subsequent executions of a round, i.e.
zo =, x; = ROP) (2, 1 k), for i =1,...,r, and
y = x,.. The rotation by & bits performed at the
end of the last round can possibly be omitted (or
undone) because it does not contribute to the cryp-
tographic strength of the cipher.

A decryption operation £ = dg(y) can be per-
formed by executing r inverse rounds: z, = y,
T = R(S’P)(xi,ki), fori=r,...,1, and & = zg,

where R(»S’P)(y, k;) denotes the

ek sequence of oper-
ations: v = ¥, ||y = rot_¢(y); ¥, = P71 (y});
e =ypBS(@)); xr = 2 o h(2h); xr = 2, O ki;
and # = zr||zg. The binary operations @, & and
H denote the operations inverse to ©®, @, and H
respectively.

sums.



Figure 5: An UFN Related to Our Scheme

Obviously, the encryption scheme is pretty simi-
lar to a heterogenous UFN as demonstrated in Fig-
ure 5. One round of our cipher corresponds to two
rounds of an UFN - the first one source-heavy and
the second one target-heavy. The hash function A
corresponds to f; and the S-box S corresponds to
fo2, but unlike f; and f5 the mappings h and S do
not (directly) depend on the round keys. Another
specific attribute of our scheme are the operations
P and ¢ which are not present in the UFN. These
two elements are implied by the structure of an ex-
tended group basis. For more information about
how our structure has been derived from group
bases we refer to Section 6 of [9].

We would like to stress the fact that the S-boxes
S and P, used in our design, are large, pseudo-
random, and key-dependent. This approach does
not only increase the adversary’s uncertainty about
the round function, but it also makes it harder
to find strong differentials and input-output sums
that could be used for differential and linear crypt-
analysis respectively. Moreover, a random key-
dependent S-box is most probable to be resistant
against all attacks, including new ones that might
be invented in the future. A more detailed dis-
cussion on usage of key-dependent S-boxes can be
found, for instance, in [7] and [11].

4.2 Scalability

The encryption scheme based on the round function
presented in Figure 4 is suitable for implementing
fully scalable cryptosystems. The key expansion al-
gorithm can be implemented in a straightforward
way by using a pseudorandom number generator
(PRNG) which, given a seed of an arbitrary length
k, generates a unique pseudorandom sequence of

an arbitrary length &' > k. Such a sequence can be
used for constructing k;, S and P independently
on the values of the parameters n, m, k, and r.
In order to provide full scalability, the particular
function h used must be able to process inputs of
variable length (in fact, virtually all hash functions
can). Moreover, the binary operations ®, ¢, and
B must be computable for operands of any length.
Based on these premisses, our design can provide a
cipher instance for any combination of the param-
eters n, m, k, and r.

Depending on the particular building blocks used
(i.e. PRNG, h, ®, @, H, and &), one can implement
various ciphers based on our scheme. Hence, the
scheme can be understood as a framework for con-
structing scalable block ciphers. In what follows we
will discuss the variable building blocks in more de-
tail and present one concrete scalable block cipher
based on this scheme.

4.3 Key Expansion Algorithm

The task of the key expansion algorithm of our
cipher is generating randomly-looking objects S,
P, and k; from a main key K. The PRNG used
for that purpose should accept seeds of variable
length and should produce a pseudorandom num-
ber (PRN) sequence with very strong statistical
properties. The larger the amount of the expanded
key material needded (this amount depends mainly
on the value of m), the more important is the qual-
ity of the PRNG. The maximum seed length and
period length of the generator delimit the maxi-
mum achievable key space. The efficiency of the
generator is important for providing short key-
setup delays.

The criteria above suggest, on one hand, not
using very simple generators (e.g. linear congru-
ential generator) because of the security require-
ments and, on the other hand, not using very
computationally intensive generators (e.g. Blum-
Blum-Shub generator) because of efficiency. Sup-
posing the encryption scheme itself is secure (i.e.
it is not possible to reveal parts of S, P or k; by
less than min (2%, 27) trial encryptions), the PRNG
does not necessarily need to be cryptographically
secure. Note that the output of the PRNG 1s hid-
den within the scheme and, thus, the generator can
not be attacked directly.

A generator suitable for our key expansion is



the lagged Fibonacci generator with Lischer’s ap-
proach [12]. Tt not only generates a PRN sequence
with very good statistical properties, but 1t also
enables a scalable seed length. The period of the
generated sequence is very long. For instance, the
combination of lags (37,100) and word length 32
bits guarantees that the period of the sequence will
be 2131 and seeds of length up to 3200 bits can
be used. These values can be further improved by
changing the lags [12].

To strictly prevent any hypothetical attacks
based on a reconstruction of the secret PRN se-
quence, one might use a cryptographically se-
cure PRNG as well. Nevertheless, cryptographi-
cally secure generators are significantly slower than
the regular generators while providing (statistically
seen) “equally good” output. Moreover, crypto-
graphically secure generators are usually based on
some other cryptographic primitives (e.g. block ci-
phers etc.) that are supposed to be cryptograph-
ically secure themselves. Hence, usage of such a
PRNG would make our cipher just a conversion
from one cryptographic primitive to another.

As we want to provide for practical (rather
than provable) security, we suggest using a statisti-
cally strong (rather than cryptographically strong)
PRNG. If necessary, the reconstruction of the PRN
sequence can be hindered by discarding some parts
of the sequence (e.g. by using only the most sig-
nificant byte of every 32-bit word provided by the
lagged Fibonacci generator). Nevertheless, when
performing a sufficient number of rounds, no parts
of the PRN sequence can be revealed anyway.

4.4 Function h

The purpose of the function h i1s to compute an
m-bit hash value for an (n —m)-bit input vector z.
The output of h should be balanced, 1.e. when com-
puting h(z) for all possible inputs x, every possible
output value should appear roughly 2;% times.
Furthermore, h should be highly non-linear (see
e.g. [10]) and the output of the composed func-
tion h(xgr © ki) should not be predictable without
the knowledge of k;.

The simplest method for software implementa-
tion of h is chaining of a function p : {0,1}™ —
{0,1}™ as shown in Figure 6A. The binary oper-
ation ® used here should be an effectively com-
putable group operation on {0,1}™, like m-bit

C Two-level D Double

Figure 6: Possible implementations of h

XOR, addition mod 27 etc. The function p must
be bijective to ensure that all 2 possible output
values appears equally frequently. The strongest
candidate for p is a key-dependent random permu-
tation of 2 elements, because it makes the output
of h unpredictable without knowledge of the key.
(Note that the table P might be reused for that
purpose.)

However, the chaining displayed in Figure 6A is
not very efficient. Especially for small m it needs
too many serial steps to compute the hash. Signifi-
cantly faster implementations of h are possible with
more parallelism. A tree structure like in Figure 6B
is most suitable for hardware. A two-level chaining
shown in Figure 6C can perform well in software. In
the first step one computes an intermediate m’-bit
hash value using the usual chaining. The constant
m’ should be chosen as the maximum word length
which supports an effective execution of ® on the
used platform (usually 32 bits). Tn the second step
one reduces the m’-bit intermediate hash to the fi-
nal m-bit value. When m = 8 and m’ = 32, say,
the word-wise computation of A can be about four
times faster than the byte-wise version.

Among the fastest candidates for the bijection
P :{0,1}™ — {0,1}™ are some simple non-linear
functions like:

o f(x) = rot.(x), where c is relatively prime to

m/



o f(z) = cx (mod 2’”/), where ¢ is an m/-bit
prime

o f(x) = (22 4+ 1) (mod 2’”/), this function is
used in RC6, for example.

Because of the secret value k; (see e.g. Figure 4)
it 1s not possible to directly manipulate the output
of h by varying xg. Nevertheless, the designs A
and B presented in Figure 6 make it at least possi-
ble to achieve all 2™ possible outputs of h with
just 27 different inputs rr. A similar manipu-
lation (with 2™ instead of 2™ inputs) is possible
in the design C. Although this property of i does
not seem to be particularly useful for an attack?,
it can be, if desired, easily avoided e.g. by using a
construction based on two independent sub-hashes
shown in Figure 6D. For instance, when hq is com-
puted according to Figure 6C and hs is defined as
ha(z) = hi(rot.(z)), where ¢ is relatively prime
to m’, any contrived manipulation of the output

h(z) = hy(x) ® ha(x) becomes much harder.

4.5 Binary Operations

Until now there have been four binary operations
used in our cipher:

e O, acting on {0, 1}*~™ used for the round-key
addition,

e ®@, acting on {0,1}™, used for the chaining in
h

bl

e @, acting on {0, 1}™, used for adding the out-
put of h to xy, and

e H, acting on {0,1}"~™ used for adding the
output of S to 2.

These operations must be efficiently computable
on a given platform for all allowed combinations
of n, m, and m’. Furthermore, the operations ®,
@, and H must be easily invertible. For example,
there must exist an efficiently computable binary
operation & such that a b S b = a for all a,b €

0,1},

4Tt would be much more useful for an adversary if he
could minimize the number of different outputs of A when
varying z g, because that would decimate the randomizing
effect of S. Mazimizing the number of outputs is the oppo-
site of what the adversary wants.

It has been shown in [4] that using operations
from incompatible mathematical groups is advan-
tageous for the quality of a cipher. Whenever an
output of a group operation o; is used as an input
into operation os, the two operations should not be
associative and distributive [4].

In accordance with the requirements above we
suggest alternating XOR with an integer addition
mod 2™ in the following way:

e ® - bit-wise XOR
e @ - integer addition (mod 2™")
e &® - bit-wise XOR

o H - word-wise addition (mod 2’”/) of two vec-
tors

The binary XoR and the modular + are included
in the instruction sets of virtually all processors
and can be thus performed very efficiently on any
platform. The operations @ and H process their
operands as arrays of m’-bit words. This improves
the speed in comparison with a segment-wise pro-
cessing and, in case of H, it also improves the cryp-
tographic properties. An m’-bit addition (m’ > m)
creates more complex dependencies between the in-
put and output bits than an m-bit addition. Such
a word-wise processing of vectors can either be per-
formed directly by a processor (e.g. using the MMX
instruction set of the Pentium CPU family), or else,
it can be easily implemented in software with a sim-
ple loop.

4.6 Bit Rotation

The purpose of the bit rotation at the end of a
round is to ensure that in different rounds a seg-
ment of the encrypted n-bit vector is processed in
different ways. Because of the rotation a particular
segment of the plaintext is acting in some rounds
as xy,, in the other rounds as a part of 2, and is al-
ways influenced by different columns of the random
table S. The number of different ways in which an
input segment can be transformed into an output
segment is significantly increased in this manner.
In order to maximize this effect, the value ¢
should be relatively prime to n. In terms of cy-
cles (as discussed e.g. in [2]) this will make our
scheme a prime network. Furthermore, to improve



the diffusion of the word-wise operation H, & should
be roughly equal to mTI and should be relatively
prime to m’. That will ensure that every bit of
the input will alternately appear on both lower-
order and higher-order positions within different
m’-bit words. These regular bit exchanges will cre-
ate more complex dependencies between the bits,
because without them the modular addition used
in B would only spread the information within ev-
ery m/'-bit word from the lower order bits to the
higher order bits, but not vice-versa.

When supposing a fixed m’ for a given platform,
we can make a universal suggestion that works fine
for all usual values of n. For instance, when m’ =
32 and n is even & = 17 is a suitable rotation length.
Analogously, &£ = 31 might be used when m’ = 64.

4.7 Cipher Example

In Appendix A we present a C code sample of a fully
scalable cipher based on our scheme. The building
blocks of the cipher are implemented according to
the discussion in Sections 4.3 to 4.6. The key ex-
pansion algorithm is based on the lagged Fibonacci
generator with Lilscher’s approach (Sec. 4.3), the
hash function based on Figure 6C uses p’ of the
form p'(x) = ¢ - & mod 2™ and the binary oper-
ations are implemented according to Section 4.5.
The values of the constants m’ and ¢ are 32 and 17
bits respectively.

5 Security Considerations

The most important question regarding security of
our encryption scheme is the number of rounds that
need to be executed for a given pair (n, m) in order
to ensure practical security. We consider the ci-
pher as practically secure when the number of trial
encryptions needed to reconstruct the decryption
function is equal or larger than the minimum of
the following two values: the number of all possi-
ble plaintexts and the number of all possible keys.
We attempt to find an answer to this question in
two ways - an analytical and an experimental one.

5.1 Analytical Approach

Referring to Figure 4, we will now analyze the prop-
erties of our encryption scheme based on statis-
tically strong components. Let us suppose that

each of the 2™ possible outputs of h is produced
with the same probability. An h based on Figure 6
meets this requirement whenever the used function
p (resp. p') is a bijection. Let us furthermore sup-
pose that S produces a random (n — m)-bit vector
for each of its possible inputs, and P produces a
unique random m-bit vector for each of its possi-
ble inputs. S and P meet these requirements with
very high probability when they have been gener-
ated by a statistically strong PRNG. On the basis
of these assumptions, the sum zy & h(z’;) takes
on every possible value with probability 2% and,
consequently, both y7, and yg will change in one of
2™ possible ways randomly, whenever either zj, or
z g have changed. From a statistical point of view,
the transformations performed by different rounds
of our cipher can be considered as independent, be-
cause the round keys k; are generated at random,
and the operation ® is incompatible with both ®
and H. Consequently, the number of different ran-
dom ways in which an input x can be modified into
an output y by »r rounds is 2. To reconstruct
a mapping consisting of 27 point-wise indepen-
dent random pairs of input and output values one
needs to encrypt 27 different inputs. This num-
ber is larger than the number of all possible inputs
when r > = It follows that -~ is the minimal
practically secure number of rounds. When k < n,
the complexity O(2""™) must only be greater than
the complexity of an exhaustive key search O(2*)
and, hence, the minimal practically secure num-

ber of rounds 1s % in that case. It follows that at

least min([ -], [%]) rounds should be executed for

a given configuration (n,m, k).

The analysis above is based on assumptions
which might not always be fulfilled. For instance,
even a strong PRNG can sometimes generate an
array S whose rows S; and S; are equal for some
¢ and j. A cipher using such an S can not ensure
2™ possible differences between xp and yf in every
round and, hence, should perform more than just
min([ =], [%]) rounds. Even though the probabil-
ity of generating such an unfortunate S is very low
for typical values of n and m (e.g. 0.25 x 10731
for n = 128, m = 8, [9]), we suggest performing
one additional round® to provide a certain security

5Note that the cryptographic contribution of this one ad-
ditional round in our cipheris at least equal to a contribution
of two additional rounds in a UFN (Fig. 5).



Figure 7: Randomness Test Setup

margin. Consequently, the total number of rounds
which we propose for a given configuration (n, m, k)

(R

5.2 Statistical Approach

Statistical analysis based on randomness testing is
another technique for evaluating of the quality of a
block cipher (see e.g. [13]). We have used this ex-
perimental approach for evaluating the secure num-
ber of rounds. Hereby we encrypted a long aperi-
odic sequence, once without and once with a small
difference A added to every block. Then, we mea-
sured the randomness of differences between the
two resulting ciphertexts (Figure 7).

This approach statistically simulates a differen-
tial analysis. We repeated the experiment for sev-
eral different keys and differences. The random-
ness of every output was measured by the DieHard
battery of randommess tests [14] and classified as
passed, or suspect. Because every sequence of uni-
formly distributed random bits should appear with
the same probability, even a perfect PRNG some-
times generates a sequence which “fails” a random-
ness test. In the particular case of DieHard test
suite, on average, 0.0023 of the sub-tests will falsely
suspect a sequence to be “not random”, even it
were. The rate of such false suspections will stay
between 0.0006 and 0.0040 for virtually all strong
PRN sequences. The graph in Figure 8 shows the
dependence between the number of rounds and the
probability of producing a suspect result.

It is obvious that the probability sinks exponen-
tially with the number of rounds and after a spe-
cific number of rounds it keeps oscillating around
0.0023. The curves in the graph show, for instance,
that the configuration (n = 64, m = 8) is statisti-
cally secure after four rounds which is about half of
the suggested value [2] 4 1. From the statistical
point of view the suggested security margin (twice

B oA

3N

iRaa

Rounds

Figure 8: Round profile for n = 64, m = 4,8,12,16

as many rounds as needed) appears to be robust.

5.3 Adjustability

The analysis in Section 5.1 suggests that the se-
curity of our cryptosystem can be adjusted in two
different ways:

1. By increasing the number of rounds. This ap-
proach does not increase the memory require-
ments. Security is improved at the cost of
speed.

2. By increasing the segment length m. This ap-
proach does not slowdown the cipher. Security
is improved at the cost of memory.

The experimental results presented in Section 5.2
have confirmed this behavior as well.

Obviously, our cipher enables a tradeoff between
security, memory, and speed. Any one of these
three characteristics can be improved at the cost
of the other two. In this way the cipher can be
adjusted for usage in various environments. For in-
stance, when implementing a 64-bit version of our
cipher on a smart card, we can use m = 8 and
perform 9 rounds (9 = [%] + 1). The resulting
memory requirements of roughly 2 KB will com-
fortably fit into the restricted memory space of a
smart card. On the other hand, when implement-
ing a 64-bit cipher on a modern PC, we can rather
use m = 16 which ensures the same security with
just 5 rounds (5 = [%] +1). The resulting memory



requirements of 512 KB which would be too high
for a smart card will cause no problems in this case.
Beside the full scalability, this is another attractive
property of our encryption scheme.

6 Efficiency

The achievable encryption speed substantially de-
pends on the number of performed rounds. This
number can be reduced without compromising the
security when a larger m is used. However, the
size of the S-box as well as permutation P grow
exponentially with larger m. For example, we need
altogether only 4 kB for the configuration (n =
128, m = 8), 64 kB for (n = 128, m = 12) but al-
ready 1 MB for (n = 128, m = 16). One should ba-
sically use m as large as possible (i.e. a value which
does not cause any implementation problems on a
given platform) because of both speed and security.
Nevertheless, the combination of » = m = /n ap-
pears to be a reasonable memory-speed tradeoff for
most applications.

We have implemented a generic version of our al-
gorithm in C4++ and tested the encryption speeds
on a Pentium IT 350 MHz system. In spite of
the fact that our implementation preferred versa-
tility to performance, the achieved throughput of
e.g. 3682 KB/s with (n = 128, m = 12,r = 12)
would make us a middle class among the AES can-
didates [15]. We believe that a highly optimized C
code written specially for one particular configura-
tion could do much better. A speed up by factor
of 2 is thinkable. Some other measured encryp-
tion speeds and the corresponding memory require-
ments are listed in Table 1.

Configuration Throughput | Memory Req.
n m r KB/s KB
64 8 9 3488 2
64 12 7 3986 32
64 16 5 4542 512
128 8 17 2849 4
128 12 12 3682 64
128 16 9 3752 1024
256 16 17 2248 2048
512 16 33 1408 4098

Tab. 1. Throughput and Memory Requirements
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7 Conclusions

We have discussed the scalability of block ciphers
in general and proposed a new scalable scheme for
a block cipher design. Our main goal was to keep
the proposal general and place the emphasis on the
scalability and efficiency of the scheme, rather than
to design a concrete standard-like cipher, optimal
on all platforms.

Our design is similar to a heterogenous UFN. We
have discussed desired properties of the used build-
ing blocks and suggested possible realization which
led us to a particular fully scalable block cipher -
just one of many possible examples. Our encryp-
tion scheme not only enables to scale for block and
key length, but it also makes it possible to find an
appropriate memory-speed-security tradeoff for a
particular application.

According to our experimental results, the cipher
appears to have robust security properties com-
bined with a sufficient encryption speed. Neverthe-
less, we believe that many similar scalable schemes
can be designed - some of them certainly more ef-
fective than ours. With this proposal we wish to
stress the need for fully scalable block ciphers and
to 1nitiate more discussion on the topic. We hope
to see more mathematically well-founded scalable
designs in the future.
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A Source Code Example

This appendix contains core routines of
our cipher implemented in C. Complete
code in both C and C++4 can be found on

http://wuw.exp-math.uni-essen.de/~valer/
Iterative/.

/#== Gemeral definitions /
#include<stdlib.h>
#include<memory.h>

typedef unsigned char BYTE;
typedef unsigned int UTNT;
typedef int BOOL;

#define FALSE 0
#define TRUE 1
/*== Type and constant definitions /

#define MYWORD_LEN 4

#define MYWORD_BITS ((MYWORD_LEN) <<3)

#define MYWORD_MASK (((UIOT)-1) >> ((sizeof (VINT) << 3) - MYWORD_BITS))
#define SHIFT 17

#define COMPL_SHIFT (HYWORD_BITS - SHIFT)

#define SEGH_BITS 12

#define HASH_MASK ((MYWORD) (((MYWORD)-1) >> (MYWORD_BITS - SEGHM_BITS)))
#define TOV_HASH_MASK ((MYWORD) "HASH_MASK)

#define TABLE_ROVS (1 << (SEGHM_BITS))

typedef UIIT HYWORD; // The optimal type for fast word operatioms (32 bits)

typedef UTHT HASH;

typedef struct {
HASH Perm[TABLE_ROWS] ;
HASH InvPerm[TABLE_ROWS];
HYWORD SBox[11;

// Permutation P
// The inverse permutation P~{-1}
// The S-Box beginning

} TABLE;

/#== Global variables /
UInT n_uBlockLen;

UInT n_nRounds;

HYWORD*  m_pRoundKeys;

TABLE*  m_pTables;

/#== Encryption routines /

void XorBlocks (HYWORD* pA, comst MYWORD* pB, comst UINT uLen)
{
const HYWORD* comst plast = pA + ulen;
while(ph < pLast)
*(pA++) "= *(pBi+);



void AddBlocks (HYWORD* ph, comst MYWORD* pB, comst UINT uLen)
{
const MYWORD* comst pLlast =
while(ph < pLast)
*(pA++) += *(pB++);

pA + ulen;

void SubtractBlock(MYWORD* pA, const HYWORD* pB, const UINT uLen)
{

const HYWORD* comst plast = pA + ulen;
while(ph < pLast)
*(pA++) -= *(pB++);
}
void RotRight (MYWORD* pA, comst UINT uLen)
{
const HYWORD* const pFirst = ph;
HMYWORD Tmp;
ph += ulen - 1
Tmp = *ph >> COMPL_SHIFT;
while(ph > pFirst)
#ph = (MYWORD_MASK & (#pA << SHIFT)) |
(k(pA - 1) >> COMPL_SHIFT);
PA-=;
}
#ph = (MYWORD_MASK & (xph << SHIFT)) | Tmp;
}
void RotLeft (HYWORD* pA, const UINT uLen)
{
const HYWORD* comst plast = ph + uLen - 1;
const HYWORD Tmp = (MYWORD_MASK & (*ph << COMPL_SHIFT));
while(pA < plast)
{
*ph = (*pA >> SHIFT) |
(HYWORD_MASK & (*(pA + 1) << COMPL_SHIFT));
PhAt+t;
}
*ph = (xph >> SHIFT) | Tmp;
}
MYWORD GetHash(comst MYWORD* pVect, comst UINT uLen)
{
#define _PRIHE 3010192529
MYWORD Sum = 03
HMYWORD Res = 03
const HYWORD* comst plast = pVect + ulen;
while(pVect < pLast)
Sum = _PRIME * (Sum + *pVect++);
while (Sum)
{
Res “= Sum;
Sum >>= SEGH_BITS;
}
return Res & HASH_MASK;
}

void EncryptBlock(BYTE* Block)

HYWORD* const pBlock = (MYHORD#*)Block;

const UTNT nWordsTnBlock = m_uBlockLen / MYWORD_LEN;
UTOT jj, ii = m_nRounds;

HYWORD* pKey = m_pRoundKeys;

while (ii--)

jj = *pBlock & HASH_MASK;

#pBlock &= TNV_HASH_MASK;

XorBlocks (pBlock, pKey, nWordsInBlock);

pKey += nWordsTnBlock;

jj “= GetHash(pBlock, nHordsInBlock);

AddBlocks (pBlock, m_pTables->SBox + (jj * nHordsInBlock), mWordsTnBlock);
#pBlock |= m_pTables->Pern[jj1;

RotRight (pBlock, mWordsTnBlock);

¥
void DecryptBlock(BYTE* Block)

HYWORD* const pBlock = (MYHORD#*)Block;

const UTNT nWordsTnBlock = m_uBlockLen / MYWORD_LEN;

UTOT jj, ii = m_nRounds;

HYWORD* pKey = m_pRoundKeys + (m_nRounds - 1) * nHordsTuBlock;

while (ii--)

RotLeft (pBlock, mWordsTnBlock);

jj = m_pTables->InvPerm[*pBlock & HASH_HASK];

#pBlock &= TNV_HASH_MASK;

SubtractBlock(pBlock, m_pTables->SBox + (jj * mWordsInBlock), mWordsTnBlock);
pKey -= nWordsInBlock;

jj “= GetHash(pBlock, nHordsInBlock);

XorBlocks (pBlock, pKey, nWordsInBlock);

*pBlock |= jj;

/*== Pseudorandom number gemerator
typedef double ULOIGLONG;

#define MY_HAX_LONG_RAID  OXFFFFFEFF
#define MY_LODG_RAID_BITS 32

/% Gemerator lags and Luetscher’s comstants */
enum Constants

{

L= 37,

K = 100,

H = HY_LONG_RAID_BITS,

HAX_SUCCESSIVE_CALLS = 100,

SEPARATING_CALLS_IUM = 1009 - HAX_SUCCESSIVE_CALLS
LS

/% Constants used for spreading a seed of an arbitrary lemgth */
/% to (K * sizeof (ITIT) * 8) bits during the Srand procedure */
typedef struct

{
UTOT uh;
UTOT uC;
UTOT u$;

¥

CONGRUENT;

#define CONGRUENT_NUM 3
static const CONGRUENT _CongCfg[CONGRUENT_NUM] =

{ {25214636130, 4574191337, 110},
{18124332530, 26105406970, 13U},
{40920421250, 30101924810, 170} };

/* Global variables used by the PRIG #/
static UTOT m_ullexth;

UIOT n_ullextB;

UIOT m_uList[K];

UTIT m_ulum0fCalls;

static
static
static
static void Clear(void)
{

memset(m_uList, 0, sizeof(m_uList));

¥

static void GenXor(UINT uSeed, UINT uwh, UINT uC, UINT uStep)
{
UINT ii, §j;

for(ii = 0, jj = 0; ii < K; ii++, jj += uStep)
uSeed = uA * uSeed + uC;

// Rotate uSeed to the left by (ii % 32) bits
m_uList[jj % KI "= (uSeed << (ii & 31)) | (uSeed >> (32 - (ii & 31)));

¥
¥
static void GenShuffle(UINT uSeed, UINT uhA, UINT uC)
{
UINT ii, n, tmp;
for(ii = K - 1; (int)ii > 0; ii--)
{
uSeed = wh * uSeed + uC;
n = (UIOT)( ((ULOOGLONG) (ii + 1) * uSeed) /
((ULOOGLONG)HY_MAX_LONG_RAID + 1) );
// swap the ii-th and n-th element
tmp = m_uList[iil;
m_ulist[ii] = m_ulist[n];
m_ulist[n] = tmp;
¥
¥
static void GenWarmUp(void)
{
UINT ii;
n_ullexth = 0;
m_ullextB = K - L;
n_nllum0fCalls = 0;
// Warnm up the gemerator by executing four full cycles
for(ii = 0; ii < (K << 2); ii++)
{
m_uList[m_ulextA] = m_ulist[m_ulextA] - m_uList[m_ulextB];
if ( +4m_ullexth == K ) m_ullextd = 0;
if ( ++m_ullextB == K ) m_ullextB = 0;
¥
¥
void Srand(const void* pSeed, UINT uSeedLen)
{
UINT* pSeedWords = (UINT#)pSeed;
UINT uSeedWords = uSeedLen / sizeof (UINT);
UINT uRestLen = uSeedLen % sizeof (UTNT);
UINT ii = 0
Clear();
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¥

// Use the seed words for XOR-ing and shuffling alternately
while (uSeedHords)
{
GenXor (
*pSeedords,
_CongCfglii % CONGRUENT_IUM].uA,
_CongCfglii % CONGRUENT_IUM].uC,
_CongCfglii % CONGRUENT_NUH].uS

uSeedWords—-;
pSeedWords++;
1i44;

if ('uSeedWords) break;

GenShuffle(
*pSeedWords,
_CongCfglii % CONGRUENT_NUM].uh,
_CongCfglii % CONGRUENT_NUH].uC
)3
uSeedWords--;
pSeedWords++;
1i44;

¥

// Use also the last few bytes of seed, if present
if (uRestLen > 0)

{
UINT uSeedRest = 0;
memcpy (fuSeedRest, pSeedWords, uRestLen);
if(ii & 1)
GenShuffle (
uSeedRest,
_CongCfglii % CONGRUENT_NUM].uA,
_CongCfglii % CONGRUENT_NUH].uC
)3
else
GenXor(
uSeedRest,
_CongCfglii % CONGRUENT_NUM].uA,
_CongCfglii % CONGRUENT_NUH].uC,
_CongCfglii % CONGRUENT_NUM].uS
)3
¥
GenHarmlp () ;

UINT Rand(void)

¥

UTOT ii;
UTOT uResult;

// Luetscher’s approach
if (++m_ulum0fCalls > HAX_SUCCESSIVE_CALLS)

{
for(ii=0; ii < SEPARATING_CALLS_NUM; ii++)
{
m_uList[m_ullextA] = m_uList[m_ullextA] - m_uList[m_ullextB];
if ( ++m_ullexth == K ) m_ullextd =
if ( ++m_ullextB K ) m_ullextB = 03
n_ullum0fCalls = 1;
¥

// Gemerate a 32-bit pseudorandom number
uResult = m_uList[m_ullextA] - m_uList[m_ullextB];
m_ulist[m_ullextA] = uResult;

if ( ++m_ullexth K ) m_ullextd = 03

if ( ++m_ullextB K ) m_ullextB = 03

return ukesult;

UINT RandMax (UINT uMax)

¥

// Gemerate a 32-bit psendorandom mumber from [0,uHax-1]
return (UIOT) ((VLONGLONG)uMax * Rand() /
((VLONGLONG)MY_HAX_LONG_RAND + 1));

void RandBuffer(BYTE* pBuffer, UINT uLen)

{

// Tnitialize a buffer with pseudorandom values
const BYTE# pEndl = pBuffer + (uLen & OxFFFFFFEC);
BYTE+ pEnd2;

UTOT ulastBlock;

while(pBuffer < pEnd1)

{
#(UTNT#) pBuffer = Rand();
pBuffer += 4;

pEnd2 = pBuffer + (uLen & 0x3);
uLastBlock = Rand();
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¥

/#== Cipher initialization routines

while (pBuffer < pEnd2)

{
*pBuffer = ulLastBlock & OxFF;
pBuffer++;
ulastBlock >>= 8;

void Init(UINT uBlockLen)

{

¥

m_uBlockLen = uBlockLen;

m_nRounds = ((m_uBlockLen << 3) + SEGH_BITS - 1) / SEGH_BITS + 1;
n_pRoundKeys = NULL;
m_pTables = NULL;

void Finish(void)

¥

free (n_pRoundKeys) ;
free(m_pTables);

static BOOL GenerateTables(void)

{

¥

/* Allocate buffer for P and S */
const UINT uWordsInArray = TABLE_ROWS * m_uBlockLem / MYWORD_LED;
int jj;
HYWORD* pValue;
HYWORD* pEnd;
HYWORD* pTableBuffer = (HYWORD*)malloc(
sizeof (HYWORD) *
(sizeof (TABLE) / MYWORD_LEN + nWordsInirray - 1)
)3

if (pTableBuffer == NULL) return FALSE;
m_pTables = (TABLEx)pTableBuffer;

/* Gemerate random P and P~(-1) #/
for(jj = 0; jj < TABLE_ROWS; jj++)
m_pTables->Pern[jjl = jj;
for(jj = TABLE_ROWS - 1; jj > 0; jj--)
{
UTOT n = RandMax(jj + 1);
UINT Tmp = m_pTables->Pern[jjl;

m_pTables->Pern[jj1 = m_pTables->Pern[n];
n_pTables->Perm[n] = Tmp;

m_pTables->InvPern[m_pTables->Perm[jj1]1 = jj;
¥
n_pTables->InvPern[m_pTables->Pern[01] = 0;

/% Gemerate random § */
RandBuffer((BYTE*)m_pTables->SBox, nWordsInArray # HYWORD_LEN);

/% ... clear the lowest m bits */
pValue = m_pTables->SBox;

pEnd = m_pTables->SBox + nWordsTnArray;
while (pValue < pEnd)

*pValue &= TOV_HASH_MASK;
pValue += m_uBlockLen / MYWORD_LEN;

return TRUE;

static BOOL GenerateRoundKeys(void)

{

¥

/* Allocate buffer for k_i */

HYWORD* pKey;

HYWORD* pEnd;

const UTNT nWordsTnArray = m_nRounds * m_uBlockLen / MYHORD_LEN;
n_pRoundKeys = (HYHORD*)malloc(sizeof (HYHORD) * nHordsInArray);

if (n_pRoundKeys == NULL) return FALSE;

/% Genmerate random k_i */
RandBuffer((BYTE*)m_pRoundKeys, nWordsInArray * HMYWORD_LEN);

/% ... clear the lowest m bits */
pKey = m_pRoundKeys;

pEnd = m_pRoundKeys + nWordsTnArray;
while (pKey < pEnd)

{

*pKey &= TOV_HASH_MASK;
pKey += m_uBlockLen / MYWORD_LEN;

return TRUE;

BOOL SetKey(BYTE* pKey, UINT uKeyLen)

Srand(pKey, uKeyLen);
return( GemerateTables() && GemerateRoundKeys() );



