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Abstract

This paper aims to present new upper bounds on the size of separating hash families. These
bounds improve previously known bounds for separating hash families.
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1 Introduction

Let h be a function from a set A to a set B and let C1, C2, . . . , Ct ⊆ A be t pairwise disjoint
subsets. We say that h separates C1, C2, . . . , Ct if h(C1), h(C2), . . . , h(Ct) are pairwise disjoint.
Let |A| = n and |B| = m. We call a set H of N functions from A to B an (N ;n,m)-hash
family. We say that H is an (N ;n,m, {w1, w2, . . . , wt}) separating hash family, and we shall also
write as an SHF(N ;n,m, {w1, w2, . . . , wt}), if for all pairwise disjoint subsets C1, C2, . . . , Ct ⊆
A with |Ci| = wi, for i = 1, 2, . . . , t, there exists at least one function h ∈ H that separates
C1, C2, . . . , Ct. The multiset {w1, w2, . . . , wt} is the type of the separating hash family. Obviously,
we have 2 ≤ t ≤ m and

∑t
i=1wi ≤ n. Separating hash family with t = 2 was introduced in [13]

and the general case in [16]. It is worth remarking that various well-known combinatorial objects
may be viewed as special cases of separating hash families. For example, if w1 = w2 = . . . =
wt = 1, an SHF(N ;n,m, {1, 1, . . . , 1}) is called a perfect hash family which is usually denoted by
PHF(N ;n,m, t). Perfect hash families have been studied extensively, see for instance, [1, 3, 5, 9,
10, 12, 18]. A w-frameproof code is a separating hash family of type {1, w} [6, 11, 4] and a w-secure
frameproof code is a separating hash family of type {w,w} [13] . Further, a w-IPP code (code with
identifiable parent property) [7, 11, 17], is necessarily a PHF with t = w + 1 and an SHF of type
{w,w}.

An SHF(N ;n,m, {w1, w2 . . . , wt}) can be depicted as an N × n array A in which the columns
are labeled by the elements of A, the rows by the functions hi ∈ H and the (i, j)− entry of the
array is the value hi(j). Thus, an SHF(N ;n,m, {w1, w2 . . . , wt}) is equivalent to an N × n array
with entries from a set of m symbols such that for all disjoint sets of columns C1, C2, . . . , Ct of A
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with |Ci| = wi, for i = 1, 2, . . . , t, there exists at least one row r of A such that

{A(r, x) : x ∈ Ci} ∩ {A(r, y) : y ∈ Cj} = ∅,

for all i 6= j. We call A the array representation or matrix representation of the hash family.

In general, for given N , m, {w1, w2, . . . , wt} we want to maximize n. The determination of
bounds for n has been subject of much research recently [2, 8, 11, 14, 15, 16].

The best known upper bounds on n for separating hash families of type {w1, w2} are the following.

Theorem 1 ([5],[11]) Suppose there exists an SHF(N ;n,m, {1, w}) with w ≥ 2. Then n ≤
w(md

N
w
e − 1).

Theorem 2 ([16]) Suppose there is an SHF(N ;n,m, {2, 2}). Then n ≤ 4md
N
3
e − 3.

For the special case {w1, w2, w3} = {1, 1, 2} we have the following strong bound.

Theorem 3 ([16]) Suppose there is an SHF(N ;n,m, {1, 1, 2}). Then n ≤ 3md
N
3
e+2−2

√
3md

N
3
e + 1.

A general bound for SHF of type {w1, . . . , wt}) has been obtained by Stinson and Zaverucha
in [14]. In [2] Blackburn, Etzion, Stinson and Zaverucha introduce a new method to establish
a significant bound for SHF of type {w1, . . . , wt}, which considerably improves the bound in [14],
when wi ≥ 2 for all i = 1, . . . , t. We record this bound for SHF of type {w1, . . . , wt}) in the following
theorem.

Theorem 4 ([2]) Suppose an SHF(N ;n,m, {w1, . . . , wt}) exists. Let u =
∑t

i=1wi. Then

n ≤ γmd
N

(u−1)
e
,

where γ = (w1w2 + u− w1 − w2), and w1 and w2 are the smallest two of the integers wi.

Note that the constant γ in Theorem 4 depends on w1, w2, . . . , wt. If we take γ =
(
u
2

)
for the

theorem, we obtain a bound derived from the graph theoretical method [2], and if we take γ =
2(u− w1)w1 − w1, where w1 is the smallest of the integers wi, we have the bound in [14].

It should be noted that there exist further bounds for type {w1, w2} and for general type
{w1, w2, . . . , wt} [14, 15]. However as those bounds have been improved by the bound of Theo-
rem 4, they are not included here.

To date, Theorem 4 presents the best known bound for SHF of general type {w1, . . . , wt}.

In this paper we present new strong bounds for SHF which improve the Blackburn-Etzion-Stinson-
Zaverucha bound of Theorem 4.
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2 A bound for SHF of type {w1, . . . , wt}

We aim to prove the following results.

Theorem 5 Suppose there exists an SHF(N ;n,m, {w1, w2}). Let u = w1 + w2. Then

n ≤ (u− 1)m
d N
(u−1)

e
.

Theorem 6 Let t ≥ 3 be an integer. Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}). Let
u =

∑t
i=1wi. Then

n ≤ (u− 1)(m
d N
(u−1)

e − 1) + 1.

Theorem 5 is an immediate consequence of the subsequent Lemma 1 and Theorem 7. And Theorem
6 is derived from Lemma 1 and Theorem 8.

We first include a basic but useful lemma that can be found, for example, in [2].

Lemma 1 Let c ≥ 2 be an integer. Suppose there exists an SHF(N ;n,m, {w1, . . . , wt}). Then
there exists an SHF(dNc e;n,m

c, {w1, . . . , wt}).

Proof. Let H = {h1, h2, . . . , hN : X −→ Y } be an SHF(N ;n,m, {w1, . . . , wt}). Let d := dNc e.
Consider d subsets A1, . . . , Ad of {1, 2, . . . , N} such that |Au| = c for u = 1, . . . , d and A1∪. . .∪Ad =
{1, 2, . . . , N}. Define a hash family H′ = {h′1, h′2, . . . , h′d : X −→ Y c}, where h′u(x) = (hi(x) : i ∈
Au). We see thatH′ is an SHF(d;n,mc, {w1, . . . , wt}). This is because if the sets hi0(Cj) and hi0(Ck)
are disjoint, where i0 ∈ Au and u ∈ {1, . . . , d}, then the sets h′u(Cj) and h′u(Ck) are also disjoint.
For if we have h′u(Cj) ∩ h′u(Ck) 6= ∅, then there are x ∈ Cj and y ∈ Ck such that h′u(x) = h′u(y).
This implies that hi(x) = hi(y) for all i ∈ Au, contradicting the fact that hi0(x) 6= hi0(y) as hi0(Cj)
and hi0(Ck) are disjoint. �

2.1 A bound for SHF(u− 1;n,m, {w1, w2})

We begin with a lemma that is necessary to the proof of Theorem 7.

Lemma 2 Suppose there exists an SHF(N ;n,m, {w1, w2}) with n−m ≥ w1 +w2 − 1 and w2 ≥ 2.
Then there exists an SHF(N − 1;n1,m, {w1, w2 − 1}) with n1 ≥ n−m.

Proof. Let A be the matrix representation of an SHF(N ;n,m, {w1, w2}) with w2 ≥ 2. Let m1

denote number of symbols that appear in the first row of A. Since permuting the columns of
A does not change the separation property, we may assume that the first row of A has pairwise
different symbols in the first m1 columns. Let A1 denote the (N − 1)× (n−m1) matrix obtained
from A by ignoring the first row and the first m1 columns of A. Set n1 := n − m1. Then
n1 ≥ n − m ≥ w1 + w2 − 1. We claim that A1 is an SHF(N − 1;n1,m, {w1, w2 − 1}). Assume
that A1 is not an SHF(N − 1;n1,m, {w1, w2− 1}). Then there are two column sets C1 and C2 with
|C1| = w1 and |C2| = w2− 1, that are not separated in any row of A1. Let a be a symbol appearing
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in some column of C1 in the first row of A. Then in the first m1 columns of A there is a column c
having symbol a in the first row. Add this column c to C2. Now it is easily checked that C1 and
C2 ∪ {c} are not separated in A, which contradicts the separation property of A. �

Theorem 7 Suppose there exists an SHF(u − 1;n,m, {w1, w2}), where u = w1 + w2. Then n ≤
(u− 1)m.

Proof. We prove the theorem by induction on u. Note that u ≥ 2. Let A be the matrix
representation of an SHF(u − 1;n,m, {w1, w2}). Assume u = 2. Then w1 = w2 = 1 and A is
an 1 × n matrix. Hence, all n symbols in the unique row of A must be pairwise different, i.e.
n ≤ m. Now assume, as an inductive hypothesis, that the statement n ≤ (u − 1)m is valid for all
u = 2, . . . , k− 1, with k− 1 ≥ 2. Suppose now that there exists an SHF(k− 1;n,m, {w1, w2}) such
that n > (k − 1)m, where k = w1 + w2. As k ≥ 3, we may assume w2 ≥ 2. From m ≥ 2 and
n−m > (k− 2)m we have n−m > k− 1, therefore n−m > w1 +w2− 1. By Lemma 2 there exists
an SHF(k− 2;n1,m, {w1, w2 − 1}) with n1 ≥ n−m > (k− 2)m, which contradicts the assumption
of the induction. This completes the proof. �

Using Lemma 1 and Theorem 7 we obtain Theorem 5.

Proof. [of Theorem 5] Assume, by contradiction, that there exists an SHF(N ;n,m, {w1, w2}) with

n = (u− 1)m
d N
(u−1)

e
+ 1. By Lemma 1 there exists an SHF(dNc e;n,m

c, {w1, w2}) with c := d N
(u−1)e.

We make use of a simple observation. Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}) with
matrix representation A. Then for any N ′ > N there exists an SHF(N ′;n,m, {w1, w2, . . . , wt})
obtained by adding N ′−N arbitrary new rows using the same symbol set toA. Now, as dNc e ≤ u−1,

the observation says that there is an SHF(u−1;n,mc, {w1, w2}) with n = (u−1)m
d N
(u−1)

e
+1, which

contradicts Theorem 7. �

2.2 A bound for SHF(u− 1;n,m, {w1, . . . , wt}) with t ≥ 3

In this section we first prove a new bound for SHF with u−1 rows for the general type {w1, w2, . . . , wt}
with t ≥ 3. This bound is slighly stronger than the bound of Theorem 7. Observe that any
SHF(N ;n,m, {w1, w2, . . . , wt}) with t ≥ 3 yields an SHF(N ;n,m, {w1, w2, w

′
3}) where w′3 = w3 +

. . .+ wt. So, the proof of Theorem 8 can be reduced to the case of SHF(u− 1;n,m, {w1, w2, w3}).
However, as the proof uses a new idea and is constructive, we think it would be useful to present
it for the general type {w1, w2, . . . , wt}.

Theorem 8 Let t ≥ 3 be an integer. Suppose there exists an SHF(u − 1;n,m, {w1, w2, . . . , wt}),
where u =

∑t
i=1wi. Then n ≤ (u− 1)(m− 1) + 1.

Proof. Assume, for a contradiction, that there exists an SHF(u − 1;n,m, {w1, w2, . . . , wt}) with
n = (u − 1)(m − 1) + 2. Wlog we assume that w1 and w2 are the smallest two of the integers
w1, w2, . . . , wt. Let A = (ai,j) be its matrix representation and let C denote the set of columns
of A. The proof describes a procedure how to construct disjoint subsets C1, C2, . . . , Ct ⊆ C with
|Ci| ≤ wi that are not separated by any row of A. We begin with a simple counting of the number
of columns having at least one unique symbol in some row i ∈ {2, . . . , u − 1}. Since each row can
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have at most (m − 1) unique symbols (if there were m unique symbols, we would only have m
columns), there are at most (u−2)(m−1) such columns. Let C1 denote this set of columns. Define
C2 := C \C1. Then |C2| ≥ m+1. The set C2 has the following property: for each column j ∈ C2 and
for each row i ∈ {2, . . . , u− 1} the symbol ai,j appears in row i at least twice. As |C2| ≥ m+ 1, it
follows that there are two columns j1, j2 ∈ C2 having the same symbol in the first row and having
non-unique symbols in all other rows.

We now describe how to construct the subsets C1, . . . , Ct of C we are seeking. We start with
Ci = ∅ for i = 1, . . . , t and then construct Ci’s using the following four steps.

Step 1: Add j1 to C1 and j2 to C2. We will focus on the specified columns j1 and j2 in the following
steps to construct C1, C2, C3, . . . , Ct.

Step 2: This step starts building sets Ci for i = 3, . . . , t.

Consider all the rows k = 2, . . . , u−w1 −w2 + 1 of A. For each such row k, the symbol ak,j2
appears in at least one more column, say j, other than j2 (i.e. j 6= j2).

(i) If j ∈
⋃t

i=3Ci ∪ C1, then do nothing.

(ii) If j 6∈
⋃t

i=3Ci ∪ C1 and if |Ci| < wi for some i = 3, . . . , t, then add column j to set Ci.

We eventually obtain subsets C3, . . . , Ct with |Ci| ≤ wi that are not separated from column
j2 in any row k = 2, . . . , u − w1 − w2 + 1. Note that after Step 2 all sets C3, . . . , Ct could
remain empty, this would be the case if column j is unique and j = j1 for all k.

Step 3: This step continues to construct the sets C3, . . . , Ct as long as it is still possible, otherwise it
constructs the set C2.

Consider all the rows k = u−w1−w2 + 2, . . . , u−w1 (i.e. w2− 1 rows). In each row k there
exists a column j with j 6= j1 such that ak,j = ak,j1 (as the symbol ak,j1 is repeated).

(i) If column j ∈
⋃t

i=3Ci, then do nothing.

(ii) If column j 6∈
⋃t

i=3Ci ∪ C2 and if
∑t

i=3 |Ci| < w3 + . . . + wt, then add j to one of Ci

with |Ci| < wi, i ≥ 3.

(iii) If column j 6∈
⋃t

i=3Ci ∪ C2 and if
∑t

i=3 |Ci| = w3 + . . .+ wt, then add j to C2.

(iv) If column j ∈ C2, then do nothing.

Note that before Step 3 we have C2 = {j2}. In Step 3 for each of w2 − 1 considered rows we
add at most one column to C2. So we have |C2| ≤ w2 after Step 3.

The process in Step 3 is characterized by the following property: By finishing Step 3, if
|C2| ≥ 2, then

∑t
i=3 |Ci| = w3 + . . .+ wt (i.e. |Ci| = wi for all i = 3, . . . , t).

It is clear that C1, C2, C3, . . . , Ct are not separated in any row k = u−w1−w2+2, . . . , u−w1.

Define a set D2 as follows: D2 is the set of columns j obtained from (i) and (ii) of Step 3
after it is finished. Note here that D2 ∪ C2 is the set of columns that are responsible for the
non-separation of C1 from C2, C3, . . . , Ct in the rows k = u−w1 −w2 + 2, . . . , u−w1. Define
D1 :=

⋃t
i=3Ci \D2.
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Step 4: This step essentially deals with the extension of C1 by using rows k = u− w1 + 1, . . . , u− 1.
A crucial point of this step is that we might need to modify the so far constructed sets
C2, C3, . . . , Ct. To make the description clearer we consider two cases.

Case A: |C2| = 1 (i.e. C2 = {j2}).
For each k = u−w1 + 1, . . . , u− 1, there exists a column j 6= j2 such that ak,j = ak,j2 , as the
symbol ak,j2 is repeated.

(a) If j ∈
⋃t

i=3Ci, do nothing.

(b) If j 6∈
⋃t

i=3Ci, add j to C1

It can be checked that the constructed C1, C2, C3, . . . , Ct are not separated in any row k =
u− w1 + 1, . . . , u− 1.

Case B: |C2| ≥ 2.

Suppose |C2| := α ≥ 2. As just described in Step 3 this case implies that |Ci| = wi for all
i = 3, . . . , t. Moreover, we have

⋃t
i=3Ci = D1 ∪D2 as defined in Step 3.

Since α − 1 columns are added to C2 in Step 3, we have |D2| = w2 − 1 − (α − 1) = w2 − α.
Further, as

w2 ≤ w3 ≤ |
t⋃

i=3

Ci| = w3 + . . .+ wt = |D1|+ |D2| = |D1|+ w2 − α,

we have
|D1| ≥ α.

We now use this fact to construct C1 or possibly to modify the so far constructed C2, C3, . . . , Ct.

For each row k = u − w1 + 1, . . . , u − 1, there exists a column j 6= j2 such that ak,j = ak,j2 ,
as the symbol ak,j2 is repeated.

(i) If j ∈
⋃t

i=3Ci, do nothing.

(ii) If j 6∈
⋃t

i=3Ci ∪ C2, add j to C1.

(iii) If j ∈ C2 (i.e. cases (i) and (ii) do not happen), then we do the following operation:
Move one column j′ ∈ D1 to C1 and substitute j′ with j. We observe that this step can
always be done, as |D1| ≥ α. Note that the size of C2 is reduced by one each time this
operation is applied.

Note also that before Step 4 we have C1 = {j1}. In Step 4 for each of w1− 1 considered rows
we add at most one column to C1. Hence, |C1| ≤ w1 after Step 4.

Now it is not difficult to check that the constructed column subsets C1, C2, C3, . . . , Ct cannot
be separated by any row of A. This can be seen as follows. After Steps 1,2,3 the so far
constructed C1, C2, C3, . . . , Ct are not separated by any of the first (u − w1) rows of A, (
i.e. rows k = 1, . . . , u − w1). The key observation being that any operation in Step 4,
namely adding a new column to C1 or moving one column from D1 to C1 and replace it by a
column from C2, does not change the non-separation property of the newly constructed sets
C1, C2, C3, . . . , Ct in rows k = 1, . . . , u−w1. Moreover, the construction in Step 4 makes clear
that the column sets C1, C2, C3, . . . , Ct are not separated by any of the last (w1−1) rows, i.e.
rows k = u− w1 + 1, . . . , u− 1. This completes the proof. �
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Now using Lemma 1 and Theorem 8 we obtain Theorem 6 by a similar argumentation as given
in the proof for Theorem 5 above.

3 Discussion

The new bounds in Theorem 5 and Theorem 6 improve the Blackburn-Etzion-Stinson-Zaverucha
bound for any type {w1, . . . , wt} with wi ≥ 2 for all i. For example, when t = 2 and w1 = w2 =

w ≥ 2, the bound in Theorem 5 provides n ≤ (2w − 1)m
d N
(u−1)

e
, whereas the bound in Theorem

4 gives n ≤ (w2)m
d N
(u−1)

e
. From observing the constant (u − 1) in Theorem 7 and Theorem 8, an

interesting question arises:

Question Is there any type {w1, w2, . . . , wt} for which the constant (u − 1) in Theorem 7 or
Theorem 8 can be replaced by another constant c strictly smaller than (u− 1) ?

For certain types we know the answer to the question. For instance, there are constructions for
SHF(3;n,m, {2, 2}), for which limm→∞ n/m = 3, see for example [7]. This implies that u − 1 = 3
is the smallest value γ such that n ≤ γm for all m. Another example is an SHF(2;n,m, {1, 1, 1}).
Such an SHF is, in fact, a perfect hash family PHF(2;n,m, 3) for which a result in [9, 18] shows
that n ≤ 2m − 2 and there exists a PHF(2; 2(m − 1),m, 3) for very m. This again shows that
u−1 = 2 cannot be further improved. Although it is not known whether the leading constant u−1
in Theorem 7 or Theorem 8 can be improved, it is expected that the bounds in these theorems
may further be improved when all wi ≥ 2. For example we have proved that n < 3m − 6 for any
SHF(3;n,m, {2, 2}) with m > 7, despite the fact that the leading constant 3 cannot be improved
for every m.
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